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Abstract — This paper describes a vehicle stability control 
(VSC) system using a yaw inertia and mass independent 
adaptive control law.  As a primary vehicle active control 
system, VSC can significantly improve vehicle driving safety 
for passenger cars and enhance trajectory tracking accuracy 
for other applications such as autonomous, surveillance, and 
wheeled mobile robot vehicles.  For the designs of vehicle 
dynamic control systems, vehicle yaw inertia and mass are 
two of the most important parameters.  However, in practical 
applications, vehicle yaw inertia and mass often change with 
vehicle payload and load distribution. In this paper, an 
adaptive control law is proposed to treat the vehicle yaw 
inertia and mass as unknown parameters and automatically 
address their variations.  For the proposed adaptive control 
law, asymptotical stability of the yaw rate tracking error was 
proved by a Lyapunov-like analysis for certain vehicle 
architecture under some reasonable assumptions.  The 
performance of the yaw inertia and mass independent 
adaptive vehicle stability control system was evaluated under 
several driving conditions (i.e. double lane-changing on a 
slippery surface and brake on a split-µ surface tests) through 
simulation studies using a high-fidelity full-vehicle model 
provided by CarSim®. 

I. INTRODUCTION 

EHICLE stability control has been an active 
research area in both academia and industry for 

several decades and is still evolving rapidly thanks to the 
ever-growing sensing, actuation, and control 
technologies [1-9].  While majority of the VSC research 
and development efforts have been focused on passenger 
car applications for safety enhancement reasons, the 
VSC technology has also been introduced into 
categories such as surveillance, unmanned patrol, 
autonomous, wheeled mobile robot, and other special 
vehicles to enhance their performance and trajectory 
tracking capabilities [10-13].  For some VSC passenger 
car applications, variations of vehicle parameters such as 
sprung mass may be insignificant due to the relatively 
small payload changes compared with the vehicle mass.  
However, for lightweight vehicle applications such as 
autonomous, wheeled mobile robot, and surveillance 

 
*Tel: 614-247-7275;  Email: wang.1381@osu.edu. 

vehicles, the vehicle payload variations could be quite 
substantial and sometime even well exceed the masses of 
the vehicle themselves.  For wheeled mobile robots and 
surveillance vehicles such as autonomous mine 
detectors/cleaners, vehicle weight/load distributions 
oftentimes change during operations.  Consequently, 
important vehicle system parameters (i.e. vehicle mass 
and yaw inertia) could vary considerably during routine 
operations and these parametric variations may affect 
the vehicle control performance such as stability and 
trajectory tracking especially at high-speed operation.  
Yaw rate is commonly designed as the main control 
objective for many VSC control systems, in which the 
vehicle yaw inertia and mass are two of the important 
parameters for control algorithms [1, 5, 9, 11, 17].  For 
example, in some VSC algorithms, controller gains may 
depend on the values of the vehicle yaw inertia and 
mass.  In cases where the vehicle yaw inertias and mass 
change noticeably, it is desirable for the VSC control 
algorithms to automatically and appropriately 
accommodate those variations in order to ensure the 
satisfactory control performance at different operating 
conditions.  In this paper, we attempt to tackle the 
problem of the vehicle yaw inertia/mass variations by 
using a yaw inertia and mass independent adaptive 
control law. 

The rest of the paper is organized as follows.  In 
Section II, vehicle planar motion dynamic model is 
briefly presented.  The vehicle yaw inertia and mass 
adaptive control law is designed in Section III.  
Simulation results are presented in Section IV followed 
by conclusive remarks and future work summarized in 
Section V. 

II. SYSTEM MODELING 

For ground vehicles, the planar dynamic motion 
(longitudinal, lateral, and yaw) are commonly 
considered as the most critical control objectives.  The 
vehicle can be modeled as a rigid body with three 
degrees-of-freedom.  Figure 1 shows the vehicle 
diagram under planar dynamic motion. 
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Fig. 1. The ground vehicle planar dynamic motions 

The simplified vehicle planar dynamic equations of 
motion can be simplified as 
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where vm  is the vehicle mass (including both sprung 

and unsprung mass), xV  is vehicle velocity along the X 

axis, yV  is vehicle velocity along the Y axis, and zzI  is 

vehicle moment of inertia about the Z axis, which is 

perpendicular to the x-y plane.  The coordinates X, Y, Z 
are body-fixed at the vehicle center of gravity (C.G.).  
The generalized external forces acting along the vehicle 
X and Y axes are 

xF  and
yF , respectively. The 

generalized external moment about the Z axis is 
zM .  

Ultimately, each of the four wheels can independently 
drive, brake, and steer.  Thus, these generalized 
forces/moment are expressed as [6], 
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In these relations, **  is the steering angle of a given 

wheel, with the first subscript representing front/rear and 
the second subscript indicating right/left.  In this paper, 
we only consider controlling the vehicle yaw rate and 
assume that the vehicle speed will be controlled by a 
separate speed controller or by a driver. 

Note that during normal operations (when tires work 
in the linear ranges), tire longitudinal and lateral forces 

can be approximately described by the following linear 
model [14, 15], 

iixzixi sKFF )( , (3) 

iiyziyi KFF  )( , (4) 

where )( ixK  and )( iyK  are constants (that define the 

slops of the tire slip and slip angle vs. longitudinal and 
lateral forces, respectively.) as a function of maximum 
available tire-road friction coefficient, , which can be 
estimated using some on-line estimators such as the ones 
described in [14, 15].  Note that the above simple linear 
tire model is valid only when tire is not experiencing 
both longitudinal and lateral forces simultaneously. 

For vehicles in which 4-wheel driving/steering are not 
available, then we can have sfrfl   and 

0 rrrl  .  For the vehicles that are rear-wheel-drive 

only, we can ignore the longitudinal forces of the front 
tires and assume the longitudinal forces of the rear tires 
are approximately the same.  Thus we can reformulate 
the yaw moment (2c) as,  
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In normal steering angle range, s  is small.  So we 

can have 1cos s  and ignore the first term in (5).  Thus 

we arrived at, 
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where sR  is the steering mechanism gear ratio.  Here we 

ignore the tire normal load dynamic transfer, which is 
considerable only during severe turns.  Consequently, 
we can have 

)( hmM vz , (7) 

where )(h is the part within the braces in (6).  By 

substituting (7) into (1), one can get, 

690



  

)(
1

)(
/

1
 h

I
h

mI
r

vzz

 . (8) 

Define vzz mII  as a lumped parameter of the vehicle 

yaw inertia and mass.  Both vehicle yaw inertia and mass 
commonly vary with payload and load/weight 
distributions and so does the parameter I . 

III. DESIGN OF THE ADAPTIVE CONTROL LAW 

For the vehicle yaw motion dynamical model as 
described in the foregoing section, we can develop a 
vehicle yaw inertia and mass independent adaptive 
control law with the front wheel steering being the 
control actuation.   

Define the yaw rate tracking error as the difference 
between the measured actual vehicle yaw rate and the 
desired one as: 

drre  , (9) 

where dr is the desired yaw rate, which needs to be 

sufficiently smooth with its time-derivative bounded and 
can be generated from a driver model by using the 
steering hand-wheel and vehicle speed as the inputs [4, 
7] or from the desired vehicle travel trajectory and 
measured vehicle position as described in [10, 11].  The 
error dynamics is then given by, 
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Let I* represent the true value of the vehicle yaw 
inertia divided by vehicle mass, and ̂  be the estimation 

of * .  We define the estimation error as *ˆ~   .  
Then we can rewrite the yaw rate tracking error 
dynamics as, 
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I
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1  . (11) 

The following adaptive control law can then ensure the 
asymptotical stability of the yaw rate tracking error. 
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with the following estimation update law 
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̂ , (13) 

where,   ka and .  The initial value for the 

estimation, 0̂ , can be any value.   

Proof: The proof of the asymptotical stability of the 
tracking error was conducted by a Lyapunov-like 
analysis [18].  Substituting (12) into (11), the error 
dynamics became 
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Consider the following Lyapunov function candidate, 
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It is obviously positive semi-definite.  Its derivative is 
given by 
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Since we have 0V  and 0V , then we know that 

  LLeLV  ˆ~
, .  Also, we can have 

that VLim
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V  exists and is finite.  So, if we integrate 

both sides of (16), we can then obtain the following 
property, 
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it is obvious that Le .  We can then conclude that 

0


eLim
t

 by Barbalat’s Lemma.  Thus, by using the 

adaptive control law described in (12), the yaw rate 
tracking error will be asymptotically stable or goes to 
zero with time.   ■ 

One can see that neither the vehicle yaw inertia nor 
vehicle mass is used in the adaptive control law (12) or 
the estimation updating law (13).  So, the control law is 
independent of both the vehicle yaw inertia and mass 
values. 

Once )(h  is specified by the adaptive control law 

(12) and (13), the steering hand-wheel angle can be 
obtained from (6) and (7) as, 
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 In the vehicle front wheel steering angle control law 
given by (18), all the parameters/coefficients are 
measureable with advanced vehicle sensing systems 
such as GPS/IMU systems etc. [9, 15].  Even though 
these advanced sensing systems are still not widely 
available on commercial vehicles yet, they could be 
equipped on other specific applications such as 
autonomous and military surveillance vehicles. 

IV. SIMULATION STUDIES 

The designed adaptive VSC control system was 
evaluated in Matlab-CarSim® co-simulation.  CarSim is 
a high-fidelity full-vehicle multibody dynamics 
(including complex and accurate tire models) simulation 
package that can produce response characteristics which 
have shown favorable comparison with experimental 
data taken from real vehicles [16].  The main vehicle 
parameter values used for the CarSim full-vehicle 
simulation models are listed in Table 1.  Two different 
vehicles, high-I and low-I with different I (Izz/mv) values 
(2.73 and 1.2), are considered in the simulations.  Note 
that the yaw inertia was used for configuring the vehicle 
simulation model only but not used in the control law.  
Simulation using the full-vehicle model also provides 
evaluation of the robustness of the adaptive control law 
to unmodeled dynamics.  The initial value of I was set as 
2.0 in the adaptive control law.  Vehicle mass and yaw 
inertia typically change in the same direction.  Vehicle 
yaw inertia usually increases/decreases with 
increasing/decreasing vehicle mass.  However, for some 
special cases such as wheeled mobile robots, vehicle 
load/mass may be redistributed during operation and the 
redistributions may cause yaw inertia to increase or 
decrease regardless of the vehicle mass changes.  For 
this consideration, the high-I and low-I vehicles in the 
simulation were made by changing the vehicle mass and 
yaw inertia in opposite directions as shown in Table 1. 

Table 1. CarSim vehicle simulation model parameters 

 High-I Veh. Low-I Veh. 

I (Izz/mv), (m
2) 2.73 1.20 

Sprung mass, mv, (kg) 1530 1830 

Yaw inertia, Izz, (kg-m2) 4192 2192 

Wheelbase (m) 2.776 2.776 

Track (m) 1.55 1.55 

C.G. Height (m) 0.54 0.54 

Two different scenarios were used to show the 
effectiveness of the proposed vehicle yaw inertia and 
mass independent adaptive control law.  One is a 
high-speed double lane changing (DLC) on a slippery 
surface and the other is a brake through a split-  surface. 

A. High-Speed Double Lane-Changing on a Slippery 
Surface 

In this simulation, the vehicle initial speed was set as 120 
km/h.  Tire-road friction coefficient was 0.6.  A double 
lane-changing command was issued at 1 second during 
the simulation.  Identical adaptive VSC control law with 
same parameters were used for both high-I vehicle (red) 
and low-I vehicle (silver).  Figure 2 shows the behaviors 
of the vehicles during the DLC maneuver.  One can see 
that the control law helped the vehicles maintain closely 
tracking of the desired trajectory even during this severe 
maneuver.  The two vehicles exhibited almost identical 
behaviors even though their yaw inertias and masses are 
quite different. 

 
Fig. 2. Comparisons of vehicle behaviors during a DLC 
maneuver (red car: high-I vehicle;  silver car: low-I vehicle). 

Vehicle global trajectories and the steering                             
hand-wheel angles were plotted in Figure 3 and Figure 4, 
respectively.  Figure 5 illustrates the vehicle yaw rate 
responses compared with the desired one during the 
DLC maneuver.  The yaw inertia and mass adaptive 
control law can make the vehicles track the desired yaw 
rate as shown in Figure 5, and consequently the vehicles 
were able to follow the desired trajectory closely as 
shown in Figure 3.  It is noticeable that the adaptive 
control law automatically applied greater control effort 
for the vehicle with high I value during the maneuver. 

 
Fig. 3. Comparisons of the vehicle global trajectories during 
the DLC maneuver. 

High-I

Low-I 
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Fig. 4. Comparisons of the vehicle steering angles during the 
DLC maneuver. 

 
Fig. 5. Comparisons of the vehicle yaw rate responses during 
the DLC maneuver. 

 
Fig. 6. Comparisons of the vehicle longitudinal speeds, lateral 
speeds, and roll rates during the DLC maneuver. 

 As shown in Figure 6, very similar longitudinal speed, 
lateral speed, and roll rate responses were achieved for 
both vehicles during the maneuver. 

B. Braking through a Split-  Surface 

The second simulation case is braking through a split-  
surface whose left side friction coefficient was 0.2 and 
right side friction coefficient was 0.5.  Three vehicles 
were compared in this case, the high-I and low-I vehicles 
with the adaptive steering control and a high-I vehicle 
without steering action.  Anti-lock brake systems were 
active for all three vehicles during the simulation.  The 
initial speed of the vehicles was 80 km/h and a hard 
brake command was issued at the beginning of the 
simulation.  Figure 7 shows the vehicle behaviors during 
this maneuver. 
 

 
Fig.7. Vehicle behaviors during the braking on a split-  surface (red 
car: high-I vehicle;  blue car: low-I vehicle; green car: vehicle without 
steering action). 
  

Vehicle longitudinal speeds and global trajectories are 
depicted in Figure 8 and Figure 9, respectively.  From 
these figures, one can observe that the adaptive VSC 
assisted the vehicle in maintaining on the desired track 
during this adverse maneuver. 

 
Fig. 8. Vehicle longitudinal speeds during the braking on a split-  
surface maneuver. 
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Fig. 9. Vehicle global trajectories during the braking on a split-  
surface maneuver. 

V. CONCLUSIONS AND FUTURE WORK 

A vehicle yaw inertia and mass independent adaptive 
VSC control system is proposed to deal with the yaw 
inertia and vehicle mass variations that are commonly 
encountered for various ground vehicle applications.  
The asymptotical stability of the proposed adaptive 
control law was proven based on a Lyapunov-like 
analysis for certain vehicle architecture.  The 
effectiveness of the adaptive control law was evaluated 
in simulations using a high-fidelity full-vehicle model 
provided by CarSim®.  By using the yaw inertia and 
mass independent VSC control law, performance 
deteriorations caused by the vehicle yaw inertia and/or 
mass variations can be automatically attenuated.   

There are several related research topics that we are 
working on.  The developed adaptive control law can 
only be applied to vehicles with front-steer-rear-drive 
architecture.  It would be desirable to expand the 
application to vehicles with different architectures.  In 
equation (7), we ignored the tire normal load dynamic 
transfer effect, which deserves further analysis and 
investigation.  The tire-road friction coefficient was 
assumed as a constant in this paper.  It would be valuable 
to further develop the control system which is capable of 
handling the tire-road friction coefficient variations as 
well.  As vehicle load/mass redistribute, vehicle 
geometric parameters, such as C.G. location, might 
change too.  Adaptation with regards to vehicle 
geometric parameters would be valuable as well. 
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