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Abstract— The present article is concerned with state-
feedback stabilizability of discrete-time switched homogeneous
systems. Necessary and sufficient conditions for state-feedback
exponential stabilizability are presented. It is shown that, a
switched homogeneous system is state-feedback exponentially
stabilizable if and only if an associated sequence converges to
zero. Equivalently, a switched homogeneous system is state-
feedback exponentially stabilizable if and only if an associated
dynamic programming equation admits a solution on a given
convex set. This unique solution of that associated dynamic
programming equation is shown to be the optimal cost func-
tional of a related infinite-horizon quadratic regulator problem
(for the switched homogeneous system) whose solution is also
presented. A numerical example illustrates the results reported
in the paper.

I. INTRODUCTION

In this paper, the term switched system is used to refer

to a class of dynamical system described by a differential

or difference equation whose right hand side is dynamically

selected from a given finite set of (right hand side) functions,

and this selection is governed by a function (of the time)

usually refereed to as switching signal.

Switched systems are used to model processes exhibiting

significatively different behaviors depending on a state that

takes discrete finite values and which describes the mode of

operation of the process. Such processes appear in different

engineering areas. For instance: In power electronics, [14],

[13] various types of power converters are naturally modeled

in that manner. In control systems, control schemes are being

considered [2] in which a master controller switches between

a given finite set of available controllers to close the loop

with a given plant. In control systems, switched systems are

also being considered [6] to model the complex behavior of

processes that are subject to the occurrence of faults.

Some of the recent research, in the area of switched

systems, is documented in various survey papers [4], [1], [10]

and monographs [13], [9], [5], [11]. Among the important

issues that are being studied, some are concerning with cer-

tain stability problems related to these systems. In [4], three

basic problems concerning the stability of switched systems

are recognized: (1) The problem of finding conditions for

stability, for arbitrary switching signals. (2) The problem of

finding conditions for stability, for switching signals of some

given class. (3) The problem of finding conditions for the

existence of a switching signal that stabilizes the system. The

topic of the present paper is related to (but different from)
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problem (3). It is concerned with the problem of finding

conditions for the existence of a state-feedback that stabilizes

the system. More specifically, the present work is devoted to

the problem of finding necessary and sufficient conditions to

determine the state-feedback exponential stabilizability in a

class of discrete-time switched homogeneous systems. The

contribution of this work, which extends results reported in

[7], is in providing complete and general solutions for that

problem that (to our knowledge) had remained unsolved.

We present different (but equivalent) necessary and sufficient

conditions for the existence of a state-feedback that exponen-

tially stabilizes the switched homogeneous system.

It may be appropriate to mention that in [3] and [12]

switched homogeneous systems are also considered, although

they are concerned (or related) with the aforementioned basic

problem (1), and the problem to which our work is devoted

is not addressed in those papers.

The present article is organized as follows. In section II

mathematical preliminaries and definitions are introduced.

Necessary and sufficient conditions for state-feedback ex-

ponential stabilizability of switched homogeneous systems

are presented and proved in section III. In this section,

a sequence is associated to each switched homogeneous

system. We then prove that the state-feedback exponential

stabilizability of the switched system is equivalent to the

property of convergency (to zero) of the associated sequence.

We also prove that the state-feedback exponential stabiliz-

ability of the switched system is equivalent to the solvability

of an associated dynamic programming equation (on some

specific convex set). Results regarding the solvability of the

associated dynamic programming equation are in section

IV. Some remarks on Lyapunov functions are included in

section V. The complete solution of a related infinite-horizon

quadratic regulator problem is presented in section VI. A

numerical example, included in section VII, illustrates on

the results reported in this work. Summary and concluding

remarks are in section VIII.

Most of the notation used through the paper is standard.

Z
+ denote the non-negative integers. For k ∈ Z

+, we use

Z
[0,k] to also denote the set Z

[0,k] = {0, . . . , k}. We use ln+
to denote the set of all the sequences {xk} ⊂ R

n, k ∈ Z
+.

For x ∈ R
n , ‖x‖ denotes its euclidian norm.

II. PRELIMINARIES

Let N ∈ Z
+, N > 0, be given. We will denote by Q the

set Q = {1, . . . , N}. Let us introduce the following sets of
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control functions (or switching signals)

Qk = {q : q : Z
[0,k−1] −→ Q} , k ∈ Z

+ , k > 0 ,

Q∞ = {q : q : Z
+ −→ Q} .

Let the continuous functions fi : R
n −→ R

n, i ∈ Q,

satisfying

fi(0) = 0 , and

fi(λx0) = λfi(x0) , ∀λ ∈ R
+ , ∀x0 ∈ R

n , ∀i ∈ Q (1)

be given. The present article is concerned with the dynamical

homogeneous system described by

x(k + 1) = fq(k)(x(k)) , k ∈ Z
+ ,

x(0) = x0 ∈ R
n , q ∈ Q∞ . (2)

The motion of this controlled dynamical system will be

denoted by x(· ;x0, q).
To each mapping κ : R

n −→ Q we associate the diagonal

(or static) operator Kκ : ln+ −→ Q∞ defined by

Kκ(x)(k) = κ(x(k)) , k ∈ Z
+ .

It is clear that if we also associate to each mapping κ :
R

n −→ Q the (closed-loop) dynamical system described by

xcl(k + 1) = fκ(xcl(k))(xcl(k)) , k ∈ Z
+ ,

xcl(0) = x0 ∈ R
n , (3)

then, it follows that x(· ;x0,Kκ(x)) = xcl(· ;x0).
In this work we will adopt the following definitions.

Definition 1: The switched system (2) is state-feedback

exponentially stabilizable whenever there exist a mapping

κ : R
n −→ Q and scalars α ≥ 1 and 0 < β < 1 such that

the motions of the associated (closed-loop) dynamical system

(3) satisfy

‖xcl(k;x0)‖ ≤ αβk‖x0‖ , k ∈ Z
+ , x0 ∈ R

n .

Definition 2: The switched system (2) is uniformly expo-

nentially convergent whenever there exist scalars α ≥ 1 and

0 < β < 1 that obey the following property:

For each x0 ∈ R
n there exists qx0

∈ Q∞ such that the

corresponding motion of (2) satisfies

‖x(k;x0, qx0
)‖ ≤ αβk‖x0‖ , k ∈ Z

+ .

III. FEEDBACK STABILIZABILITY OF THE SWITCHED

HOMOGENEOUS SYSTEM

It is convenient to associate to the sets Qk, k ∈ Z
+, k > 0,

of control functions the following sets Fk, k ∈ Z
+, k > 0,

of continuous homogeneous functions:

Fk = {F ∈ C(Rn; Rn) : F = fq(k−1)◦. . .◦fq(0) , q ∈ Qk} .

We associate, also, to the switched homogeneous system (2),

the sequence of functions {Vk}, where Vk : R
n −→ R

+,

k ∈ Z
+, k > 0, is defined by

Vk(x0) = min
q∈Qk

‖x(k;x0, q)‖
2 = min

F∈Fk

‖F (x0)‖
2 , (4)

and the sequence {µk}, where µk ∈ R
+, k ∈ Z

+, k > 0, is

defined by

µk = max
‖x0‖≤1

Vk(x0) = max
‖x0‖≤1

min
q∈Qk

‖x(k;x0, q)‖
2 . (5)

Some simple properties of {Vk} and {µk} are collected

in the next Fact.

Fact 1: For each given k ∈ Z
+, k > 0, it follows that

(1) Vk is continuous.

(2) Vk(λx0) = λ2Vk(x0) , λ ∈ R
+ , x0 ∈ R

n .

(3) µk = max‖x0‖=1 Vk(x0) .

(4) µk ≤ minF∈Fk
max‖x0‖≤1 ‖F (x0)‖

2 .

(5) For each given h ∈ Z
+, h > 0, it follows that

µhk ≤
(
µk

)h
.

Next, we present the main result of this work.

Theorem 1: The switched homogeneous system (2), with

associated sequence {µk}, is state-feedback exponentially

stabilizable if and only if any (and then all) of the following

equivalent conditions are satisfied:

(i) There exists k0 ∈ Z
+, k0 > 0, such that µk0

< 1.

(ii) limk→+∞ µk = 0 .

(iii) There exists a function W : R
n −→ R

+ satisfying

• W (λx0) = λ2W (x0) , λ ∈ R
+ , x0 ∈ R

n,

• ‖x0‖
2 ≤ W (x0) ≤ γ‖x0‖

2 , x0 ∈ R
n,

for some γ > 1,

which solves the following associated dynamic

programming equation:

W (x0) = ‖x0‖
2 + min

q∈Q
W (fq(x0)) , x0 ∈ R

n . (6)

Moreover, a function W as in (iii) defines a state-feedback

mapping κ : R
n −→ Q via

κ(x0) ∈ arg min
q∈Q

W (fq(x0)) , x0 ∈ R
n . (7)

Any such a state-feedback (7) exponentially stabilizes the

switched system (2). And the function W , is a Lyapunov

function for the exponential stability of the trivial solution

of the associated closed-loop dynamical system (3).

Proof: This constructive proof is organized as follows.

In the Necessity part, we prove that the existence of an

exponentially stabilizing feedback for the switched system

(2) implies the satisfaction of condition (i). In the Sufficiency

part, we prove that the satisfaction of condition (i) implies

the satisfaction of conditions (ii) and (iii), and the last one

implies the existence of an exponentially stabilizing feedback

for the switched system (2). (Trivially, (ii) =⇒ (i).)

(Necessity.) By assumption there exist a mapping κ : R
n −→

Q and scalars α ≥ 1 and 0 < β < 1 such that the motions

of the associated system (3) satisfy

‖xcl(k;x0)‖ ≤ αβk‖x0‖ , k ∈ Z
+ , x0 ∈ R

n .

Choose k0 ∈ Z
+, k0 > 0, such that α2β2k0 < 1. And define

the following family of control functions:

qx0
= Kκ(xcl(· ;x0)) , x0 ∈ R

n , ‖x0‖ ≤ 1 .
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Then, using the definition of Vk0
, we have that

Vk0
(x0) = min

q∈Qk0

‖x(k0;x0, q)‖
2 ≤ ‖x(k0;x0, qx0

)‖2 =

‖xcl(k0;x0)‖
2 ≤ α2β2k0 , x0 ∈ R

n , ‖x0‖ ≤ 1 .

Therefore,

µk0
= max

‖x0‖≤1
Vk0

(x0) ≤ α2β2k0 < 1 .

(Sufficiency.) By assumption there exists k0 ∈ Z
+, k0 >

0, such that µk0
< 1. It will be assumed, without loss of

generality, that k0 > 1. (Notice that in case that k0 = 1 we

can appeal to Fact 1 (property (5)) to define a new knew
0 =

hk0 with h ∈ Z
+, h > 1. Thus, knew

0 > 1, and moreover

µknew
0

≤ (µk0
)h < 1.) Now, for a given x0 ∈ R

n, we will

consider the optimal control problem

min
q∈Qk0

‖x(k0;x0, q)‖
2 , (8)

and we will use q̂k0,x0
to denote a solution for that problem.

Therefore, for any given x0 ∈ R
n

‖x(k0;x0, q̂k0,x0
)‖2 = min

q∈Qk0

‖x(k0;x0, q)‖
2 =

Vk0
(x0) ≤ µk0

‖x0‖
2 .

Let us define

Mk0
= max{1 , max

F∈
⋃k0−1

j=1
Fj

max
‖z‖≤1

‖F (z)‖2} .

Let x0 ∈ R
n be given, and let h ∈ Z

+, h > 0, be

given. Let q̃hk0,x0
∈ Qhk0

be a control function made up

by concatenating solutions of the optimal control problem

(8) with the following initial conditions:

x̂0 = x0 , x̂1 = x(k0; x̂0, q̂k0,x̂0
) , . . . ,

x̂h−1 = x(k0; x̂h−2, q̂k0,x̂h−2
) .

That is, using the above notation, the control function q̃hk0,x0

is defined by

q̃hk0,x0
(jk0 + i) = q̂k0,x̂j

(i) ,

i ∈ {0, . . . , (k0 − 1)} , j ∈ {0, . . . , (h − 1)} .

Now, it is easy to see that, with the above defined control

function q̃hk0,x0
the following inequalities are satisfied:

‖x(k;x0, q̃hk0,x0
)‖2 ≤ Mk0

µ
j
k0
‖x0‖

2 ,

k ∈ Z
+ , k ∈ {jk0, . . . , jk0 + (k0 − 1)} ,

j ∈ {0, . . . , (h − 1)} , and

‖x(k;x0, q̃hk0,x0
)‖2 ≤ Mk0

µh
k0
‖x0‖

2 , k = hk0 .

It is then clear that the above expression implies that

limk→+∞ µk = 0. In effect, given ǫ > 0 arbitrary, we choose

j0 ∈ Z
+, j0 > 0, such that Mk0

µ
j0
k0

< ǫ. Then, for any

k ∈ Z
+, k ≥ j0k0, it is verified that (where we have chosen

h ∈ Z
+, h > 0, such that k ≤ hk0; thus j ≥ j0)

µk = max
‖z‖≤1

Vk(z) = Vk(x0) = min
q∈Qk

‖x(k;x0, q)‖
2 ≤

‖x(k;x0, q̃hk0,x0
)‖2 ≤ Mk0

µ
j
k0

≤ Mk0
µ

j0
k0

< ǫ ,

where x0 denotes an optimal solution of the problem

max‖z‖≤1 Vk(z). For each k ∈ Z
+, k > 0, we now define

the cost functional Jk : R
n ×Qk −→ R

+ by

Jk(x0, q) =

k∑

i=0

‖x(i;x0, q)‖
2 . (9)

For any given x0 ∈ R
n we will consider the following family

of optimal control problems (where k ∈ Z
+, k > 0):

min
q∈Qk

Jk(x0, q) , (10)

and we will denote by Uk(x0) the optimal values of those

problems. It immediately follows that the functions Uk :
R

n −→ R
+ are continuous and also verify

Uk(λx0) = λ2Uk(x0) ,

λ ∈ R
+ , x0 ∈ R

n , k ∈ Z
+ , k > 0 . (11)

Moreover, for any given x0 ∈ R
n, we have that (choosing

h ∈ Z
+, h > 0, such that k ≤ hk0)

Uk(x0) = min
q∈Qk

Jk(x0, q) ≤ min
q∈Qhk0

Jhk0
(x0, q) ≤

Jhk0
(x0, q̃hk0,x0

) =

hk0∑

i=0

‖x(i;x0, q̃hk0,x0
)‖2 ≤

h∑

j=0

k0Mk0
µ

j
k0
‖x0‖

2 ≤
k0Mk0

(1 − µk0
)
‖x0‖

2 , k ∈ Z
+ , k > 0 .

It was therefore proved that

‖x0‖
2 ≤ Uk(x0) ≤ k0Mk0

1

(1 − µk0
)
‖x0‖

2 ,

x0 ∈ R
n , k ∈ Z

+ , k > 0 . (12)

It is also easy to see that the following property is verified:

Uk+1(x0) ≥ Uk(x0) , x0 ∈ R
n , k ∈ Z

+ , k > 0 . (13)

It then follows that, for each given x0 ∈ R
n, the limite

limk→+∞ Uk(x0) exists. That fact lead us to the introduction

of the function W : R
n −→ R

+ defined by

W (x0) = lim
k→+∞

Uk(x0)

which immediately satisfies

‖x0‖
2 ≤ W (x0) ≤ k0Mk0

1

(1 − µk0
)
‖x0‖

2 , x0 ∈ R
n ,

and also

W (λx0) = λ2W (x0) , λ ∈ R
+ , x0 ∈ R

n .

Furthermore, since

Uk+1(x0) =
(
‖x0‖

2 + min
q∈Q

Uk(x(1;x0, q))
)

=
(
‖x0‖

2 + min
q∈Q

Uk(fq(x0))
)
,

x0 ∈ R
n , k ∈ Z

+ , k > 0 ,
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it then follows that W is a solution of the following dynamic

programming equation:

W (x0) = ‖x0‖
2 + min

q∈Q
W (fq(x0)) , x0 ∈ R

n .

Hence, there exists a mapping κ : R
n −→ Q satisfying

κ(x0) ∈ arg min
q∈Q

W (fq(x0)) , x0 ∈ R
n .

Thus, it is verified that

W (fκ(x0)(x0)) − W (x0) = −‖x0‖
2 , x0 ∈ R

n ,

which means that W is a Lyapunov function for the ex-

ponential stability of the trivial solution of the associated

closed-loop dynamical system (3). In effect, it is easy to

verify that (with that state-feedback mapping) the motions

of the associated closed-loop dynamical system (3) satisfy

‖xcl(k;x0)‖ ≤ αβk‖x0‖ , k ∈ Z
+ , x0 ∈ R

n ,

with

α =

√

k0Mk0

(1 − µk0
)

, β =

√

k0Mk0
− (1 − µk0

)

k0Mk0

,

which completes the proof of the Theorem.

Remark 1: It follows from the previous result that (in

case the switched homogeneous system (2) is state-feedback

exponentially stabilizable) a exponentially stabilizing state-

feedback mapping κ : R
n −→ Q, given by (7), can always

be chosen with the following property:

κ(λx0) = κ(x0) , λ ∈ (R+ \ {0}) , x0 ∈ R
n .

Notice also, that in such a case

fκ(λx0)(λx0) = λfκ(x0)(x0) , λ ∈ R
+ , x0 ∈ R

n ,

therefore, the resulting closed-loop dynamical system (3) is

also homogeneous.

Remark 2: We remark that in case the homogeneity prop-

erty in (1), for the functions fi, i ∈ Q, is further held for

λ ∈ R (no just for λ ∈ R
+), then, this property is also

inherited by Vk, Uk, (k ∈ Z
+, k > 0), W , κ, and fκ.

We observe that our proof of Theorem 1 also proves the

following result: The switched homogeneous system (2) is

uniformly exponentially convergent if and only if there exists

k0 ∈ Z
+, k0 > 0, such that µk0

< 1. We have therefore the

following conclusion from Theorem 1.

Corollary 1: The switched homogeneous system (2) is

state-feedback exponentially stabilizable if and only if it is

uniformly exponentially convergent.

IV. ON THE SOLVABILITY OF THE ASSOCIATED

DYNAMIC PROGRAMMING EQUATION

Given the relevance of the associated dynamic program-

ming equation (6), this section is devoted to present results,

which are related with Theorem 1, and which are concerned

with its solvability, number of solutions, and properties of

the solutions. Let us begin by introducing the following

sets, W+, and W++, of (positive semi-definite and positive

definite decrescent) functions as

W+
(
W++

)
= {Φ : R

n −→ R
+ : ∃

(
δ1 > 0 ,

)
δ2 > 0 :

(
δ1‖x0‖

2 ≤
)
Φ(x0) ≤ δ2‖x0‖

2 , ∀x0 ∈ R
n} .

Theorem 2: The dynamic programming equation (6) asso-

ciated to the switched homogeneous system (2) has a solution

W inside the convex cone W+, if and only if, the switched

homogeneous system (2) is state-feedback exponentially

stabilizable. Moreover:

(1) The convex cone W+ admits at most one solution

of the dynamic programming equation (6).

(2) If W ∈ W+ is the solution of the dynamic

programming equation (6), then, W ∈ W++ and it

has the following properties:

• W is continuous.

• It is verified that

W (λx0) = λ2W (x0) , λ ∈ R
+ , x0 ∈ R

n .

• It is also verified that

0 ≤ W (x0) − Uk(x0) = W (x0) − min
Φ∈Gk

Φ(x0) ≤

( k0Mk0

(1 − µk0
)
− 1

) 1
(
1 +

(1−µk0
)

k0Mk0
M2

)k
‖x0‖

2 ,

x0 ∈ R
n , k ∈ Z

+ , k > 0 ,

where k0 ∈ Z
+, k0 > 1, is such that µk0

< 1,

Ml = max{1 , max
F∈

⋃ l−1

j=1
Fj

max
‖z‖≤1

‖F (z)‖2} ,

l ∈ Z
+, l > 1, and where the sets of functions

Gk, k ∈ Z
+, k > 0, are defined as follows:

Gk = {Φ : R
n −→ R

+ : Φ(x0) = ‖x0‖
2 +

k∑

l=1

‖(fq(l−1) ◦ . . . ◦ fq(0))(x0)‖
2 , q ∈ Qk} .

Proof: In Part 1 we prove the necessary and sufficient

condition for existence of solution in W+. And then, in Part

2, the rest of the statement is proved.

Part 1.- (Sufficiency.) It was already proved, in Theorem 1,

that if the switched homogeneous system (2) is state-

feedback exponentially stabilizable, then, there exists W ∈
W++⊂ W+ that solves the dynamic programming equation.

(Necessity.) If W ∈ W+ and solves the dynamic program-

ming equation (6), then, it is straightforward that W ∈ W++,

with δ1 = 1, and any state-feedback mapping κ : R
n −→

Q obeying κ(x0) ∈ arg minq∈Q W (fq(x0)) , x0 ∈ R
n ,

exponentially stabilizes the switched homogeneous system

(2); since in that case we have

W (fκ(x0)(x0)) − W (x0) = −‖x0‖
2 , ∀x0 ∈ R

n .

Part 2.- Assume W ∈ W+ is solution of the dynamic

programming equation (6). Then, since the switched homo-

geneous system (2) is state-feedback stabilizable, it follows

from Theorem 1 that there exists k0 ∈ Z
+, k0 > 1, such that
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µk0
< 1. As in the sufficiency part of the proof of Theorem 1,

we consider the costs functionals Jk : R
n × Qk −→ R

+,

k ∈ Z
+, k > 0, defined by (9), and for given x0 ∈ R

n

we consider the family of optimal control problems defined

in (10) and we will denote by Uk(x0) the optimal values of

these problems. It follows (as it was shown in the sufficiency

part of the proof of Theorem 1) that the functions Uk :
R

n −→ R
+ are continuous, and they also obey properties

(11), (13), and (12). As a result of all that, we can define a

function U∞ : R
n −→ R

+ by

U∞(x0) = lim
k→+∞

Uk(x0)

which therefore satisfies

U∞(λx0) = λ2U∞(x0) , λ ∈ R
+ , x0 ∈ R

n ,

U∞(x0) ≥ Uk(x0) , x0 ∈ R
n , k ∈ Z

+ , k > 0 ,

and

‖x0‖
2 ≤ U∞(x0) ≤ k0Mk0

1

(1 − µk0
)
‖x0‖

2 , x0 ∈ R
n .

Further, since

Uk+1(x0) =
(
‖x0‖

2 + min
q∈Q

Uk(fq(x0))
)
,

x0 ∈ R
n , k ∈ Z

+ , (14)

it then follows that

U∞(x0) = ‖x0‖
2 + min

q∈Q
U∞(fq(x0)) , x0 ∈ R

n .

We now claim that U∞ = W . In effect, by assumption W ∈
W++, that is, there are δ1 > 0, δ2 > 0, such that

δ1‖x0‖
2 ≤ W (x0) ≤ δ2‖x0‖

2 , x0 ∈ R
n . (15)

Without loss of generality, we will assume that δ1 ≤ 1, and

δ2 > 1. We now use (14) and (15) to invoke Lemma 1 (stated

after this proof) from which it is concluded that

−(δ−1
1 − 1)δ2

(1 + (δ2M2)−1)k
‖x0‖

2 ≤ W (x0) − Uk(x0) ≤

(1 − δ−1
2 )δ2

(1 + (δ2M2)−1)k
‖x0‖

2 , x0 ∈ R
n , k ∈ Z

+ , k > 0 .

The above bounds imply that for each given x0 ∈ R
n

lim
k→+∞

Uk(x0) = W (x0) .

Hence, U∞ = W , and the claim was proved. The above

bounds also imply that

lim
k→+∞

sup
‖x0‖≤1

|W (x0) − Uk(x0)| = 0 ,

and therefore, the continuity of W follows from the continu-

ity of the functions Uk, k ∈ Z
+, k > 0. The final properties

of the solution W ∈ W+ follow now from the properties

we have already established on U∞, and (then) by setting

δ2 =
k0Mk0

(1−µk0
) on the above upper bound.

In the proof of Theorem 2 we have used the next result that

we have adapted from [8] to fit in our setting.

Lemma 1: Consider the switched homogeneous system

(2). Let W : R
n −→ R satisfying

δ1‖x0‖
2 ≤ W (x0) ≤ δ2‖x0‖

2 , ∀x0 ∈ R
n ,

for some given 1 ≥ δ1 > 0, δ2 > 0, be a solution of the

associated dynamic programming equation (6). Let {Uk},

k ∈ Z
+, be the sequence of functions generated by

Uk+1(x0) =
(
‖x0‖

2 + min
q∈Q

Uk(fq(x0))
)
,

U0(x0) = ‖x0‖
2 , x0 ∈ R

n , k ∈ Z
+ .

Then, under these conditions,

−(δ−1
1 − 1)

(1 + (δ2M2)−1)k
W (x0) ≤ W (x0) − Uk(x0) ≤

(1 − δ−1
2 )

(1 + (δ2M2)−1)k
W (x0) , x0 ∈ R

n , k ∈ Z
+ ,

where M2 = max{1 ,maxq∈Q max‖z‖≤1 ‖fq(z)‖2}.

V. SOME REMARKS ON LYAPUNOV FUNCTIONS

A simple consequence of Theorem 2, which deserves some

comments, is the next result.

Corollary 2: If the switched homogeneous system (2) is

state-feedback exponentially stabilizable, then, there exists

k1 ∈ Z
+, k1 > 0, having the following property:

• Every state-feedback mapping κk : R
n −→ Q, k ∈ Z

+,

k ≥ k1, satisfying

κk(x0) ∈ arg min
q∈Q

min
Φ∈Gk

Φ(fq(x0)) , x0 ∈ R
n , (16)

exponentially stabilizes the switched system (2).

• Moreover, the corresponding function Uk, k ∈ Z
+, k ≥

k1, which can be expressed as

Uk(x0) = min
Φ∈Gk

Φ(x0) , x0 ∈ R
n , (17)

is a Lyapunov function for the exponential stability of

the trivial solution of the associated closed-loop system

(3) (for the corresponding feedback mapping κk).

Proof: By Theorem 2 there exists W ∈ W++ solution

of the associated dynamic programming equation (6). Choose

ǫ1 such that 0 < ǫ1 < 1. It is a consequence of Theorem 2

that there is k1 ∈ Z
+, k1 > 0, such that for every k ∈ Z

+,

k ≥ k1, we have

0 ≤ W (x0) − Uk(x0) ≤ (1 − ǫ1)‖x0‖
2 , ∀x0 ∈ R

n .

Hence, for every k ∈ Z
+, k ≥ k1,

min
q∈Q

Uk(fq(x0)) − Uk(x0) ≤ −ǫ1‖x0‖
2 , ∀x0 ∈ R

n .

Noticing that Uk, k ∈ Z
+, k > 0, obeys property (12) (=⇒

Uk ∈ W++) completes the proof.

Remark 3: Under the hypothesis of Corollary 2, exponen-

tially stabilizing state-feedback mappings κk : R
n −→ Q,

k ∈ Z
+, k ≥ k1, given by (16), can always be chosen having

the following property:

κk(λx0) = κk(x0) , λ ∈ (R+ \ {0}) , x0 ∈ R
n .
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Remark 4: The above result says that, under the present

hypothesis, it can always be used (for the exponential stabil-

ity property of the trivial solution of a κk-stabilized associ-

ated closed-loop system (3)) Lyapunov functions which are

defined as in (17). That is, they are defined as the point-wise

minimum over the finite set of functions Gk. Notice that,

in case that the switched system is linear; that is, when for

given Ai ∈ R
n×n, i ∈ Q, the switched homogeneous system

(2) is defined by the functions fi : R
n −→ R

n satisfying

fi(x0) = Aix0, ∀x0 ∈ R
n, i ∈ Q, then, the aforementioned

Lyapunov functions Uk, k ∈ Z
+, k ≥ k1, can be written as

Uk(x0) = min
P∈Pk

x∗
0Px0 , x0 ∈ R

n ,

where the finite sets Pk ⊂ R
n×n, k ∈ Z

+, k > 0, are

Pk = {P ∈ R
n×n : P = I +

k∑

l=1

(Aq(l−1) . . . Aq(0))
∗(Aq(l−1) . . . Aq(0)) , q ∈ Qk} .

Remark 5: Notice that, from Corollary 2 and Theorem 2,

by setting N = 1, we recover a well-known Lyapunov con-

verse result. In effect, we have also proved that if the trivial

solution of the dynamical homogenous system described by

x(k + 1) = f(x(k)) , k ∈ Z
+ , x(0) = x0 ∈ R

n ,

where f : R
n −→ R

n is continuous, f(0) = 0, and

f(λx0) = λf(x0), λ ∈ R
+, x0 ∈ R

n, is exponentially

stable, then, there exists k1 ∈ Z
+, k1 > 0, such that for

every k ∈ Z
+, k ≥ k1, the function Uk defined by

Uk(x0) = ‖x0‖
2 +

k∑

l=1

‖(f ◦ . . . ◦ f
︸ ︷︷ ︸

l

)(x0)‖
2 , x0 ∈ R

n

is a Lyapunov function for that stability property. Moreover,

the above defined sequence {Uk}, k ∈ Z
+, k > 0, converges

uniformly on compacts to the Lyapunov function W , where

W (x0) = lim
k→+∞

(
‖x0‖

2+

k∑

l=1

‖(f ◦ . . . ◦ f
︸ ︷︷ ︸

l

)(x0)‖
2
)
, x0 ∈ R

n

satisfies W (f(x0)) − W (x0) = −‖x0‖
2, x0 ∈ R

n.

VI. ON A RELATED QUADRATIC REGULATOR PROBLEM

In this section we present a complete solution for a

related optimal control problem involving the switched ho-

mogeneous system (2): A related infinite-horizon quadratic

regulator problem. We begin with the following definition.

Definition 3: The switched system (2) is said to be uni-

formly quadratically bounded whenever there exists a scalar

γ ≥ 1 that obeys the following property:

For each x0 ∈ R
n there exists qx0

∈ Q∞ such that the

corresponding motion of (2) satisfies

k∑

i=0

‖x(i;x0, qx0
)‖2 ≤ γ‖x0‖

2 , k ∈ Z
+ .

Let us introduce the following cost functional J∞ : R
n ×

Q∞ −→ (R(ext))+ defined as

J∞(x0, q) = lim
k→+∞

k∑

i=0

‖x(i;x0, q)‖
2 . (18)

For each given x0 ∈ R
n, we will consider (and solve) in this

section, the following optimal control problem:

inf
q∈Q∞

J∞(x0, q) , (19)

for which it will be denoted by U : R
n −→ (R(ext))+ the

optimal cost functional

U(x0) = inf
q∈Q∞

J∞(x0, q) . (20)

We further associate, to the switched homogeneous system

(2), the sequence {υk}, k ∈ Z
+, k > 0, defined as

υk = max
‖x0‖≤1

Uk(x0) = max
‖x0‖≤1

min
q∈Qk

Jk(x0, q) . (21)

Now, regarding the above posed quadratic optimal control

problem (19) we have the following result.

Theorem 3: The optimal cost functional U , defined in

(20), is continuous at x0 = 0, if and only if, any (and then

all) of the following equivalent conditions are satisfied:

(i) The switched homogeneous system (2) is uniformly

quadratically bounded.

(ii) The switched homogeneous system (2) is state-

feedback exponentially stabilizable.

(iii) The associated sequence {υk}, k ∈ Z
+, k > 0, is

bounded.

Further, in case the above conditions are satisfied, we have

that

U(x0) = min
q∈Q∞

J∞(x0, q) = W (x0) , x0 ∈ R
n ,

where W ∈ W++ is the solution of the associated dynamic

programming equation (6). Moreover,

q̂x0
= Kκ(x(·;x0,Kκ(x))) , x0 ∈ R

n

with

κ(x0) ∈ arg min
q∈Q

W (fq(x0)) , x0 ∈ R
n

is an optimal solution for the optimal control problem under

consideration.

Proof: (Sufficiency.) Since the switched homogeneous

system (2) is uniformly quadratically bounded, then

0 ≤ U(x0) ≤ J∞(x0, qx0
) ≤ γ‖x0‖

2 , x0 ∈ R
n ,

which implies the continuity of U at x0 = 0.

(Necessity.) By the hypothesis of continuity, there is δ > 0
such that U(x0) ≤ 1, ∀x0 ∈ R

n : ‖x0‖ ≤ δ. Since U is

homogeneous degree-two, we can write

U(x0) ≤
1

δ2
‖x0‖

2 , ∀x0 ∈ R
n ,

from which it clearly follows, after choosing γ = 2
δ2 , the

uniformly quadratically boundness of the switched homoge-

neous system (2).
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((i) =⇒ (iii)) If the switched system (2) is uniformly quadrat-

ically bounded, we can write

Uk(x0) ≤ Jk(x0, qx0
) ≤ γ‖x0‖

2 , x0 ∈ R
n , k ∈ Z

+ , k > 0

implying that υk ≤ γ, k ∈ Z
+, k > 0.

((iii) =⇒ (ii)) Invoking Lemma 2 (stated after this proof),

the above upper bound gives

µk ≤ υk

k∏

j=1

(
υj − 1

υj

) ≤ γ(1 −
1

γ
)k , k ∈ Z

+ , k > 0 ,

hence there exists k0 ∈ Z
+, k0 > 0, obeying µk0

< 1,

and from Theorem 1, this implies the switched system (2) is

state-feedback exponentially stabilizable.

((ii) =⇒ (i)) If there exists a state-feedback mapping κ :
R

n −→ Q which exponentially stabilizes the switched

system (2), then, such a mapping generates control functions

qx0
∈ Q∞ via qx0

= Kκ(x(·;x0,Kκ(x))), x0 ∈ R
n, and

also, there exist scalars α ≥ 1 and 0 < β < 1 for which the

motions of (2) hold

‖x(k;x0, qx0
)‖ ≤ αβk‖x0‖ , k ∈ Z

+ , x0 ∈ R
n .

Therefore, the conditions in Definition 3 are clearly met with

γ = α2

(1−β2) .

Now, we prove the last part of the Theorem. By assumption

there is W ∈ W++, the unique solution of the associated dy-

namic programming equation (6). Consider a state-feedback

mapping κ : R
n −→ Q defined as in (7), and consider the

family of control functions q̂x0
∈ Q∞, x0 ∈ R

n, generated

when closing the loop with the above feedback, that is

q̂x0
= Kκ(x(·;x0,Kκ(x))) , x0 ∈ R

n .

Then, for each given x0 ∈ R
n, we have that

J∞(x0, q̂x0
) = lim

k→+∞

k∑

i=0

‖x(i;x0, q̂x0
)‖2 =

lim
k→+∞

(
W (x0) − W (x(k + 1;x0, q̂x0

))
)

= W (x0) .

Now, for each given x0 ∈ R
n, let qx0

∈ Q∞ be any

control function for which J∞(x0, qx0
) is finite. It then

follows that limi→+∞ ‖x(i;x0, qx0
)‖2 = 0, implying that

limi→+∞ W (x(i;x0, qx0
)) = 0. It also follows that

J∞(x0, qx0
) = lim

k→+∞

k∑

i=0

‖x(i;x0, qx0
)‖2 ≥

lim
k→+∞

k∑

i=0

(
W (x(i;x0, qx0

)) − W (x(i + 1;x0, qx0
))

)
=

lim
k→+∞

(
W (x0) − W (x(k + 1;x0, qx0

))
)

= W (x0) ,

which completes the proof of the Theorem.

In the proof of Theorem 3 we had to use the following

result that provides with a relation between the associated

sequences {υk} and {µk}.

Lemma 2: Let x0 ∈ R
n and k ∈ Z

+, k > 0, be given.

Let q̂k,x0
∈ Qk be such that

Uk(x0) = Jk(x0, q̂k,x0
) = min

q∈Qk

Jk(x0, q) .

Then, under these conditions,

‖x(k;x0, q̂k,x0
)‖2 ≤ υk

k∏

j=1

(
υj − 1

υj

) ‖x0‖
2 .

Therefore,

Vk(x0) ≤ υk

k∏

j=1

(
υj − 1

υj

) ‖x0‖
2 , and

µk ≤ υk

k∏

j=1

(
υj − 1

υj

) .

Proof: Let us shorten the notation by using xi =
x(i;x0, q̂k,x0

), i = 0, . . . , k, and zi = ‖x(i;x0, q̂k,x0
)‖2,

i = 0, . . . , k. By the optimality of q̂k,x0
∈ Qk it follows that

k∑

i=j

zi = Uk−j(xj) ≤ υk−j ‖xj‖
2 = υk−j zj ,

j ∈ {0, . . . , k − 1} .

Therefore, in order to compute an upper bound for zk, we use

the above k linear inequalities to pose and solve the following

linear programming problem (in the variables z1, . . . , zk):

max zk

s.t.

Xk






z1

...

zk




 ≤ bk ,

z1 ≥ 0 , . . . , zk ≥ 0 ,

where Xk ∈ R
k×k, bk ∈ R

k are

Xk =










1 1 1 · · · 1 1
(1 − υk−1) 1 1 · · · 1 1

0 (1 − υk−2) 1 · · · 1 1
...

...

0 0 0 · · · (1 − υ1) 1










,

bk =
(
(υk − 1)z0 0 0 · · · 0

)∗
.

The above linear programming problem can easily be ex-

plicitly solved as a function of the above data. Therefore,

the proof of the Lemma is completed from the fact that the

optimal value for that linear programming problem is given

by υk

∏k
j=1(

υj−1
υj

) z0 .

VII. A NUMERICAL EXAMPLE

The next example illustrates on results here reported.

Example 1: Consider the switched system (2) defined by

N = 2 and fi(x0) = Aix0, i ∈ {1, 2}, where

A1 =

(
1.025 1.5

0 1.005

)

, A2 =

(
0.825 0.6
−0.6 0.825

)

.

For these matrices, we have that, |λ1(A1)| = 1.005,

|λ2(A1)| = 1.025, and |λ1(A2)| = |λ2(A2)| ≈ 1.02.

Thus, neither of these matrices have (Schur) stable in-

variant subspaces. Numerical computations were performed
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Fig. 1. Graphical representation of W for the system in Example 1.
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Fig. 2. Graphical representation of a stabilizing state-feedback mapping κ

for the system in Example 1.

to evaluate some of the elements of the sequence {µk}.

These computations give that µ8 ≈ 0.3453. Then, using

Theorem 1, we conclude that the switched system is state-

feedback exponentially stabilizable. Using the recursion (14)

we computed the solution W for the dynamic programming

equation (6). The graphical representation of the computed

W (

(
cos(·)
sin(·)

)

) : [0, π) −→ R
+ is shown in Figure 1. A

stabilizing state-feedback mapping, κ : R
2 −→ {1, 2},

defined via κ(x) ∈ arg minq∈{1,2} W (Aqx) and satisfying

the property discussed in Remark 1 was also computed.

Figure 2 depicts the graphical representation of such a

computed mapping κ(

(
cos(·)
sin(·)

)

) : [0, π) −→ {1, 2}. Notice

that, according with Remark 2, the above functions only

needed to be computed on [0, π).

VIII. SUMMARY AND CONCLUDING REMARKS

We have proved that a discrete-time switched homoge-

neous system is state-feedback exponentially stabilizable

if and only if its associated sequence {µk} converges to

zero; or equivalently, if and only if there is k0 ∈ Z
+,

k0 > 0, with the property that µk0
< 1. It was also

shown that a switched homogeneous system is state-feedback

exponentially stabilizable if and only if an associated dy-

namic programming equation has a solution W on a convex

cone. Such a solution, W , which was shown to be unique,

defines (that is, provides us with) a stabilizing state-feedback

mapping κ : R
n −→ Q via κ(x) ∈ arg minq∈Q W (fq(x)).

Such a mapping κ can always be chosen to be degree-

zero homogeneous, or in other words, conic-wise constant,

resulting in a closed-loop dynamical system having the same

homogeneity property as that of the original switched system.

That function W , is a degree-two homogeneous Lyapunov

function for the exponential stability of the trivial solution

of the associated closed-loop dynamical system. It was also

proved in this work, that a switched homogeneous system

is state-feedback exponentially stabilizable, if and only if, it

is uniformly exponentially convergent, if and only if, it is

uniformly quadratically bounded. Further, the state-feedback

exponential stabilizability of the switched homogeneous sys-

tem was related to an infinite-horizon quadratic regulator

problem whose solution was also presented. The optimal cost

functional for that quadratic regulator problem was shown

to be the aforementioned function W , and a state-feedback

mapping κ, as above, was shown to generate an optimal

control. A numerical example provided illustration on the

results reported.
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[10] R.N. Shorten, F. Wirth, O. Mason, K. Wulff, C. King, Stability Criteria

for Switched and Hybrid Systems, SIAM Review, 49(4):545-592, 2007.
[11] Z. Sun, S.S. Ge, Switched Linear Systems: Control and Design,

Springer-Verlag, 2005.
[12] S.E. Tuna, A.R. Teel, Regulating Discrete-Time Homogeneous Sys-

tems Under Arbitrary Switching, In Proceedings of the 44th IEEE

Conf. Decision and Control, 2005.
[13] A. van der Schaft, H. Schumacher, An Introduction to Hybrid Dynam-

ical Systems, Springer-Verlag, 2000.
[14] J.G. Kassakian, M.F. Schlecht, G.C. Verghese Principles of Power

Electronics, Addison-Wesley, 1991.

3018


