
  

  

Abstract—Because of the light weight and less wear and tear 
on components, the flexible beam has been and will continue to 
be an appealing option for civil and military applications. 
However, flexibility brings with it unwanted oscillations and 
severe chattering which may even lead to an unstable system.  
To tackle these challenges, a two-time scale controller is 
presented to track a desired tip point signal and at the same 
time mitigate the tip point vibration.  To obtain more precise 
information of the tip point location and facilitate the easy 
extension to multiple-flexible-link problems, a camera is used 
to provide vision feedback in which the delayed vision signal is 
compensated by the state estimator and predictor. The 
controller is experimentally verified, and shown to exceed the 
performance of other tested controllers. 

Index Terms—Flexible beam, vision based control, vibration 
control, robust control, sliding mode control. 

I. INTRODUCTION 

HE control of flexible beams has been a heavily-studied 
problem, with applications to space structures [1], 

automated manufacturing, assembly tasks [2], flexible XY 
positioning systems in aerial ladder trucks [3], and many 
others that require a lightweight but long-reach arm [4]. By 
allowing the use of flexible structures, lighter parts can be 
used, leading to lower energy consumption, less wear and 
tear, safer operations [5], and lower cost [6]. However, new 
challenges are introduced in that motion is no longer 
restricted to the joints which connect members, and 
oscillations in the structure may increase the settling time in 
commanding the structure to the desired position. Hence it is 
inevitable that the control bandwidth required for precision 
pointing will excite the flexible structure modes. 

In controlling the flexible beam, different sensors, such as 
strain gauges [3], cameras [7-9], optical sensors [10], and 
accelerometers [11] have all been used.  

One common method of measuring the beam tip position 
is the combination of a motor sensor to keep track of the 
root position of the beam and one or more strain gauges on 
the beam itself to measure deflection from its rigid body 
state [5] [12].  Based on this kind of measurement, different 
control methods have been investigated. For example, 
Kojima [1] uses an adaptive deflection-limiting input 
shaping technique, where the control signal is conditioned to 
minimize the excitation of the flexible modes of the 
structure.  The maximum bending moment in the beam is cut 
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in half, and the residual vibration can roughly be reduced by 
75% for desired set points instead of tracking a time-varying 
desired signal.  To handle the unmodeled dynamics and 
uncertainties associated with the system, the sliding mode 
control has been used by Etxebarria [5], Kaynak [13], 
Korondi [14], and Madhavan [15]. In the approach by [5], 
an LQR scheme is augmented for the fast mode and a 
boundary layer augmented sliding mode control is applied 
for the slow mode.  By adding the LQR control for the fast 
flexible mode, oscillations in the beam are damped in 
1 second and better tracking of the slow mode is achieved.  
However in Etxebarria’s approach, a larger overshoot occurs 
which may come from the unbounded control gain. 

Because the tip point information is not directly measured 
from the strain gauge, a model is needed to relate 
measurements to the tip deflection.  Additionally, due to 
wave propagation along the length of the beam, the tip point 
response occurs slightly after a control input [7].  Strain 
gauges located near the root will give a near-immediate 
response to control action, which when extrapolated to the 
tip point position, gives an incorrect result.  To achieve a 
more accurate measurement, sensor averaging and actuator 
averaging method has been proposed by Weng, Lu, and 
Trumper [6]. However, multiple sensors and actuators have 
to be used along the flexible beam and the advantages of the 
light weight will be compromised. 

A more direct way of measuring the tip point is to use a 
vision based system.  A camera mounted at the root of the 
beam measures the deflection from the centerline of the 
image [9].  The main drawback here is the mass of the 
camera is added to the structure that the motor must move, 
reducing the advantages of using flexible structures.  The 
camera may also be placed in a stationary position to track 
the absolute position of a target.  Stieber [8] used a single 
stationary camera to view the two dedicated visual targets; 
one was the payload target, and the other, the berth target.  
In this method, the only added mass to the system is the 
visual target.  The relative position between the two was 
computed to provide necessary information for guidance.  
As shown in [8], the target converges to a new set point of 
1 radian in about 2 seconds. 

Instead of using cameras, optical sensors can also be used 
[10] for the purpose of simplicity although they are very 
susceptible to noise. The controller and sensing method 
presented here aim to accomplish several goals.  First, after 
an initial calibration the camera can spot a point target and 
relay its position without the need for reference objects.  
Unlike [16], the delay in the camera signal is corrected 
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explicitly by a state estimator and predictor, which also 
eliminates overshoot caused by delayed measurements.  
Because the dynamics in the control method presented are 
separated into slow and fast modes, the slow control can be 
based on pre-existing controllers for rigid manipulators.  
Based upon an enhanced sliding mode controller, the control 
method not only tracks step inputs, but also time-varying 
inputs as well. 

The remainder of this paper is organized as follows. 
Section II describes how the two-timescale robust control is 
designed based on the separated flexible dynamics. The 
vision based tip point estimation is described in Section III, 
which includes the camera calibration, target point 
prediction, and Kalman filter based signal delay 
compensation. In Section IV, the experiment setup is listed 
and results are shown. We conclude the paper in Section V. 

II. MULTI-TIMESCALE ROBUST CONTROL DESIGN 

A multi-timescale robust controller is presented to track a 
commanded tip-point signal.  The dynamics are split into 
slow and fast subsystems; the slow system tracks the desired 
signal and the fast system minimizes vibrations in the beam. 

A. Flexible Beam Dynamics 

The plant is described by the differential equation 
 u= + +x x B ξA          (1) 

and the measurement is modeled as 
= +y Cx η           (2) 

where the states are 4 1[ , , , ]Tθ α θ α ×= ∈ ℜ x  (motor angle θ , 

beam deflection α , and their corresponding rates as shown 
in Fig. 1). The input u  is the voltage command to the motor.  
ξ  and η  are independent white noise, with covariance 

matrices of Q  and R  respectively.  4 4×∈ℜA , 4 1×∈ℜB , 

and 2 1×∈ℜC  are constants state, input and output matrices.  
Note that the given model accounts for only one flexible 
mode of the beam.  In actuality, the beam’s shape is a 
superposition of an infinite number of mode shapes; 
however, it was found in the experiments that only the first 
mode contributed significantly to the tested beam tip 
deflection. 
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where K  is the mass normalized stiffness and V  is the mass 

normalized Coriolis and centrifugal coefficient.  The 
subscripts specify how that term relates the rigid ( r ) and 
flexible ( f ) modes, respectively.  For example, the rfK  

term is the coefficient on the flexible mode, α , in the 

equation for the rigid mode θ .  The coefficients for the 
selected flexible beam model are shown in the following A  
and B  matrices as 
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There are two measurements used in this work: case (1) 

1y : motor encoder that measures θ  and 1 [0 0 1 0]=C ; 

case (2) 2y : a camera that measures γ  and 

2 [1 1 0 0]=C .  Therefore, the input matrix is defined as 

 1 2,
TT T =  C C C          (7) 

The covariance matrices associated with the measurements 

noise 1 2[ , ]Tη η=η  are 6
1 3.386 10R −= ×  and 

10
2 1.000 10R −= × . 

Since the camera measurement is delayed by τ  (roughly 
120 ms), the measurement 2y  is rewritten as 

 ( ) ( ) ( )2 2 2y t t η tτ τ= − + −C x     (8) 

B. State Estimator 

Two Kalman filters are used to obtain the optimal state 
estimates.  Here the method of estimating 1x̂  through the 

motor measurement is shown, whereas the method of 
finding 2x̂  using an augmented predictor for the delay 

compensation is described in Section III.D. Note that the 
subscripts “1” and “2” in the states represent the cases that 
the states are estimated based on measurements “1” and “2”, 
respectively. 

For the non-delayed measurement (based on the motor), 
the estimated state 1x̂  is found from the Kalman filter as 

 ( )1 1 1 1 1 1ˆ ˆ u y= − + +x A K C x B K     (9) 

where T 1
1 1 1 1

−=K P C R  and 1P  is the solution of the Riccati 

equation described as 

 T T 1
1 1 1 1 1 1 1 1R−= + + −P A P P A Q P C C P    (10) 

With an initial condition of  
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0
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P (11) 

Note here ( )1 0 = 0P works well but with a longer settling 

time if compared with the one provided in Eq. (11). 

C. Timescale Separation 

As one of the methods in controlling under-actuated 
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systems, the dynamics equation is decomposed into slow 
and fast modes based upon the singular perturbation theory 

[17].  A small scale factor is defined as 2 1
mkε −= , where 1

mk −  

is the smallest stiffness constant (for the selected testbed 
here, 0.0025mk = ), and a new fast state is introduced as 

2/ψ α ε=         (12) 

In addition, let 2
ff ffK Kε= . Substituting Eq. (12) into 

Eq. (1) (neglecting the noise terms here) yields 
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  (13) 

Letting 0ε = , the slow dynamics equation (denoted by an 
overbar) is given as 

 u= +x Ax B         (14) 

where [ , ]Tθ θ= 
x , 0 rB=   B , and 

 
0 1

rr rrK V

 
=  − − 

A       (15) 

For the fast subsystem, a timescale change of T t ε=  is 

used, and a new fast variable is defined as 
ψ ψ

εψ
− 

=  
 

φ         (16) 

which leads to the fast mode dynamics as 
 d dT u/ = +  A Bφ φ        (17) 

where [0, ]TfB=B , the quasi-static solution of the fast mode 

variable ψ  is calculated by 

( )1
ff f frK B u Vψ θ−= −       (18) 

and 

 
0 1

ff ffK Vε
 

=  
− −  


A       (19) 

D. Slow Model Controller 

A sliding mode controller (with boundary layer function 
augmented) is designed for the slow mode as 

 ( )1[( ) ( )] sat /r d rr du B E V E Sθ λ θ λ ρ β−= − + − −   (20) 

where S  is the sliding surface defined as 

S E Eλ= +         (21) 
and β  is the thickness of the boundary layer. The tracking 

error is given by dE θ θ= − . The switching gain is defined 

as ( )0sign Sρ η= , where ( )0 satS S Sβ β− , where “sat” 

denotes the saturation function. The variables 0.3β = , 

3.2λ = , and 0.4η =  are selected so that the stability 

requirement as shown in Appendix A is satisfied and a good 
performance is achieved.  The controller must be tuned 
carefully, to avoid chattering, which could excite high 
frequency oscillation.  If this occurs, timescale separation is 
no longer maintained between the slow and fast subsystems. 

E. Fast Mode Controller 

The fast subsystem is stabilized by the LQR control.  
Here, the variables in the slow mode are assumed to be 
constant.  The control is given by 

 u = −  Kφ          (22) 

where the gain matrix K  is chosen to minimize the cost  

 ( )TJ u Ru dtΤ= +   Qφ φ       (23) 

and after tuning, the following weighting matrices are 
chosen: ([1,0.1])= diagQ  and = 70,000R . 

F. Control Synthesis 

The actual control u  is calculated through the following 
steps.  First, u  and u  are combined with the consideration 
of the motor saturation ( 10 10V u V− ≤ ≤ ), 

( ) ( )' 10sat / 10 10sat / 10u u u= +      (24) 

Second, a low pass filter (recommendation from the motor 
manufacturer) is used to condition the signal so as the motor 
will not be damaged in case a high frequency command is 
coming in as 

( ) ( )'' [60 / ( 60)] 'u s s u s= +      (25) 

Finally, the null zone (dead zone) of the motor is considered 
and the actual control command is derived as 
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u u

u u

u u
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− < −
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 <

     (26) 

The motor has a natural dead zone, and it was found that 
the state estimator’s performance improved when the control 
input reflected this dead zone. 

III. VISION BASED TIP POINT ESTIMATION 

By using a camera as the tip point sensing device, a direct, 
noninvasive measurement can be made. However, a 
significant delay was found between the actual tip position 
and measured position, which needs to be compensated for. 
In this section the camera model used is first explained, 
followed by the adjustment for distortion in the camera lens 
and the description of the calibration process. After that how 
the tip point position is found is discussed. 

A. Camera Model 

Using the pinhole camera model [18], as illustrated in Fig. 

2, the point projection coordinates ,
T

u v=   m , measured in 

pixels, can be calculated given the position coordinates 

, ,
T

X Y Z=   M  as 

|
1 1

s
   

=      
   

m M
A R t       (27) 

where  
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Here xf  and yf  are the camera focal length parameters 

(intrinsic) and [ , ]x yc c  is the location of the principle point 

(intrinsic, the original point on the image frame), whereas 
the z  axis crosses the focal plane as shown in Fig. 2. The 
arbitrary scale factor s  normalizes the left hand side to the 
right hand side of the equation. For a given camera, these 
four intrinsic parameters only change when the focus is 

adjusted.  3 3×∈ℜR  is the rotation matrix (extrinsic) from the 

global coordinate to the camera coordinate and 3∈ℜt  is the 
translation bias (extrinsic), in which the rotation matrix R  is 
represented in the quaternion form as 

 ( ) T
3 3 ˆ ˆ ˆcos 1 cos sinθ θ θ×  = + − + 

R I r r r    (29) 

Here [ , , ]Tx y zr r r=r  (the principle axis of the rotation 

matrix), θ = r  (angle of the rotation about the principle 

axis), ˆ / θ=r r , and ̂r  is the corresponding skew symmetric 
matrix of the vector r̂ . 

 
Fig. 1 Flexible beam layout  

Fig. 2 Pinhole camera model 
To solve the distortion problem in the image, resulting 

from lens deformations, Eq. (27) is modified.  A set of 

intermediate coordinates [ , , ]T' x y z=m  is defined as 

 ' = +m RM t           (30) 
In the case where 0z ≠ , let ' /x x z=  and ' /y y z= . Now the 

distortion can be corrected as [7]  

'' ' 1 ' ' ' ' 2 ' ' ' ' 2 '

'' ' 1 ' ' ' ' 2 ' ' ' ' 2 '

2
2 2 2 2 2 2 2

1 2 1 2

2
2 2 2 2 2 2 2

1 2 2 1

x x k x y k x y p x y p x y x

y y k x y k x y p x y p x y y

         = + + + + + + + +              
         = + + + + + + + +              

(31) 

Here, 1k  and 2k  are radial distortion coefficients, and 1p  

and 2p  are tangential distortion coefficients, represented in 

vector form as 1 2 1 2[ , , , ]Tk k p p=k  (intrinsic parameters).  

After considering the distortion, the equation used to 
calculate the camera coordinates is modified as 

 
''

''
x x

y y

f x c

f y c

   
= +   
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m         (32) 

Note that when 1 2 1 2 0k k p p= = = = , '' 'x x=  and '' 'y y= , and 

the above equations reduce to Eq. (27), where s z= . 
The process of finding these intrinsic and extrinsic camera 

properties will be shown in the next section. 

B. Camera Calibration 

Functions from the Intel® OpenCV library are used to 
calculate the intrinsic coefficients of a camera.  The basic 
steps involved are shown below.  First, the program finds m  
internal corner points, as shown in Fig. 3 (in this case 

48m = ), on a checkerboard pattern in n  different 
orientations (e.g. 7n =  is used).  Without loss of generality, 
the checkerboard can be assumed to lie on the XY  plane of 
the global coordinate, and the squares are of unit length.  
Second, the coefficients are obtained through minimizing 
the residual in the following 2mn  equation 

 ( ), , , , , 1, , , 1, ,ij ij i i j i n j m− = = J = m m A k r t M   (33) 

m  is the calculated point projection coordinates, whereas 

ijm  is the measured coordinates.  The vectors ir  and it  are 

unique for each orientation of the checkerboard.  Because 
each jM  is known from the checkerboard pattern, and each 

ijm  is measured, the 2mn  scalar equations have 8 6n+  

unknowns (four parameters in A  and four distortion 
parameters.  In addition, each image contributes three 
parameters in r  and three parameters in t , which gives 
8 6n+ ) (notice 2 8 6mn n> +  needs to be satisfied).  The 
calibration program is based off Zhang’s work [18] and is a 
one-time calibration, as A  and k   are intrinsic properties of 
the camera. 

After finding the intrinsic properties of the camera, the 
extrinsic properties can be found.  Both the camera and 
global coordinate system are fixed (one-time calibration). 

The intrinsic camera properties below are obtained. 
Table 1 Intrinsic and Extrinsic Camera Properties 

Parameter Value Parameter Value 

xf  783.67 yf  785.51 

xc  340.66 yc  246.10 

1k  -0.027 2k  0.13 

1p  44.46 10−− ×  2p  33.65 10−− ×  
r  0.32084, 0.36200,1.5396

T−    

t  0.032443, 0.17023,0.65613
T− −    

 

C. Target Point Prediction 

To find the target point m  in the camera projected 
coordinate, each pixel’s red, green, and blue values are 
tested against a reference color range.  Coordinates of 
matching points are saved, and then averaged to produce the 
point’s projection coordinates.  The search range and found 
pixels are illustrated in Fig. 4.  The search range (the lighter 
dark area) is updated each frame; the smaller size it is, the 
less computational time it needs in the search algorithm.  
The global coordinate system is set such that the points on 
the beam are restricted to move in the XY  plane and can be 
calculated (according to Eq. 32) by 

 '' ( ) / ; '' ( ) /x x y yx u c f y v c f= − = −      (34) 
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To solve for 'x  and 'y , the Nelder-Mead simplex 

algorithm [19] is used to minimize the residual 2 2
e ex y+ , 

where ex  and ey  are calculated (based on Eq. 31) by 
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22 2 2 2
1 2

2 2 2
1 2

'' ' 1 ' ' ' '

2 ' ' ' ' 2 '
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 
= − + + + + 

  
 + + + +  

    (35) 

and  

( ) ( )
( )

22 2 2 2
1 2

2 2 2
2 1

'' ' 1 ' ' ' '

2 ' ' ' ' 2 '

ey y y k x y k x y

p x y p x y y

 
= − + + + + 

  
 + + + +  

  (36) 

Using Eq. (30), the tip point can be found as 

 ( )1−= −M R m' t       (37) 

Because 0Z = , z can be found by 

 1 10 0 1 / { 0 0 1 ' ' 1 }
T

z x y− −=           R t R    (38) 

Substituting this result for z  into Eq. (37) gives an 

explicit expression for [ , ]TX Y . 

 
Fig. 3 The check board used 
for intrinsic parameters’ 
calibration. 

 
Fig. 4 Target point will be 
searched in the lighter dark area. 

D. Kalman Filtering for Delay Compensation 

Although using the camera as a tip sensing device has the 
advantage of direct measurement, the measurement signal is 
delayed.  The total delay time, determined by comparing the 
camera measurement with the motor encoder and strain 
gauge measurements, is roughly 120 ms. The delay is due to 
the time used in the vision processing and USB signal 
transmission. 

Here a Kalman filter is proposed for the delay 
compensation and the detailed proof can be found in [20].  
The dynamics equation with time delay τ  is written as 

( ) ( ) ( ) ( )2 2 2 2 2 2ˆ ˆ ˆt t u t y C tτ τ τ τ − = − + − + Γ − − 
x Ax B xK (39) 

where the Kalman gain T 1
2 2 2 2R−=K P C , and 2P  is the 

solution of the Ricatti equation 

 1
2 2 2 2 2 2 2 0T T R−+ − + =AP P A P C C P Q     (40) 

Here 2R  is the covariance of 2η .  Because the measurement 

from the camera is not updated every time step of the 
simulation, Γ  is used as a Boolean variable so as to only 
apply correction to 2x̂  when needed. 

To account for the delay, a function g  is defined as 

 ( ) ( ) ( )t t u t= +g Ag B        (41) 
and the state estimate can now be found as 

 ( ) ( ) ( ) ( )2 2ˆ ˆt t e t tτ τ τ = + − − − 
Ax g x g    (42) 

In Eq. (42), ( )2ˆ t τ−x  and ( )tg  are defined above and 

( )t τ−g  is obtained by a time delay of τ  on g .  Here g  is 

initialized to [0 0 0 0]T, and the Boolean variable for 2x̂  is 

given by 

 
T T

2
0

e e e es sds
ττ τΣ = + A A A AP Q      (43) 

The derivation process is explained more clearly in [20]. 
The states estimated from the motor measurement 1x̂  and 

the vision measurements 2x̂  are then optimally combined in 

the sense of minimum mean–squared error (MMSE) as [20]  

 ( ) ( ), 1, , 2, , ,ˆ ˆ ˆ / , 1,..,4i i i i i i i i i i ix x p x p iσ σ= + + =    (44) 

where ,i jp  and ,i jσ  are the ith row and jth column element 

of 1P  and Σ  as given in Eqs. (10) and (43) respectively. 

IV. EXPERIMENT VALIDATION 

A. Experiments Setup 

The flexible beam used (manufactured by Quanser®), is 
part of a complete package.  The motor control and sensing 
devices are connected to the external power module.  The 
power module connects to a data acquisition device, which 
plugs into the PC via the PCI bus.  The camera is a standard 
web camera, capable of capturing 640x480 frames at 60 Hz 
and is connected to the PC via a USB port. 

B. Experiments Results and Discussion 

Two different commanded signals were used in the 
experiment:  a square wave, and a sawtooth wave (or 
repeating ramp).  The input signal is conditioned to limit the 
maximum velocity of 50rad s  and the maximum 

acceleration of 225rad s . The results are compared to two 

controllers: (1) The same control algorithms but the motor 
position sensors and strain gauge are used instead of the 
vision feedback, (2) an LQR controller supplied by the 
manufacturer of the flexible beam where the motor sensors 
and strain gauge are used.  The feedback gain used in the 

LQR control is 14.14, 62.81,2.289,0.4993
T= −  k . 

Figure 5 illustrates the response to a square wave.  It can 
clearly be seen that the state estimator compensates for the 
delay from the camera signal.  In Fig. 6, the control 
commands of the proposed method from both the slow and 
fast controllers are shown, along with the resulting 
combined signal. In Fig. 7 a comparison is made between 
the different control methods in response to a square wave.  
All three controllers have a similar initial response to the 
step input.  However, the proposed controller has the 
shortest settling time and smallest steady state error.  Despite 
the fact that position data from the camera is delayed, the 
controller outperforms the standard LQR controller, which 
uses instantaneous position data from the motor and strain 
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gauge.  In addition, the control command (Fig. 8) is much 
smoother (a big advantage), and drops off to nearly 0V  

after 1 second. 
The comparison of the three control methods in response 

to the sawtooth wave is shown in Figs. 9 and 10.  The SMC 
with strain gauge feedback never settles down on the 
command, though it does hover around it (Fig. 9).  The LQR 
controller creates a smooth curve, but lags behind the 
command and has a big steady state error.  As shown in Fig. 
10, the control signal of the proposed method is less 
oscillating than the other two methods. 
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Fig. 5 Tip point estimation 
(square wave) 
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Fig. 6 Control commands for the 

slow and fast modes (vision 
based - square wave) 
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Fig. 7 Tip point tracking 
comparison (square wave) 
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Fig. 8 Control commands 
comparison (square wave) 
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Fig. 9 Tip point tracking 
comparison (sawtooth wave) 
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Fig. 10 Control commands 
comparison (sawtooth wave) 

V. CONCLUSION 

Using flexible structures offers many advantages, 
stemming from their reduced weight.  However, large 
settling times and tip point vibration may decrease its 
productivity. In this paper, a vision based two-timescale 
controller was developed to track a desired tip position 
while mitigate oscillations in the single-link flexible beam. 
The controller demonstrated through experiments is proved 
to exceed existing control schemes.  In the case of a step 
input, it quickly reached its target with minimal oscillations 
and steady state error.  In the case of the ramp input, it is 
able to track the moving signal with no oscillations. 
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