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Abstract— This paper generalizes the notion of real pertur-
bation values of a complex matrix to account for a more general
perturbation structure. Formulas for computing the so-called
generalized real perturbation values of a matrix are derived and
presented. Using these results, we revisit the computation of the
structured real controllability radius that was previously used
to evaluate the robustness of the multi-link inverted pendulum
system, and we also study a new normalized version of the
transmission zero at s radius.

I. INTRODUCTION

In the current literature, various continuous measures

have been proposed to measure the robustness of various

linear time-invariant (LTI) system properties in the presence

of parametric perturbations. This class of robustness radii

includes, for instance, the stability radius ([1]), the control-

lability/observability radius ([2], [3]), the decentralized fixed-

mode radius ([4], [5]), the transmission zero at s radius ([6]),

and the minimum-phase radius ([6]).

Consider the following LTI multivariable system

ẋ = Ax + Bu (1)

y = Cx + Du

where x ∈ R
n, u ∈ R

m, and y ∈ R
r are respectively

the state, input, and output vectors, and A, B, C, and D
are constant matrices with the appropriate dimensions for

n ≥ 1, m ≥ 1, r ≥ 1, and max(r,m) ≤ n. Suppose

the system is controllable and observable, then it is well

known that there exists a LTI controller that can assign

the eigenvalues of the closed-loop system to any arbitrary

spectrum. However, if the system is subjected to parametric

perturbations (i.e. A → A + ∆A and B → B + ∆B), which

may result from numerical errors, modeling errors, etc., then

the system may become uncontrollable. Hence, a continuous

controllability radius to measure how “close” a controllable

system is to becoming uncontrollable is more informative

than the traditional ‘yes/no’ controllability metric, which

simply determines whether a system is controllable or not.

The same can be said about other system properties, and

various measures have been introduced. The stability radius

in [1] measures how close a stable system is to an unstable

one. The decentralized fixed-mode (DFM) radius ([4], [5])

measures how close a system with no DFMs is to having one.

More recently, such robustness measures have been extended
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to characterize the robustness of a system’s transmission zero

properties. The minimum-phase radius in [6], for instance,

measures how close a minimum-phase system is to becoming

nonminimum-phase, and the transmission zero at s radius

measures how close a system is to having a transmission

zero at a given point s ∈ C.

The formulas for computing the radii mentioned above

are all based on the singular values and real perturbation

values [7] of complex matrices. Similar to the generaliza-

tion of the singular values in [8], [9], one of the main

contributions of this paper is the generalization of the real

perturbation values to account for a more general pertur-

bation structure. Another contribution is the development of

formulas for computing the subsequent so-called generalized

real perturbation values of a matrix. Also, we will apply

the generalized real perturbation values to two examples

found in systems control that are related to two of the

robustness radii mentioned above. In particular, in the first

example, we will revisit the pendulum problem in [10], and

using the generalized real perturbation values, compute a

more accurate estimate of the structured real controllability

radius of the multi-link inverted pendulum. In the second

example, we will propose a new normalized version of the

transmission zero at s radius, and using the generalized real

perturbation values, compute the structured transmission zero

at s = 0 radius of a number of industrial systems that were

studied in [6].

The paper is organized as follows. In Section II, the real

perturbation values and the generalized singular values of

a matrix are reviewed. Definitions of the generalized real

perturbation values and formulas for computing these values

are then presented in Section III. Finally in Section IV, we

will apply the results of Section III to the two examples

mentioned above.

II. PRELIMINARIES AND REVIEW

A. Notations

In this paper, the field of real and complex numbers are

denoted by R and C respectively. The i-th singular value of

a matrix M ∈ C
p×q is denoted by σi(M), where σ1(M) ≥

· · · ≥ σmin(p,q)(M). ‖M‖2 denotes the spectral norm of

a matrix M and is equal to σ1(M). Also, M , MT , and

MH denote respectively the complex conjugate, transpose,

and complex conjugate transpose of M . Furthermore, M−H

denotes
(

MH
)−1

. The real and imaginary components of the

matrix M are given by Re M and ImM respectively. The

set of eigenvalues of a square matrix M ∈ C
p×p is denoted

by λ(M). If M is Hermitian (i.e. M = M∗), then the i-th
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eigenvalue of M is denoted by λi(M), where λ1(M) ≥
· · · ≥ λp(M). The set of generalized eigenvalues of the

matrix pair (M,N), where M ∈ C
p×p and N ∈ C

p×p, is

denoted by λ(M,N). Recall that the generalized eigenvalues

of (M,N) are the set of (complex) values such that for

λ ∈ λ(M,N), Mx = λNx is satisfied for some non-zero

x ∈ C
p (x is a generalized eigenvector of (M,N)). Finally,

it will be understood that λ(M) = λ(M, I).

B. Review of Real Perturbation Values

The real perturbation values of a complex matrix are a

set of numbers that are analogous to the singular values

of the matrix with the exception that the former takes into

account only real perturbations. The real perturbation values

as introduced in [7] are defined as follows.

Definition 2.1 (Real perturbation values [7]): Given

M ∈ C
q×l, the i-th real perturbation value of the first kind

of M are defined as:

τi(M) :=
1

inf{‖∆‖2 |∆ ∈ Rl×q,nullity(Il − ∆M) ≥ i}
and the i-th real perturbation value of the second kind are

defined as:

τ̃i(M) := inf
{

‖∆‖2 |∆ ∈ R
q×l, rank (M − ∆) < i

}

where i = 1, . . . ,min(q, l).
Remark 2.1: It can be shown that given a matrix M ∈

C
q×l, the singular values of M satisfy (e.g. see [7]):

σi(M) = inf
{

‖∆‖2 |∆ ∈ C
q×l, rank(M − ∆) < i

}

=
1

inf{‖∆‖2 |∆ ∈ Cl×q,nullity(Il − ∆M) ≥ i}

for i = 1, . . . ,min(q, l). Therefore, as mentioned earlier, the

real perturbation values are closely related to the singular

values with the difference that the former takes into account

only real perturbations, whereas the latter considers all

complex perturbations.

The real perturbation values can be computed by the

following formulas [7].

Theorem 2.1 ([7]): Given M ∈ C
q×l and i =

1, . . . ,min(q, l),

τi(M) = inf
γ∈(0,1]

σ2i(P (γ,M)) (2)

τ̃i(M) = sup
γ∈(0,1]

σ2i−1(P (γ,M)) (3)

where

P (γ,M) :=

[

Re M −γ Im M
γ−1 Im M Re M

]

(4)

C. Review of Generalized Singular Values

The generalized singular values of a matrix pair arises

from the generalized singular value decomposition given as

follows.

Theorem 2.2 ([8], [9]): Given M ∈ C
q×l and N ∈ C

p×l,

the generalized singular value decomposition is given by

M = U
[

ΣM 0
]

Q

N = V
[

ΣN 0
]

Q

where U ∈ C
q×q and V ∈ C

p×p are unitary matrices, Q ∈
C

l×l is nonsingular, and

ΣM =





Ir

SM

0



 , ΣN =





0
SN

Ik−r−s





where SM = diag (αr+1, · · · , αr+s), SN =
diag (βr+1, · · · , βr+s), and αr+i and βr+i are real numbers

satisfying 0 ≤ αr+i, βr+i ≤ 1 and α2
r+i + β2

r+i = 1,

for i = 1, . . . , s. Here the dimensions k, r, and s satisfy

k = rank

([

M
N

])

, r = rank

([

M
N

])

− rank(N), and

s = rank(M) + rank(N) − rank

([

M
N

])

.

Taking the diagonal elements of ΣM and ΣN , there are

four kinds of pairs, which we will number as follows:

• For i = 1, . . . , r: (αi, βi) = (1, 0)
• For i = r + 1, . . . , r + s: αi 6= 0, βi 6= 0
• For i = r + s + 1, . . . , k: (αi, βi) = (0, 1)
• For i = k + 1, . . . , l: (αi, βi) = (0, 0)

The ratios σi = αi

βi

, for i = 1, . . . , k, are called the nontrivial

generalized singular values of the matrix pair (M,N), and

can be infinite, non-zero finite, or zero. σi for i = k+1, . . . , l
are called the trivial generalized singular values and have no

particular numbers assigned to them.

From here on, the i-th (nontrivial) generalized singular

value of a matrix pair (M,N) will be denoted by σi(M,N).
To avoid confusion in notations, it will be understood that

σi(M) = σi(M, I). Also, without loss of generality, the non-

trivial generalized singular values are assumed to be arranged

in nonincreasing order; i.e. σ1(M,N) ≥ σ2(M,N) ≥ · · · .

Remark 2.2: Recall that for a given matrix M ∈ C
q×l,

where q ≥ l, the eigenvalues of MHM are the squares of

the singular values of M . This extends to the matrix pair

(M,N) by the fact that

MHM = QH

[

ΣH
MΣM 0
0 0

]

Q (5)

and

NHN = QH

[

ΣH
NΣN 0
0 0

]

Q (6)

Therefore, the nontrivial generalized eigenvalues1 of the

matrix pair
(

MHM,NHN
)

are the squares of the nontrivial

generalized singular values of (M,N).
Remark 2.3: It can be shown that the i-th generalized

singular value of (M,N), for i = 1, . . . ,min(q, l), satisfy

σi(M,N) = inf
{

‖∆‖2 |∆ ∈ C
q×p, rank(M − ∆N) < i

}

=
1

inf{‖∆‖2 |∆ ∈ Cp×q,nullity(N − ∆M) ≥ i}
1The trivial generalized eigenvalues are those corresponding to the last

l − k columns of Q in (5) and (6), which span the common null space of
MHM and NHN .
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III. MAIN RESULT

The following generalization is made.

Definition 3.1 (Generalized real perturbation values):

Given M ∈ C
q×l and N ∈ C

p×l, the i-th generalized

real perturbation value of the first kind of the matrix pair

(M,N) is defined as:

τi(M,N) :=
1

inf{‖∆‖2 |∆ ∈ Rp×q,nullity(N − ∆M) ≥ i}
and the i-th generalized real perturbation value of the second

kind is defined as:

τ̃i(M,N) := inf
{

‖∆‖2 |∆ ∈ R
q×p, rank (M − ∆N) < i

}

where i = 1, . . . ,min(q, l). If there exists no real matrix

∆ such that nullity(N − ∆M) ≥ i, then τi(M,N) =
0. Likewise if there exists no real matrix ∆ such that

rank (M − ∆N) < i, then τ̃i(M,N) = ∞.

Remark 3.1: It can be shown that if N is nonsingular,

then the generalized real perturbation value problem reduces

to the original real perturbation value problem of a single

matrix (i.e. see Definition 2.1). In particular, since

nullity(N − ∆M) = nullity
(

I − ∆MN−1
)

and

rank(M − ∆N) = rank
(

MN−1 − ∆
)

then it can be shown that τk(M,N) = τk

(

MN−1
)

and

τ̃k(M,N) = τ̃k

(

MN−1
)

. In this paper, we will assume that

N is not necessarily invertible (or even square).

One of the main results of this paper is the following theo-

rem, which provides formulas for computing the generalized

real perturbation values of a matrix pair.

Theorem 3.1: Given matrices M ∈ C
q×l and N ∈ C

p×l,

and i = 1, . . . ,min(q, l), then

τi(M,N) = inf
γ∈(0,1]

σ2i(P (γ,M) , P (γ,N)) (7)

τ̃i(M,N) = sup
γ∈(0,1]

σ2i−1(P (γ,M) , P (γ,N)) (8)

where P (γ,M) and P (γ,N) are defined by (4).

Proof: The proof of Theorem 3.1 is similar to the proof

of Theorem 2.1 found in [7], which is based on the following

results, namely Lemma 3.1 and Theorem 3.2.

Lemma 3.1 ([7]): Given matrices T1 ∈ C
q×l and T2 ∈

C
p×l, there exists a real contraction ∆ ∈ R

p×q (with ‖∆‖2 ≤
1) such that ∆T1 = T2 if and only if

[

T2 T2

]H [

T2 T2

]

≤
[

T1 T1

]H [

T1 T1

]

Theorem 3.2 ([7]): Given A = AH ∈ C
n×n and B =

BT ∈ C
n×n, the following conditions are equivalent for

k = 1, . . . , n:

1) There exists a complex matrix Sk of rank ≥ k such

that
[

Sk 0
0 Sk

]H [
A B
B A

] [

Sk 0
0 Sk

]

≥ 0

2) The matrix

[

A αB
αB A

]

has at least 2k nonnegative

eigenvalues for every real |α| ≤ 1; i.e.

inf
|α|≤1

λ2k

([

A αB
αB A

])

≥ 0 α ∈ R

In the remainder of this section, we will provide a proof

of (8). The proof for (7) is similar and is omitted.

Consider a real τ ≥ 0. From Definition 3.1, τ ≥
τ̃i(M,N) if and only if there exists a real ∆ such that

rank(M − ∆N) < i and ‖∆‖2 ≤ τ . This implies that there

exists some complex matrix S with rank(S) ≥ l − (i − 1)
such that (M − ∆N) S = 0, or equivalently, (∆/τ) NS =
MS/τ . By Lemma 3.1, this is equivalent to

τ2
[

NS NS
]H [

NS NS
]

(9)

≥
[

MS MS
]H [

MS MS
]

Let Ar = τ2NHN − MHM and Br = τ2NT N − MT M ,

then (9) is equivalent to

[

S 0
0 S

]H [
Ar Br

Br Ar

] [

S 0
0 S

]

≥ 0 (10)

Therefore by Theorem 3.2, τ ≥ τ̃i(M,N) if and only

if

[

Ar αBr

αBr Ar

]

has at least 2 (l − (i − 1)) nonnegative

eigenvalues for α ∈ (−1, 0]2; i.e. for α ∈ (−1, 0],

λ2(l−(i−1))

([

Ar αBr

αBr Ar

])

≥ 0

or equivalently,

λ2i−1

([ (

MHM − τ2NHN
)

α
(

MT M − τ2NT N
) (11)

α
(

MT M − τ2NT N
)

MHM − τ2NHN

])

≤ 0

since for Hermitian matrix H = HH ∈ C
n×n, λk(H) =

−λn−k+1(−H). Define

Tα,n :=
1√
2

[

1√
1+α

In
j√
1−α

In

1√
1+α

In − j√
1−α

In

]

(12)

which satisfies T−H
α,n T−1

α,n =

[

In αIn

αIn In

]

. Furthermore,

T−1
α,q

[

M 0
0 M

]

Tα,l = P

(

√

1 + α

1 − α
,M

)

(13)

where P (γ,M) is defined in (4).

2Due to symmetry, it is sufficient to take only α ∈ (−1, 0] instead of all
values |α| ≤ 1 (e.g. see [7]).
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Finally, the following equivalences are true for all τ ≥ 0.

τ ≥ τ̃i(M,N)

⇔ λ2i−1

(

[

M 0
0 M

]H [
Iq αIq

αIq Iq

] [

M 0
0 M

]

−τ2

[

N 0
0 N

]H [
Ip αIp

αIp Ip

] [

N 0
0 N

]

)

≤ 0

for α ∈ (−1, 0] (from (11))

⇔ λ2i−1

(

TH
α,l

(

[

M 0
0 M

]H

T−H
α,q T−1

α,q

[

M 0
0 M

]

−τ2

[

N 0
0 N

]H

T−H
α,p T−1

α,p

[

N 0
0 N

]

)

Tα,l

)

≤ 0

for α ∈ (−1, 0]

⇔ λ2i−1



P

(

√

1 + α

1 − α
,M

)H

P

(

√

1 + α

1 − α
,M

)

−τ2P

(

√

1 + α

1 − α
,N

)H

P

(

√

1 + α

1 − α
,N

)



 ≤ 0

for α ∈ (−1, 0]

⇔ λ2i−1

(

P (γ,M)
H

P (γ,M) ,

P (γ,N)
H

P (γ,N)
)

≤ τ2 for γ ∈ (0, 1]

⇔ σ2i−1(P (γ,M) , P (γ,N)) ≤ τ for γ ∈ (0, 1]

⇔ sup
γ∈(0,1]

σ2i−1(P (γ,M) , P (γ,N)) ≤ τ

So it is concluded that (8) must be true.

IV. APPLICATIONS

In this section, we apply the results on the generalized

real perturbation values to two examples found in systems

control. The first example looks at obtaining a better estimate

of the structured real controllability radius of the multi-link

inverted pendulum system that was studied in [10], and the

second example studies a new normalized version of the

transmission zero at s radius.

A. Structured Real Controllability Radius of the Pendulum

In [10], the controllability radius was used to study

the difficulty of balancing a multi-link inverted pendulum

system. In particular, it was claimed that the difficulty is

related to the pendulum’s controllability robustness, and it

was shown that as the number of pendulum links increases,

the real controllability radius becomes smaller, indicating

that the system gets closer to becoming uncontrollable. In

[10], perturbations with a particular structure were con-

sidered, which led to a controllability radius problem that

was difficult to solve. Subsequently, a somewhat ad-hoc

normalization method involving a random matrix was used

in [10] to compute an estimate of the corresponding radius.

In this section, we will use the results on generalized real

perturbation values to obtain a more accurate estimate of the

structured real controllability radius of the pendulum system.

u 

θθθθ1 

θθθθ2 

θθθθv 

m1 

m2 

mv 

l1 

lv 

l2 

Fig. 1. Model of a multi-link inverted pendulum with v links [10].

Fig. 1 illustrates the single-input single-output multi-link

inverted pendulum system with v links that was considered in

[10], where the i-th link is modeled as a point-mass, mi, at-

tached via a massless rigid rod of length, li, for i = 1, . . . , v.

The control input, u, is a single torque applied at the pivot of

the bottom link. All angles are measured with respect to the

vertical. Defining x =
[

θ1 · · · θv θ̇1 · · · θ̇v

]T
as

the state vector, and θ1 as the output (i.e. the bottom link’s

angle is measured), the linear state space model (linearized

about the vertical zero equilibrium point, (x, u) = (0, 0)) is

given by [10]:

A =

[

0 I

(MvLv)
−1

Ma 0

]

, B =

[

0

(MvLv)
−1

Mb

]

C =
[

1 0 . . . 0
]

,D = 0 (14)

where Ma = diag

(

g

v
∑

i=1

mi, g

v
∑

i=2

mi, · · ·,mvg

)

, Mb =





1
l1

0
...
0



, Mv =





m1 m2 ··· mv

0 m2 ··· mv

...
...

. . .
...

0 0 ··· mv



, and Lv =





l1 0 ··· 0
l1 l2 ··· 0

...
...

. . . 0
l1 l2 ··· lv



.

As mentioned earlier, the real controllability radius of

a LTI system measures how “close”, with respect to real

parametric perturbations (i.e. A → A + ∆A and B →
B + ∆B , where ∆A and ∆B are real), the system is to

being an uncontrollable system. More precisely, the real

controllability radius is defined as follows [3]:

Definition 4.1: Given a LTI system (1), the real control-

lability radius, rc
R

, is defined to be:

rc
R(A,B) = inf{‖[∆A,∆B ]‖2 |∆A ∈ R

n×n,∆B ∈ R
n×m,

(A + ∆A, B + ∆B) is uncontrollable}
In [3], the real controllability radius was shown to be given

by the following formula:

rc
R(A,B) = min

s∈C

τ̃n

([

A − sI, B
])

In [10], the structured real controllability radius was defined
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as:

rc,struct
R

(A,B, E ,F ,G) (15)

= inf{‖[∆A,∆B ]‖2 |∆A ∈ R
n×n,∆B ∈ R

n×m,

(A + E∆AF , B + E∆BG) is uncontrollable}

where E , F , and G were limited in [10] to being square

nonsingular matrices. The invertibility of E , F , and G al-

lowed the structured real controllability radius to be reduced

to the unstructured case, which can then easily be computed

as follows [10]:

rc,struct
R

(A,B, E ,F ,G)

= min
s∈C

τ̃n

(

E−1
[

A − sI, B
]

[

F 0
0 G

]−1
)

Using the results of the generalized real perturbation

values presented in Section III, we can remove the nonsin-

gularity limitation of F and G.

Theorem 4.1: Given the LTI system (1), and matrices E ,

F , and G, where only E is required to be nonsingular, then

the structured real controllability radius (15) is given as

follows:

rc,struct
R

(A,B, E ,F ,G) (16)

= min
s∈C

τ̃n

(

E−1
[

A − sI, B
]

,

[

F 0
0 G

])

Proof: The proof is straightforward. Given s ∈ C,

the perturbed system (A + E∆AF , B + E∆BG) is uncon-

trollable at s if and only if

rank([A + E∆AF − sI,B + E∆BG]) < n

⇔ rank

(

E−1 [A − sI,B] + [∆A,∆B ]

[

F 0
0 G

])

< n

Using the generalized real perturbation values (of the second

kind, see Definition 3.1), the smallest real perturbations,

[∆A,∆B ], such that the perturbed system is uncontrollable

at s is given by τ̃n

(

E−1 [A − sI,B] ,

[

F 0
0 G

])

. The

structured real controllability radius, rc,struct
R

, is then the

minimization of this function over the complex plane.

From the state space model of the pendulum system given

by (14), it can be seen that the “upper” portion of the

(A,B) matrices are hard 0’s and 1’s. This arises from the

relationship between the state variables. Therefore in [10],

only perturbations that disrupt the lower half of the (A,B)
matrices were considered. Furthermore, the perturbations

were normalized by the (A,B) matrices. As a result, per-

turbations of the following form were considered in [10]:

A →
(

I +

[

0 0
0 I

]

∆A

)

A

B →
(

I +

[

0 0
0 I

]

∆B

)

B

The structured real controllability radius of the pendulum

system defined in [10] was hence given by (15), where E =
[ 0 0
0 I ], F = A, and G = B. However, since F and G are not

TABLE I

THE STRUCTURED REAL CONTROLLABILITY RADIUS OF A MULTI-LINK

INVERTED PENDULUM (REVISITED)

Number of r
c,struct

R
r

c,struct

R

Links v obtained in [10] obtained via (16)

1 1.000
10+0 1.000

10+0

2 1.111
10−1 1.085

10−1

3 4.688
10−2 4.655

10−2

4 2.456
10−2 2.450

10−2

5 1.467
10−2 1.466

10−2

6 9.565
10−3 9.559

10−3

7 6.635
10−3 6.633

10−3

necessarily nonsingular, an ad-hoc normalization technique

involving a random matrix was used in [10] to obtained an

estimate of the actual radius. In this example, we will use

equation (16) to compute the structured real controllability

radius of the pendulum. Like the approach in [10], however,

we will approximate E by Ẽ = [ ǫI 0
0 I ], where ǫ > 0 is chosen

as small as possible (e.g. ǫ = 10−6) such that Ẽ is invertible

and not ill-conditioned.

Table I shows the values previously obtained in [10]

and the new values computed using (16). The new values

obtained using (16) are tighter and more accurate than

those obtained in [10]. Note, however, that even though the

new values obtained by (16) are more accurate than those

obtained in [10], the new values are still an estimate of

the actual structured real controllability radius due to the

approximation introduced in Ẽ = [ ǫI 0
0 I ]. To compute the true

structured real controllability radius, we will need to remove

the nonsingularity requirement of E . This will be done in a

future work.

B. Structured Transmission Zero at s Radius

In this example, we will use a new normalization technique

and recompute the transmission zero at s = 0 radius [6] of

several industrial systems’ linearized LTI models ([6]).

Using the definition found in [12], the transmission zeros

(TZ) of a LTI system (1) are the set of s ∈ C such that

rank

([

A − sI B
C D

])

< n + min(r,m)

The real transmission zero at s radius, denoted by rTZ
R

, is

defined as [6]:

rTZ
R (C,A,B,D, s) = inf

{∥

∥

∥

∥

[

∆A ∆B

∆C ∆D

]∥

∥

∥

∥

2

∣

∣

∣

∣

∆A ∈ R
n×n,∆B ∈ R

n×m,∆C ∈ R
r×n,∆D ∈ R

r×m,

(C + ∆C , A + ∆A, B + ∆B ,D + ∆D) has a TZ at s}
which can be computed by the following formula [6]:

rTZ
R (C,A,B,D, s) = τ̃n+min(r,m)

([

A − sI B
C D

])

Recall from [13] that there exists a solution to the robust

servomechanism problem for constant tracking and distur-

bance rejection if and only if the system has no transmission

zeros at s = 0. Hence, the real transmission zero at s = 0
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radius can be used to evaluate the robustness of the sys-

tem’s servomechanism controller. In particular, if a system’s

transmission zero at s = 0 radius is small, then the system

is very close to having a transmission zero at the origin,

which implies that the system’s (current) servomechanism

controller may be fragile and not robust.

The real transmission zero at s = 0 radii, rTZ
R

, of a

number of industrial systems’ linearized LTI models were

computed in [6]. In this section, we will consider a different

normalization, which provides a relative measure of the

perturbations with respect to the plant parameters, whereas

the values obtained in [6] give an absolute measure. In

particular, we will consider perturbations of the following

form:
[

A B
C D

]

→
[

(I + ∆A) A (I + ∆B) B
C D

]

(17)

and we shall define the structured real transmission zero at

s radius to be:

rTZ,struct
R

(C,A,B,D, s) = inf
{∥

∥

[

∆A ∆B

]∥

∥

2

∣

∣

∆A ∈ R
n×n,∆B ∈ R

n×n, (C,A,B,D) as

perturbed according to (17) has a TZ at s}
The motivation behind the perturbation structure (17) is due

to the fact that the C and D matrices of the plants studied

in [6] (given in Table II) contain hard 0’s and 1’s, which is

a result of the systems’ design structures. Hence, it would

not be appropriate to perturb the C and D matrices.

It can be shown that the structured real transmission zero

at s radius can be computed by:

rTZ,struct
R

(C,A,B,D, s) = (18)

τ̃n+min(r,m)

(

[

I 0
0 ǫI

]−1 [
A − sI B

C D

]

,

[

A 0
0 B

]

)

for ǫ → 0.

Proof: The proof is similar to the proof of Theorem 4.1

and is omitted.

Table II displays the results obtained using the proposed

normalization (18). It can be seen that using the proposed

technique, there is a large difference in the structured TZ

radius values between the various models, and it can be

seen that some plants appear to be very fragile; i.e. plant

TABLE II

STRUCTURED REAL TZ AT s = 0 RADIUS FOR VARIOUS PLANTS

Plant r
TZ,struct

R
(obtained via (18))

A. distillation n = 11, S, M 2.215
10−2 (= 2.22%)

B. gas turbine n = 4, S, M 2.672
10−1 (= 26.7%)

C. helicopter n = 4, US, M 9.244
10−2 (= 9.24%)

D. thermal n = 9, S, NM 0 (= 0%)
E. pilot n = 6, US, M 1.710

10−3 (= 0.171%)
F. boiler n = 9, US, NM 2.043

10−6 (= 2.04
10−4%)

G. mass n = 6, US, M 9.926
10−2 (= 9.93%)

H. 2-cart n = 8, US, NM 4.726
10−1 (= 47.3%)

LEGEND: n is the order of the plant, and S, US, M and NM respectively
denote a stable, an unstable, a minimum-phase, and a nonminimum-phase
plant.

F, the boiler system. On studying this system, it is found

that the original unperturbed system has a transmission zero

that is very close to the origin, namely, at s = −9.5510−3 ,

which implies that a slight perturbation can cause this

transmission zero to approach the origin, resulting in no

solution existing to the servomechanism problem for this

system. Plant D has a zero % radius because the plant’s

nominal system is degenerate and therefore has no solution

to the servomechanism problem.

V. CONCLUSIONS

In this paper, we generalized the real perturbation value

problem to account for more general perturbations. For-

mulas were derived in the paper to compute the so-called

generalized real perturbation values of a given complex

matrix. Using these results, we introduced a new normalized

version of the transmission zero at s radius, which is more

appropriate for the industrial systems studied in [6]. We also

revisited the pendulum problem in [10] and obtained better

estimates of the structured real controllability radius of the

multi-link inverted pendulum system. In the future, similar

studies involving the other robustness measures (e.g. the

structured real DFM radius and the structured real minimum-

phase radius) can also be carried out using the results of this

paper.
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