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Abstract— A framework is developed which allows a general
class of ILC algorithm to be applied to tasks which require

the plant output to reach a given point in a set time. It is
shown that superior convergence and robustness properties are
obtained compared with those associated with using the original
ILC law to track an arbitrary reference trajectory satisfying the
end-point conditions. Experimental results are given to confirm
the theoretical findings, and verify the favourable qualities of
this novel approach to point-to-point movement control.

I. INTRODUCTION

Apart from a small number of exceptions dealing with

specialised cases (for example [1], [2], [3]), little work has

been conducted to incorporate and practically assess Iterative

Learning Control (ILC) algorithms in which the repeated op-

eration may consist of a more general objective, which need

not comprise the tracking of a static pre-defined reference.

A framework is therefore proposed in which the high level

of performance that ILC has been shown to provide, can be

combined with a greater degree of flexibility in terms of how

the tracking control task is defined, and the way in which it

is achieved. This has obvious application to industrial robotic

point-to-point movement operations, and is partly motivated

by the recent successful use of ILC in stroke rehabilitation.

Here electrical stimulation was mediated by ILC to assist

repeated limb movements, but the exact path to be followed

by the patient’s arm was not critical, rather the start and

end-point positions of the arm [4]. This application requires

precise control over the degree of arm extension produced

by electrical stimulation during the reaching movement, thus

precluding use of the initialisation mechanism (consisting of

a robotic arm) to reach the end-point. The application area

necessiates use of a smooth reference which is as close to the

patient’s natural arm movement as possible, a requirement

that may not be met by controllers which simply adjust the

input at samples close to the end-point (the arm may be

far away from the desired position). As well as satisfying

these issues, the proposed method benefits from the ability to

learn from experience gained over previous trials of the task

which is provided by the ILC framework (and sets it aside

from alternative end-point tracking techniques (see [5], [6],

[7] and references therein). Furthermore, in seeking a global

solution to the problem, it is shown that the robustness to

uncertainty of the class of ILC considered can be increased.

II. OBJECTIVE-DRIVEN ILC DEVELOPMENT

The key departure from the standard ILC framework that

will be considered is to permit the reference to change
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between iterations. It will be shown that this leads to a simple

method which has the ability to speed up learning when the

intention is not to track a fixed reference, but instead wish to

perform a specified point-to-point movement task. The initial

stage of this process is to define the intended point-to-point

task. A SISO linear time-invariant system is considered, and

given, on trial k, by

xk(t + 1) = Axk(t)+ Buk(t)
yk(t) = Cxk(t)

(1)

where A, B and C are matrices of suitable dimension, and

a sample time of unity is assumed for notational simplicity.

The tracking task is only defined at times 0 and T when

the output must equal 0 and rN respectively for all k, where

T denotes the length of the task. An initial reference could

be selected in the form of any trajectory which achieves the

point-to-point task (e.g. a straight line trajectory connecting

0, at time 0 to rN at time T ). A sensible approach is to use

the solution u∗ to the optimisation

minimise ‖u‖2
2

subject to [CAN−1B CAN−2B . . .CAB CB]u = rN (2)

where u = [u(1),u(2), . . . ,u(N)]T and the integer N = T
Ts

.

This satisfies the end-points whilst minimising the norm

of the input signal, and can be solved using constrained

quadratic minimisation (e.g. through application of the New-

ton method). The solution and corresponding plant output

are shown in Figure 1 for the non-minimum phase plant

(introduced in Section V) using the end-point constraint

rN = 10. The optimal time solution u∗ is then set as the initial
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Fig. 1. Initial reference selection for non-minimum phase plant.

input vector u1 = u∗ and initial reference vector r1 = Gu∗,

with the lifted system matrix

G =











CB 0 · · · 0

CAB CB · · · 0
...

...
. . .

...

CAN−1B CAN−2B . . . CB











(3)
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Having defined the task and an initial reference, a controller

is required to robustly achieve the tracking task. An ILC

algorithm of the general form

uk+1 = uk + β Kek (4)

will be considered, where K is a suitable linear operator

which may be non-causal (e.g. the adjoint algorithm [8]

which has been shown to provide a high degree of per-

formance and robustness [9]), and β is a positive scalar

used to influence algorithm convergence. However, at the

end of the kth trial, yk is taken and instead of calculating

ek = r− yk, with a fixed reference, r, for use in the update

(4), the reference is allowed to change, and is replaced with

rk+1, leading to

e∗k = rk+1 − yk (5)

So the ILC law (4) becomes

uk+1 = uk + β Ke∗k (6)

The time domain relationships which then arise are

yk+1 = yk + β GKe∗k (7)

rk+1 − yk+1 = rk+1 − yk −β GKe∗k (8)

rk+1 − yk+1 = rk+1 − yk −β GK(rk+1 − yk) (9)

ek+1 = (rk+1 − yk)(I−β GK) (10)

where I is the identity operator. So the criterion for mono-

tonic convergence becomes

||ek+1||
2 = ‖(rk+1 − yk) (I−β GK)‖2

< ||ek||
2 (11)

and since

‖(rk+1 − yk) (I−β GK)‖2 ≤ ‖rk+1 − yk‖
2 ‖I−β GK‖2

(12)

a sufficient condition for monotonic convergence is

||I−β GK||2 < 1 (13)

together with the requirement

‖rk+1 − yk‖
2

‖ek‖
2

=
‖rk+1 − yk‖

2

‖rk − yk‖
2

≤ 1 (14)

which equates to

||rk+1 − yk||
2 ≤ ||rk − yk||

2 (15)

The first condition, (13), is the monotonic convergence

criterion associated with the ILC algorithm (4) using a

static reference (note that if K is chosen to be a scalar, G

must have full rank, and the system must consequently be

relative degree 1). If this is satisfied it is then necessary to

choose rk+1 such that (15) is satisfied. Now this can also be

expressed as

||rk+1 − yk||
2 = ||∆rk + ek||

2 ≤ ||ek||
2 (16)

where ∆rk = rk+1 − rk. The initial reference already satisfies

the end-point constraints so it is possible to choose ∆rk from

a suitable set of functions with end-points equal to zero for

k ≥ 2. In this paper the set considered is the set of harmonic

sinewaves, since this leads to simplification in how ∆rk is

chosen, although it also limits it to be an even function. This

choice is equivalent to taking the Discrete Fourier Transform

(DFT) of ∆rk, with components, ∆Rk,i, and requiring that

they are all real (i.e. Im{∆Rk,i} = 0 for i = {0,1, . . .N −1}).

It is the property that the components of ∆Rk are all real that

simplifies how they can be selected.

III. CHOICE OF TRAJECTORY

At the end of the kth iteration, ∆Rk must be chosen to

satisfy (16). Having limited the set from which it may belong

in the way described, it is easy to choose ∆rk to minimise

||∆rk + ek||
2 since there is no global constraint and the opti-

misation can be conducted frequency-wise. The transparency

this affords is used to confirm favourable properties of this

choice of update in Section IV, and, although alternative

selections may results in similar properties, the lack of a

frequency-wise optimisation means they cannot be analysed

in such a straight-forward manner. Taking the inner product

||e∗k||
2 = ||∆rk + ek||

2 = ||∆rk||
2 + ||ek||

2 + 2Re〈∆rk,ek〉

=
1

N

N−1

∑
i=0

∆R2
k,i +

1

N

N−1

∑
i=0

|Ek,i|
2 +

2

N
Re

{

N−1

∑
i=0

∆Rk,iEk,i

}

=
1

N

N−1

∑
i=0

∆R2
k,i +

1

N

N−1

∑
i=0

|Ek,i|
2 +

2

N

N−1

∑
i=0

∆Rk,iRe{Ek,i}

=
1

N

N−1

∑
i=0

|Ek,i|
2 +

1

N

N−1

∑
i=0

∆Rk,i

(

∆Rk,i + 2Re{Ek,i}
)

(17)

Each frequency component of the reference change, ∆Rk,i,

can be chosen to minimise this in order to best satisfy (16).

The differential with respect to ∆Rk is

∂

∂∆Rk

||∆rk + ek||
2 =

2

N

N−1

∑
i=0

∆Rk,i +
2

N

N−1

∑
i=0

Re{Ek,i} (18)

Setting all elements to zero yields the optimal solution

∆Rk,i = −Re{Ek,i} for i = 0,1 . . .N −1 (19)

Note that it can be shown that this is also the optimal solution

to directly minimising the error norm over the next trial

||ek+1||
2 = ||(∆rk + ek)(I−β GK) ||2 (20)

=
1

N

N−1

∑
i=0

|∆Rk,i + Ek,i|
2|1−β GiKi|

2 (21)

where Gi, Ki denote the ith DFT components of G, K

respectively. Using (19) the corresponding optimal value of

(16) on trial k is given by

||∆rk + ek||
2 =

1

N

N−1

∑
i=0

|Ek,i|
2 −

1

N

N−1

∑
i=0

(

Re{Ek,i}
)2

(22)

=
1

N

N−1

∑
i=0

(

Im{Ek,i}
)2

≤ ||ek||
2 (23)

< ||ek||
2 iff ∃ i s.t Re{Ek,i} 6= 0 (24)

This therefore ensures the sufficient condition given by (16)

is satisfied. Note that the reference is being updated using

rk+1 = rk + ∆rk (25)
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which is chosen to speed up learning of the final trajectory.

It is always possible to ensure ||∆rk + ek||
2 ≤ ||ek||

2 since

||∆rk + ek||
2 −||ek||

2 = −
1

N

N−1

∑
i=0

(

Re{Ek,i}
)2

≤ 0

< 0 iff ∃ i s.t Re{Ek,i} 6= 0 (26)

From (10) it is possible to state

||ek+1||
2 =

∥

∥

∥

∥

(∆rk + ek)

ek

(I−β GK)⋆ ek

∥

∥

∥

∥

2

(27)

≤

∥

∥

∥

∥

(∆rk + ek)

ek

(I−β GK)

∥

∥

∥

∥

2

||ek||
2 (28)

in which the division, and multiplication, ⋆, are executed

component-wise. The norm error reduction ratio is

||ek+1||
2

||ek||2
≤

∥

∥

∥

∥

(∆rk + ek)

ek

(I−β GK)

∥

∥

∥

∥

2

=
1

N

N−1

∑
i=0

(

Im{Ek,i}
)2
|1−β GiKi|

2

|Ek|2

=
1

N

N−1

∑
i=0

1

1 +
(Re{Ek,i})

2

(Im{Ek,i})
2

|1−β GiKi|
2

=
1

N

N−1

∑
i=0

sin2
(

∠Ek,i

)

|1−β GiKi|
2 (29)

whereas it is easy to show that in the case of a static reference

||ek+1||
2

||ek||2
≤

1

N

N−1

∑
i=0

|1−β GiKi|
2 (30)

so the use of objective-driven ILC has introduced the mul-

tiplier sin2
(

∠Ek,i

)

on the ith frequency component. This

multiplier can be used to relax the monotonic convergence

condition (13). From (29) a sufficient condition to produce

trial-to-trial error reduction is

sin2
(

∠Ek,i

)

|1−β GiKi|
2
< 1 (31)

for each frequency, i, so that

|1−β GiKi|
2
<

1

sin2
(

∠Ek,i

) (32)

so

|1−β GiKi| <
1

|sin
(

∠Ek,i

)

|
(33)

compared with the equivalent for the static reference case

|1−β GiKi| < 1 (34)

Since 0 ≤ |sin
(

∠Ek,i

)

| ≤ 1, this clearly provides the pos-

sibility of additional robustness at each frequency, but this

robustness is with respect to tracking the constantly modified

reference. To examine the system robustness, a multiplicative

plant uncertainty, expressed as Gi = G0,iMi where G0,i is the

nominal plant, can be substituted in (33) and (34) and the

region of the uncertainty space examined in which Mi must

lie to satisfy the monotonic convergence criterion. This is

illustrated in Figure 2 for both cases, and the larger region

of convergence for the new method is clear. The effect of this

bound on the convergence and robustness associated with the

complete dynamic system will now be investigated.

Fig. 2. Uncertainty bound for ith frequency component using a) static
reference, and b) modified reference.

IV. SYSTEM CONVERGENCE AND ROBUSTNESS

PROPERTIES

From the reference change ∆Rk,i given by (19), it is

possible to write

Rk+1,i = Rk,i −Re{Ek,i}

= Rk,i −Re{Rk,i −GiUk,i}

= Re{GiUk,i}+ jIm{Rk,i}

= Re{GiUk,i}+ jIm{R0,i} (35)

Taking real and imaginary components of the frequency-

transformed ILC algorithm (6) (with E∗
k,i = Rk+1,i −Yk,i =

Rk+1,i −GiUk,i)

{

Ûk+1,i = Ûk,i + K̄iIm{GiUk,i}− K̄iIm{R0,i}

Ūk+1,i = Ūk,i − K̂iIm{GiUk,i}+ K̂iIm{R0,i}
(36)

where β has been absorbed into each Ki for conciseness, and

·̂ and ·̄ denote Re{·} and Im{·} respectively. The real and

imaginary components of the output can be expressed as

Ȳk+1,i = Im{GiUk+1,i} = ĜiŪk+1,i + ḠiÛk+1,i

= ĜiŪk,i − ĜiK̂iIm{GiUk,i}+ ĜiK̂iIm{R0,i}

+ḠiÛk,i + ḠiK̄iIm{GiUk,i}− ḠiK̄iIm{R0,i}

= Im{GiUk,i}+ Im{GiUk,i}
(

ḠiK̄i − ĜiK̂i

)

+

Re{GiKi}Im{R0,i}

= Im{GiUk,i}− Im{GiUk,i}Re{GiKi}

+Re{GiKi}Im{R0,i}

= Im{GiUk,i}(1−Re{GiKi})+ Re{GiKi}Im{R0,i}
(37)

and
Ŷk+1,i = Re{GiUk+1,i} = ĜiÛk+1,i − ḠiŪk+1,i

= ĜiÛk,i + ĜiK̄iIm{GiUk,i}− ḠiŪk,i

+ḠiK̂iIm{GiUk,i}

= Re{GiUk,i}+ Im{GiUk,i}
(

ĜiK̄i + ḠiK̂i

)

−

Im{GiKi}Im{R0,i}

= Re{GiUk,i}+ Im{GiUk,i}Im{GiKi}

−Im{GiKi}Im{R0,i} (38)

To find the output value as k increases, it is possible to

express the output components (37) and (38) as iterative
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sequences

Ȳk+1,i = Im{GiUk+1,i} = (1−Re{GiKi})
k+1Ȳ0,i

+ Im{R0,i}Re{GiKi}
k

∑
p=0

(1−Re{GiKi})
p (39)

which, if |1−Re{GiKi}| < 1, converges to

Ȳ∞,i =
Im{R0,i}Re{GiKi}

1− (1−Re{GiKi})
= Im{R0,i} (40)

and similarly

Ŷk+1,i = Re{GiUk+1,i}

= Ŷ0,i + Im{GiKi}
k

∑
p=0

(

Ȳp,i − Im{R0,i}
)

= Ŷ0,i + Im{GiKi}
k

∑
j=0

{

(1−Re{GiKi})
jȲ0,i+

Im{R0,i}Re{GiKi}
j−1

∑
p=0

(1−Re{GiKi})
p − Im{R0,i}

}

(41)

Now this can be simplified using

1−a
k

∑
p=0

(1−a)p = 1−a−a(1−a)−a(1−a)2−

a(1−a)3−·· ·−a(1−a)k

= (1−a)(1−a− (1−a)− (1−a)2−

(1−a)3 · · ·− (1−a)k)

= (1−a)2(1−a− (1−a)− (1−a)2−

(1−a)3 · · ·− (1−a)k−1)

= (1−a)k+1 (42)

so that (41) can be written as

Ŷk+1,i = Ŷ0,i + Im{GiKi}
k

∑
j=0

{

(1−Re{GiKi})
jȲ0,i−

Im{R0,i}(1−Re{GiKi})
j
}

= Ŷ0,i +(Ȳ0,i − Im{R0,i}) Im{GiKi}
k

∑
j=0

(1−Re{GiKi})
j

(43)

and this converges to

Ŷ∞,i = Ŷ0,i +(Ȳ0,i − Im{R0,i})
Im{GiKi}

Re{GiKi}
(44)

= Ŷ0,i +(Ȳ0,i − Im{R0,i}) tan(∠GiKi) (45)

Having found, through (40) and (45), the final output as k →
∞, the stability of the system will now be investigated. To

do this, let the reference, R∗, be introduced and equated with

the final converged output values, so that
{

R̄∗
i = Ȳ∞,i = Im{R0,i}

R̂∗
i = Ŷ∞,i = Ŷ0,i +(Ȳ0,i − Im{R0,i}) tan(∠GiKi)

(46)

then using (37)

Ē∗
k+1,i = R̄∗

i − Ȳk+1,i

= Im{R0,i}− (1−Re{GiKi})Ȳk,i−
Re{GiKi}Im{R0,i}

= (1−Re{GiKi})
{

Im{R0,i}− Ȳk,i

}

= (1−Re{GiKi})Ē
∗
k,i

(47)

and similarly (38) gives

Ê∗
k+1,i = R̂∗

i − Ŷk+1,i = R̂∗
i − Ŷk,i − Im{GiKi}Ȳk,i +

Im{GiKi}Im{R0,i}

= Ê∗
k,i + Im{GiKi}

(

Im{R0}− Ȳk,i

)

= Ê∗
k,i + Im{GiKi}

(

R̄∗
i − Ȳk,i

)

= Ê∗
k,i + Im{GiKi}Ēk,i (48)

Using (47) and (48), the dynamic system for frequency i is

[

Ē∗
k+1,i

Ê∗
k+1,i

]

=

[

1−Re{GiKi} 0

Im{GiKi} 1

][

Ē∗
k,i

Ê∗
k,i

]

(49)

and it is then straightforward to show that

Ê∗
∞,i = tan(∠GiKi)Ē

∗
0,i + Ê∗

0,i (50)

which equals 0 using the reference defined by (46), so

the system converges to this reference with zero error,

but this signal is itself determined by initial conditions.

The system (49) has eigenvalues at +1, (1 − Re{GiKi})
making it marginally stable. Instability is therefore avoided

if |1−Re{GiKi}| < 1. When using a static reference it can

be shown that the dynamic error system is instead given by

[

Ē∗
k+1,i

Ê∗
k+1,i

]

=

[

1−Re{GiKi} −Im{GiKi}
Im{GiKi} 1−Re{GiKi}

][

Ē∗
k,i

Ê∗
k,i

]

(51)

with eigenvalues 1 − Re{GiKi} ± jIm{GiKi}, that is 1 −
GiKi,1−GiKi. Instability is avoided if |1−GiKi| < 1 which

is more difficult to satisfy than the requirement for the

objective-driven ILC approach. This benefit is paid for by the

eigenvalue at +1 which allows Ŷk+1,i to increase depending

on the magnitude of Re{GiKi}. In other words, rather

than causing instability, values of Im{GiKi} increase the

magnitude of the final value to which Ŷk,i converges. The

stability regions for the system eigenvalues are shown in

Figure 3. A final output bound has been inserted in Figure 3

b) to reflect the practical limitation of an increasing Ŷk+1,i.

In terms of bounds on the absolute error,

Re

Imb)a)

1-Re{G K }

Im{G K }

Re

Im final output bound

convergence bound

1

|1-G
K |
i

i
i i

i i 1-Re{G K }i i

Fig. 3. Stability regions for a) static reference ILC, and b) new objective-
driven method.

{

Ē∗
k,i = (1−Re{GiKi})

kĒ∗
0,i

Ê∗
k,i = Im{GiKi}∑k

p=0(1−Re{GiKi})
pĒ∗

0,i + Ê∗
0,i

(52)
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Since

Ê∗
0,i = −Im{GiKi}

∞

∑
p=0

(1−Re{GiKi})
pĒ∗

0,i (53)

it is possible to write

Ê∗
k,i = Im{GiKi}

k

∑
p=0

(1−Re{GiKi})
pĒ∗

0,i −

Im{GiKi}
∞

∑
p=0

(1−Re{GiKi})
pĒ∗

0,i (54)

= Im{GiKi}
∞

∑
p=k+1

(1−Re{GiKi})
pĒ∗

0,i (55)

provided |1−Re{GiKi}|< 1. From (52) and (54), it is clear

that |Ē∗
k+1,i| < |Ē∗

k,i| and |Ê∗
k+1,i| < |Ê∗

k,i| so that the error,

|Ek,i|, converges monotonically. Figure 4 shows the region

in which the frequency-wise multiplicative plant uncertainty,

Mi, can exist and the stability condition |1−Re{GiKi}| < 1

assured, again using Gi = G0,iMi. The figure also shows

Fig. 4. Uncertainty space for complete system.

the corresponding region for the static reference case (with

criterion |1 − GiKi| < 1). As this is contained within the

former region, the superior robustness capability of the

proposed method is clearly evident.

V. EXPERIMENTAL RESULTS

The test facility used to provide the experimental results is

shown in Figure 5, and has previously been used to evaluate

a number of ILC, and, by an allowable reconfiguration,

repetitive control schemes (see [10], [9] for details). It

Fig. 5. Non-minimum phase experimental test facility.

consists of a rotary mechanical system of inertias, dampers,

torsional springs, a timing belt, pulleys and gears. The plant

uses a PID loop in order to act as a pre-stabiliser and

provide greater stability, and the resulting closed-loop system

constitutes the system to be controlled. The system can be

represented using the continuous time plant transfer function

G(s) =
165.95(4− s)

s4 + 21.5s3 + 170.28s2 + 368.52s+ 663.82
(56)

which has been identified in previous work. The adjoint ILC

algorithm is selected as a well known member of the class

considered, and is given in discrete form by

uk+1(z) = uk(z)+ β G∗(z)ek(z) (57)

where G∗(z) is the adjoint of the plant model used (see [8] for

theoretical background). An attractive feature of the method

is that, with a sufficiently small positive scalar multiplier, β ,

it is guaranteed to satisfy the condition for monotonic con-

vergence over all frequencies, and hence ensure a satisfac-

tory transient response [11]. The static reference monotonic

convergence criterion corresponding to (34) in this case is
∣

∣1−β G(e jωTs)G∗(e jωTs)
∣

∣ < 1 (58)

which leads to

0 < β |G(e jωTs)|2 < 2 (59)

for ω up to the Nyquist frequency. Figures 6 and 7 show

experimental tracking results for the objective-driven ap-

proach using the adjoint algorithm with β = 0.7 and β = 0.9

respectively. The values T = 5.12s and rN = 12rad are used,

together with Ts = 0.01s. The ILC algorithm is implemented

using (6), and the reference is updated using (25) and (19),

the latter operation being conducted in the frequency domain.

Figures 6a) and 7a) show the reference quickly converges to

a fixed signal which is markedly different from the reference

used during the first trial. Figures 6b) and 7b) show the plant

output over the course of the same trials, and Figures 6c)

and 7c) show the error norm. For both values of β it is clear

that high accuracy tracking is achieved within 5 trials. For

comparison, the error norm when using a static reference

(equal to r1) is also shown in each figure, and it is clear

the objective-driven approach can produce more accurate

tracking in a reduced number of trials. The motivation for the

proposed technique was to ensure the plant output equaled

the end-point value rN at time T . To examine whether this

has been achieved, Figures 8 and 9 provide the final error

value |rN − rk(N)| using β = 0.7 and β = 0.9 respectively.

In both cases the results using a static reference are also

shown, and it is clear that the proposed method has provided

the capability to reach the end-point with greater accuracy

in fewer trials.

VI. FUTURE WORK

The objective-driven framework developed in this paper

will be applied to stroke rehabilitation to confirm its effec-

tiveness in this area. It will then be expanded to address

multiple point-to-point movements, where the timing be-

tween points is prescribed. The framework will subsequently

be generalised to incorporate the case in which the time-

points used are not fixed, and must be provided through

optimisation of a suitable cost.
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Fig. 6. Adjoint algorithm with changing reference using β = 0.7.
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Fig. 7. Adjoint algorithm with changing reference using β = 0.9.
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