
 
 

 

 

Abstract Based on a linearized 3-DOF bicycle model, this 
paper compares two different fault detection and isolation (FDI) 
methods for the FDI of a command input fault and an output 
sensor fault within a vehicle chassis system. The first FDI 
approach uses parity equations to decouple the two types of 
faults, while at the same time, minimizes the influence of the 
disturbance on the residuals. The second FDI method uses 
sliding mode observer design, and by monitoring the equivalent 
control of the observers, in which the fault information is 
contained, achieves the detection and isolation of the faults. Lane 
change maneuvers are simulated, and the results showed that, 
under the given simulation condition, both diagnostic 
approaches can successfully detect and isolate the two types of 
faults despite the existence of a lateral wind gust disturbance. 

I. INTRODUCTION 
ITH the increasing speed of the modern vehicle, hand 
-ling and stability issues are of indisputable 
significance. Vehicle control systems such as VSC/ESP 

are implemented to guarantee the handing and stability of the 
vehicle especially at high speed and when the vehicle is under 
cornering maneuvers. In the popular VSC/ESP system, the 
control system utilizes the information of the steering angle 
from the driver, the vehicle s yaw rate and lateral acceleration 
to decide the control of the actuators, which makes the 
diagnosis of the actuator fault and sensor fault especially 
important. In [1]a hierarchi- -cal model-based FDI scheme for 
fault detection and isolation for a vehicle system is presented, 
and in the subsystem s FDI unit, the possibility of estimating 
the state of the vehicle has been demonstrated for a simplified 
front wheel steered bicycle model based on continuous time 
sliding mode observers. H. Fennel [2] developed a model 
based sensor monitoring system for ESP that was 
implemented, and it is currently produced in large volumes by 
Continental TEVES. The monitoring system is mainly used 
for detecting faults in sensors only. 

Since the field of FDI has seen significant progress with 
respect to model-based algorithmic approaches to residual 
generation, this paper utilized this relatively mature approach 
to construct the FDI scheme for fault detection and isolation of 
a command input fault and an output sensor fault within a 
vehicle chassis system. A parity equation residual generation 
method is presented as basis of the FDI scheme, and compared 
with a linear sliding mode observer based approach. By 
monitoring the equivalent control of the observers, in which 
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the fault information is contained, the detection and isolation 
of the input fault and output fault is achieved. The analytical 
relationship between the faults and the equivalent control is 
analyzed, and the faults are further decoupled using 
transformation.  

The paper is organized as follows. The Model 
Description  section describes the nonlinear vehicle chassis 
model. In the Diagnostic Approach  section, two FDI 
methods are presented, one using the classical Parity 
Equation, and the other using Sliding Mode Observers. 
Simulations are then carried in the subsequent section, where 
both FDI methods are verified.  

II. NOMENCLATURE 

a  distance from center of gravity to front axle 

b  distance from center of gravity to rear axle 

L  wheelbase 

r  yaw velocity 

xV  forward velocity 

yV  lateral (sideslip) velocity 

f  slip angle of the front tires 

r
 slip angle of the rear tires 

 front axle steering angle 

SM  Sprung mass 

USM  Unsprung mass 

M  Total mass of the vehicle 

sk  Suspension stiffness N-m per radian of roll 

sc  Suspension damping N-m per rad/s of roll rate 

sh  Height of CG from roll axis 

 

III. MODEL DESCRIPTION 
A bicycle model of the vehicle chassis system that includes 

rolling motion is considered. 

 
Fig. 1. Bicycle model. 

The vehicle model is designed to have three degrees of 
freedom (3-DOF), these are: sideslip velocity yV , yaw rate r , 

and roll angle . The input to the system is the steering angle 
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of the front wheels. The measured outputs are yaw rate r and 
lateral acceleration ya  [3], [4]. 

The slip angles f and r are given by 

,y y

f r

x x

rr

V ar V br

V V  
(1) 

where rr = degree rear steering per degree roll. 
The nonlinear vehicle chassis model is expressed using the 

following state space equation: 
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(2) 

The only input to the model is actually the steering 
command coming from the driver (since the longitudinal 
speed, i.e. throttle position is assumed to be constant). 
However, the force-slip angle relation of a tire can be best 
modeled according to the Pacejka tire model, which leads the 
lateral forces yfF and yrF to be treated as inputs. Then, further 

associating the slip angles with the steering angle by (1) 
would finally result in the nonlinear vehicle model where the 
steering angle is the only input. 

IV. PROBLEM FORMULATION 
This paper deals with the detection and isolation of the 

following set of faults:  
 Fault on the steering angle command (actuator fault). 

The effective steering angle does not correspond to 
the commanded steering angle. Our objective is to 
detect a constant error of 0.1 degree or higher. 

 Yaw rate fault (sensor fault). Our objective is to detect 
a bias of 15% or more from the nominal value of the 
yaw rate.  

The longitudinal velocity of the modeled vehicle is set to a 
constant value of 100km/h. A wind gust disturbance up to 
1500N is also considered to be acting on the system. We 
assume also that the lateral acceleration is measurable and 
fault free. For both yaw rate and lateral acceleration sensors a 
5% white Gaussian noise is considered. 

V. MODEL LINEARIZATION 
As the vehicle model is simulated under the assumption of 

constant longitudinal velocity of 100km/h, which is a very 
high speed, the steering maneuver is bounded to be a small 
steering angle input. By linearizing the system model around 

0 0 0 0
0 0 0 0yV r and 0 0 , we are 

expecting good approximation of the nonlinear vehicle model.  
The nonlinear model in Section 3 can finally be linearized 

and put into standard state-space in the form of 
u

u

x Ax B

y Cx D
 (3) 

(4) 

where u , 
T

yV rx is the state, and y is 
the output. 

As can be verified by simulation, the linearized model 
presents good approximation of the nonlinear model under 
small input case. The proposed diagnostic algorithm may be 
based on this linear model. However, when larger input is fed 
into the system or when the assumed constant system 
parameter, vehicle longitudinal velocity varies, modelling 
error issue would thus arise. To deal with this issue, multiple 
linearized models can be constructed in the Linearized 
Models module, providing the possibility of more precise 
approximation of the real nonlinear model at any time by 
selecting appropriate linearized model according to the 
system operating region. 

VI. DIAGNOSTIC ALGORITHM DESIGN 

A. First method: Parity Equation (PE) 

 
Fig. 2 PE based FDI scheme. 

Fig. 2 shows the Parity Equation based FDI scheme, 
where is the input fault, and r is the output fault. The 
command input goes into the linearized model, which 
generates the outputs _ _,lin y linr a . The Residual Generator and 

Evaluator takes the outputs of both the nonlinear and linear 
models and then generate and evaluate the residuals to make a 
decision on the presence of a fault or not. 

The linearized model given by (3) and (4) can be expressed 
in the general state space equation form as  

u q

u q
F D

F D

x Ax B E p E

y Cx D F p F
 (5) 

where p is the fault vector, and q is the disturbance. 
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The system given by (5) can be expressed in terms of 
transfer functions in the frequency domain as: 

( ) ( ) ( ) ( ) ( ) ( ) ( )s s U s s s s q sF DY M S p S  (6) 

Where  

1
( )

1
( ) ( )

0
s s s sFM C I A B D S M  (7) 

and 1 2 1( ) ( ) ( ) ( ) ( )T Ts p s p s U s Y sp  
The residuals are given by [5]: 

1

2

( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

R s
s s s U s s s s s q s

R s F D
W Y M W S p S  

1

11 12 1 1

2

21 22 2 1

( )
( ) ( ) ( ) ( )1

( )
( ) ( ) ( ) ( )0

( )

D

D

p s
w s w s M s S s

p s
w s w s M s S s

q s

 (8) 

Our objective is to design
ij

w ( , 1, 2)i j such that the 
residuals have desired responses to the faults and disturbance 
given by

kl
z ( 1, 2; 1, 2,3)k l , i.e. 

1
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Note that decoupling the disturbance would put restriction 
on the further decoupling of the faults. That is, if we 
set 13 11 1 12 2( ) ( ) ( ) ( ) ( ) 0D Dz s w s S s w s S s  and 

23 21 1( ) ( ) ( )Dz s w s S s 22 2( ) ( )Dw s S s 0  for decoupling the 
disturbance, it is not possible to further decouple the two types 
of faults from each other.  

Here, first the problem of decoupling the two faults is 
considered, then, by adjusting ( )sW , the influence of the 
disturbance on the residuals is minimize. 

To decouple the two types of faults, we design: 
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Then, by neglecting the disturbance, the secondary 
residuals become 

1

1 2

2 1 2

( ) 1 1

( ) 1 1

TR s
p p

R s s s
 (11) 

where 1 2, can be selected to adjust the transient response 
of the residuals to the faults, and the transfer function of the 
disturbance to the residuals, i.e. 

13
( )z s ,

23
( )z s , as well. 

Furthermore, the steady state value of the residual would be 
identical to the magnitude of the corresponding fault itself. 
From (8) and (9), by neglecting q , it follows that: 

11 12 11 12 1

21 22 21 22

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )

w s w s z s z s
s

w s w s z s z s FS  

Once the matrix ( )sW is determined, it is possible to 
evaluate the influence of the disturbance on the residual by 
calculating and analyzing

13
( )z s , 

23
( )z s . 

Fig. 3 represents the Bode plots of
13

( )z s (
23

( )z s can be 

plotted in a similar way) when 1 1. The maximum of the 

magnitude of both
13

( )z s and 
23

( )z s  are reached at frequency 
10(rad/sec), with the value -120dB and -100dB respectively. 
Note that 

13
( )z s ,

23
( )z s  depend only on

21, respectively, 
which can be selected independently. 

 
Fig. 3 Bode Plots of  

13
( )z s when 1 1 

Balancing between the response of the residuals to the 
faults and the purpose of minimizing the magnitude of 

13
( )z s and

23
( )z s , the time constants are finally chosen to be 

1 2 and
2 1. 

B. Second method: Sliding mode observer (SMO) 
This approach is based on a Dedicated Observer Scheme 

(DOS) and uses the two outputs to build two sliding mode 
observers, each using one output [6],[7]. In this case the fault 
information is included in the equivalent control of the sliding 
mode observers, and by its magnitude, it is possible to achieve 
the fault detection and isolation [8]. Since one output is fault 
free ( ya ), the sliding mode observer using this output is 

robust to the output sensor fault and thus can be designed to 
only detect the input fault. The other observer which uses the 
output information including sensor fault ( r ) can be used to 
isolate the output fault. 

 
Fig. 4 Sliding Mode Observer based FDI scheme. 

Vehicle Chassis 
Nonlinear Model + 

 + r  
r  

 

SM Observer I 

ya  

 
 

Residual  
Evaluation SM Observer 

Equivalent Control 1 

Equivalent Control 2 FDI 
(SMO) 
Scheme 

1118



 
 

 

 
1) Design of SMO I 

Take the first output, i.e. yaw rate sensor measurement 

1y r  
The system state-space equation reads [9] 

1 1 1m

u u q

y y y y
Dx = Ax B( ) E

= C x +
 (12) 

Let
T

1 yVx , and define the new state vector of 

the system as T

1 1yx . Introduce the transformation 

matrix T such that: 1

1y

x
Tx  

By applying the transformation to (, we obtain 

1

1 1 2

1 1m

y u u q

y y u u q

y y y

1 11 1 12 1 d1

21 1 22 2 d

x = A x + A + B ( ) E

= A x + A + B ( ) E  (13) 

where  

1

2

, ,A B d111 12 1

d

d21 22 2

EA A B
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Consider now the observer I represented by 

1 1 1

1 1 1

y u L v

y y u v
1 11 1 12 1

21 1 22 2

x = A x + A + B

= A x + A + B
 (14) 

where
1v is an auxiliary input defined by 

1 1 1 1sign mv M y y  (15) 

Define the errors as 1 1y me y y ,
1 1 1e x x , then 

1 1 1 1y me y y y y y  

1 2 1 (16)sign      y ye e y u q y M e21 22 2 dA A B E  

Convergence conditions are given by [10], [11]. When
1M is 

large enough, it can be shown that 0ye  after a short 

transient. 
The equivalent control 1eqv can be obtained from (16) as: 

1 21eq e y u q yv 21 22 2 dA A B E   (17) 

On the sliding manifold 0ye  
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1 2 d1 d

x x A A A A

B B E E
 (18) 

The steady state value of 1e after the transient can be 
expressed as: 

1ss y u q ydote k y k u k q k y  (19) 

where , , ,y u q ydotk k k k  are coefficients parameterized by 1L .  

By substituting (19) into (17), we get 

1

2 1

eq u y

q ydot

v k u k y

k q k y

21 2 21 22

21 d 21

A B A A

A E A
 (20) 

By adjusting
1L , it is possible to make qk and ydotk relatively 

small, so that the equivalent control of the first sliding mode 
observer will be mainly constituted by two parts (neglecting 
the derivative term and disturbance): a term proportional to 
the input fault u , and a second term proportional to the 
output fault y . 
2) Design of SMO II  

Take the second output, i.e. lateral acceleration sensor 
measurement, we have 2 yy a . 

The system state-space equation reads: 

r2

2 2

u u q

y u u q

d

2 d

x = Ax B( ) E

= C x + D ( ) F
 (21) 

r2

2 , ,2 dC D F are the second row of , ,  dC D F respectively, as 
given by (5). 

Define
2 2 2,m sy y u y2= D = C x , and consider the new 

state vector 1

T
syx , where 

T

1 yV rx . 

By performing the state transformation similar to that in the 
first case, we can rewrite (21) as 

1 1

1 2

2

2

s

s s

r

m s

y u u q

y y u u q

y y u q

11 12 1 d1

21 22 2 d

2 d

x = A x + A + B ( ) E

= A x + A + B ( ) E

D F

 (22) 

where , , , 1, 2ij i i i jdA B E are some constant matrices 

obtained by performing the transformation. 
Similarly to the first case, the observer II is constructed and 

its equivalent control can be finally obtained as: 

2

2 2

2

eq u udot

r r

q qdot

v k u k u

k q k q

21 2 22 2 21 2

21 d 22 d 21 d

A B A D A D

A E A F A F
 (23) 

Where , , ,u udot q qdotk k k k can be adjusted by tuning 2L .In 

practice, the term u is very small, so this term can be 
neglected. If, by design, the coefficient of the disturbance and 
its derivative are made relatively small, then the equivalent 
control of the second sliding mode observer would be 
proportional to the input fault u . This is possible because of 
the free parameter 2L . 

From (20) and (23) , we have then 

1 1 1eq u y ueq yeqv k u k y k u k y21 2 21 22A B A A  (24) 

2 2eq u ueqv k u k u21 2 22 2A B A D  (25) 
To decouple the two types of faults, consider the following 

transformation 
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Then the residuals 1 2,r r will each contain only one fault 
(neglecting those minor terms), thus achieving the fault isolation.  

VII. SIMULATION RESULTS 
For our simulation process, we considered a disturbance 

acting on the system as represented in Fig. 5: 

 
Fig. 5 Disturbance time history 

A. Parity Equation approach 
The simulation results under different fault/disturbance 

conditions using PE-based approach are shown in Fig. 6~Fig. 
8. In all cases, the driver is doing a passing maneuver, i.e. first 
changing to the left lane, and then changing back to the right 
lane. 

TABLE I 
PHYSICAL PARAMETERS USED IN THE PRESENT MODEL 

Parameter Value 

Distance from center of gravity 
to front axle a  1.14 m 

Distance from center of gravity 

to rear axle b  
1.4 m 

Forward velocity xV  100 km/h 

Sprung mass SM  1363.64 kg 

Unsprung mass USM  136.36 kg 

Suspension stiffness sk  40107 N.m/radian of roll 

Suspension damping sc  1203.2 N.m per rad/s of roll rate 

Height of CG from roll axis sh  0.35 m 

rear steering per degree roll rf  -0.095 degree 

Fig. 6 shows the case when no fault is present, where the 
two residuals, with or without the disturbance, stay within the 
upper and lower thresholds. For the first residual 1r , the upper 

and lower threshold 1 0.0012th ; for the second residual 2r , 

2 0.012th . In Fig. 7, an input fault (p1) occurs at 2.5s, 

which is a constant 0.1 degree deviation from the nominal 
input. Since the there is no output fault, 2r stay below 2th , 

while 1r exceeds 1th at 5s, indicating the input fault occurs. In 

Fig. 8, a 15% bias from the nominal value of the yaw rate 
occurs at the yaw rate sensor from 5s, which constitute the 
output fault (p2 for sensor fault without disturbance and p2 
w/d for fault with disturbance). Note that this fault is 
proportional to the nominal value of the yaw rate, so the fault 
really occurs at 10s when the yaw rate is relatively large. 

2r exceeds 2th at 10.7s. 

 
Fig. 6. Residuals under no fault condition. 

 
Fig. 7. Residuals under input fault (constant 0.1 degree). 

 
Fig. 8. Residuals under output fault (+15% from nominal value). 

 
We define the fault signatures as 
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The FDI rule is simply as stated in Table 1. 
TABLE 1. FAULT SIGNATURE FOR PE SCHEME 

Fault Type 1s  2s  

No fault 0 0 
Input Fault 1 0 

Output Fault 0 1 
Both Faults 1 1 

B. Sliding Mode Observer approach 
Similar simulation results using SMO-based approach are 

shown in Fig. 9~Fig. 11. 

 
Fig. 9. Residuals under no fault condition. 

 
Fig. 10. Residuals under input fault (constant 0.1 degree). 

 
Fig. 11. Residuals under output fault (+15% sensor fault). 

 

The same FDI rule for the PE based approach can be 
applied.  

Compared to the PE method, the residuals using SMO 
method present chattering when the two methods have 
comparable transient responses. Note however, that, when the 
actual vehicle speed is not a constant 100km/h any more, the 
coefficient matrices in (5) will change, causing phenomenon 
model error for PE-based approach. On the contrary for the 
SMO method, which is a time-variant approach in nature, the 
coefficient matrices in (12) and (21) can be updated with time 
according to the real time vehicle speed. 

VIII. CONCLUSION 
This paper presents two fault diagnostic approaches for the 

fault detection/isolation of a vehicle chassis system in the 
presence of actuator fault and output sensor fault, and under 
the influence of wind gust disturbances. Both approaches use 
the same linearized model from the nonlinear vehicle chassis 
model as their FDI basis.  

In this paper, the relationship between the faults and the 
equivalent control is analyzed. Simulations are carried for 
both approaches. As the simulation results showed, under the 
same conditions, both diagnostic approach can successfully 
detect and isolate the two types faults despite the existence of 
the disturbance. 

Further work will account for the model error and 
accommodate the operation region further away from the 
linearized point, making the FDI system more general and 
robust. 
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