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Abstract—Control of a robot interacting with a soft compli-
ant environment is a practically important problem, with po-
tential applications in areas involving human robot interaction
(HRI) like rehabilitation, search and rescue, assistive robotics
and haptics. The objective, in this paper, is to control a robot
as it transitions from a non-contact to a contact state with
an unactuated viscoelastic mass-spring system such that the
mass-spring is regulated to a desired final position. Because of
its simplicity and better physical consistency in explaining the
behavior of viscoelastic materials, a Hunt-Crossley nonlinear
model is used to represent the viscoelastic contact dynamics.
An adaptive Lyapunov based controller is proposed, and shown
to guarantee uniformly ultimately bounded (UUB) regulation of
the system despite parametric uncertainty throughout the robot
and mass-spring systems. The proposed controller only depends
on the position and velocity terms, and hence, obviates the need
for measuring the impact force and acceleration. Further, the
resulting controller is continuous, and the same controller can
be used for both non-contact and contact states of the robot
with its environment.

I. INTRODUCTION

Applications such as robot interaction with human tis-
sue in clinical procedures and rehabilitative tasks [1]–[4],
cell manipulation [5]–[7], finger manipulation [8]–[11], and
etc. [12]–[15] provide practical motivation to study robotic
interaction with viscoelastic materials. Motivation is also
provided by the complexity of modeling the stress and strain
relationships at the contact interface and also by the need to
compensate for these effects in a closed-loop controller.
In the last two decades, research efforts have focused on

modeling and analyzing the contact with stiff and compliant
surfaces. The first contact model, proposed by Hertz [16]
over a century ago, used an elastic spring model to relate
the impact force to the local indentation. However, the
Hertzian contact model does not account for the energy
loss effects at contact, and hence, is not suitable for robotic
contact with soft environments. Thereafter, a number of
contact models were developed which included a damping
term to account for energy dissipation at impact such as
the linear Kelvin-Voigt spring-damper model [17] and the
impact-pair model in [18]. Hunt and Crossley [19] showed
the inadequacy of the linear damping models to represent the
physical nature of the energy transfer process. They proposed
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a compliant contact model with nonlinear damping, which
eliminated the discontinuous impact forces at initial contact
and separation. The literature survey in [20] concluded that a
contact model with nonlinear damping (e.g., Hunt-Crossley)
was the most suitable for representing the real behavior of the
system during impact. The Hunt-Crossley model has found
acceptance in the scientific community and is now being
used by a number of researchers [20]- [23]. Marhefka and
Orin [21] used the Hunt-Crossley model for the simulation
of robotic systems and considered a foot contact problem in
a walking machine to demonstrate the utility of the model for
tasks involving non-contact to contact state transitions. Re-
cently, the Hunt-Crossley model was used in [23] an online
estimation algorithm to estimate the mechanical impedance
parameters during contact. The researchers in [23] used a
soft silicone gel that exhibited substantial energy dissipation
to experimentally prove their result.
In addition to modeling the contact interaction between the

robot and its environment, another challenge is to effectively
compensate for the non-contact to contact transition with
a closed-loop robot controller. Control in the presence of
a non-contact to contact transition is challenging because
the impact forces can be destabilizing, especially for high-
speed transitions, and due to the inevitable uncertainty in the
interaction. Based on these motivating factors, a variety of
techniques have been developed to control the robot motion
in the presence of a contact transition [24]- [38].
In this paper, Lyapunov-based adaptive backstepping

methods are used to control a robot from a non-contact
initial state to a final contact state that requires the robot
to collide with a viscoelastic object and regulate it to a
desired position. A contribution of this work with respect
to previous literature is that a single continuous controller
is used for the robot in non-contact, during the transition
from non-contact to contact, and then after contact when
the two systems are coupled. Another advantage is that only
position and velocity measurements are required and no
acceleration or force measurements are used in the design of
the controller. Moreover, the regulation result is achieved de-
spite the fact that the parametrically uncertain robot collides
with a parametrically uncertain Hunt-Crossley viscoelastic
material. The Hunt-Crossley model used in this paper differs
from the linear elastic models used in our previous work
in [35]–[37] where the impact was considered with a stiff
environment with no damping at contact. The use of stiffness
and damping terms in the model is motivated by the fact
that the contact is assumed to exhibit energy dissipation
at impact. The differences in the contact models result in
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Fig. 1. Robot contact with a viscoelastic mass.

differences in the control development/stability analysis with
regard to [35]–[37]. Specifically, hyperbolic trigonometric
terms can be eliminated from the control design and stability
analysis. In addition, the complicated two stage analysis
required to prove the results in [35]–[37] has been elimi-
nated. The control structure in this paper includes a desired
robot velocity as a virtual control input to the unactuated
viscoelastic mass-spring system, coupled with a control force
input to ensure the actual robot position tracks the desired
position. Adaptive update laws are designed to compensate
for parametric uncertainty in the robot and the Hunt-Crossley
model (i.e. stiffness and damping coefficients).

II. DYNAMIC MODEL
The development in this paper is motivated by the aca-

demic problem illustrated in Fig. 1. While the subsequent
control design and stability analysis is developed for a
two degree-of-freedom (DOF) system in a planar Cartesian-
space, the underlying mathematics can be extended to higher
order systems without additional constraints. The dynamic
model for a rigid two-link revolute robot in contact with a
compliant viscoelastic environment is given by

M (xr) ẍr + C (xr, ẋr) ẋr + h(xr) +

∙
Fm
0

¸
= F (1)

mẍm + ks(xm − x0) = Fm. (2)

In (1), xr(t), ẋr(t), ẍr(t) ∈ R2 represent the planar
Cartesian position, velocity, and acceleration of the robot
links respectively, M(xr) ∈ R2×2 represents the uncertain
inertia matrix, C(xr, ẋr) ∈ R2×2 represents the uncertain
Centripetal-Coriolis effects, h(xr) ∈ R2 represents uncertain
conservative forces (e.g., gravity), Fm(xr, ẋr,xm, ẋm) ∈ R
denotes the interaction force between the robot and the mass
during impact, and F (t) ∈ R2 represents the force control
inputs. In (2), xm(t), ẍm(t) ∈ R represent the displacement
and acceleration of the unknown viscoelastic mass m ∈ R,
x0 ∈ R represents the initial undisturbed position of the
mass, and ks ∈ R represents the unknown stiffness of the
spring connected to the mass. When the horizontal position
of the robot, denoted by xr1(t) ∈ R, is greater than or

equal to the position of the viscoelastic material, xm (i.e.,
when xr1(t) ≥ xm(t), see Fig. 1) contact occurs, and the
interaction force Fm(xr1, ẋr1,xm, ẋm) is modeled as

Fm = ΛFv, (3)

where Λ(xr1, xm) ∈ R, a function which switches at impact,
is defined as

Λ ,
½
0 xr1 < xm
1 xr1 ≥ xm,

(4)

and Fv(xr1, ẋr1,xm, ẋm) ∈ R denotes the Hunt-Crossley
force defined as [19]

Fv , λδn + bδ̇δn. (5)

In (5), λ ∈ R is the contact stiffness of the viscoelastic mass,
b ∈ R is the impact damping coefficient, δ(xr, xm) ∈ R
denotes the local deformation of the material and is defined
as

δ , xr1 − xm. (6)

Also, in (5), δ̇(t) is the relative velocity of the contacting
bodies, and n is the Hertzian compliance coefficient which
depends on the surface geometry of contact. The model in
(3) is a continuous contact force-based model wherein the
contact forces increase from zero upon impact and return
to zero upon separation. Also, the energy dissipation during
impact is a function of the damping constant which can be
related to the impact velocity and the coefficient of restitution
[19], thus making the model more consistent with the physics
of contact. The contact is considered to be direct-central and
quasi-static (i.e., all the stresses are transmitted at the time
of contact and sliding and friction effects during contact are
negligible) where plastic deformation effects are assumed to
be negligible.
The dynamic model in (1)-(5) exhibits the following

properties that will be utilized in the subsequent analysis.
Property 1: The inertia matrix M(xr) is symmetric,

positive definite, and can be lower and upper bounded as

a1||ξ||2 ≤ ξTMξ ≤ a2||ξ||2, ∀ξ ∈ R2 (7)

where a1, a2 ∈ R are positive constants and k·k denotes the
standard Euclidean norm.
Property 2: The following skew-symmetric relationship

is satisfied

ξT (
1

2
Ṁ(xr)− C(xr, ẋr))ξ = 0 ∀ξ ∈ R2. (8)

Property 3: The robot dynamics in (1) can be linearly
parameterized as

Y (xr, xm, ẋr, ẋm, ẍr)θ = M (xr) ẍr + C (xr, ẋr) ẋr

+h(xr) +

∙
Fm
0

¸
,

where θ ∈ Rp contains the constant unknown system
parameters, and Y (xr, xm, ẋr, ẋm, ẍr) ∈ R2×p denotes
the known regression matrix.
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Property 4: The expression for the interaction force
Fm(xr, ẋr, xm, ẋm) in (3) can be written, using (4) and
(6), as

Fm =

½
0 δ < 0

λδn + bδ̇δn δ ≥ 0. (9)

Based on the fact that

lim
δ→0−

Fm = 0 lim
δ→0+

Fm = 0, (10)

the interaction force Fm is continuous.
Assumption 1: The robot and mass spring positions,

xr(t) and xm(t), are measurable, and the corresponding
velocities, ẋr(t) and ẋm(t), are determined numerically
using the standard backwards difference algorithm. Further,
it is assumed that the robot trajectory xr(t) is bounded due
to the geometry of the robot.
Assumption 2: The Hertzian compliance coefficient, n, in

(5), is assumed to be known.
Assumption 3: The local deformation of the viscoelastic

material during contact, δ(xr, xm), defined in (6), is assumed
to be upper bounded, and hence δn can be upper bounded
as

δn < μ, (11)

where μ ∈ R is a positive bounding constant.
Assumption 4: We assume that the mass and the spring

constant of the mass-spring system can be lower and upper
bounded as

m < m < m ks < ks < ks (12)

where m, m, ks, ks ∈ R denote known positive bounding
constants. The damping constant b, in (5), is assumed to be
upper bounded as

b < b (13)

where b ∈ R denotes a known positive bounding constant.

III. CONTROL DEVELOPMENT

In the subsequent control development, the desired robot
velocity is designed as a virtual control input to the unac-
tuated viscoelastic mass. The desired velocity is designed to
ensure that the robot impacts and then regulates the mass
to a desired position. Since it is not possible to directly
control the mass trajectory, backstepping methods are then
used to develop a control force input to ensure that the
robot tracks the desired trajectory despite the non-contact to
contact transition and parametric uncertainties in the robot
and the viscoelastic mass-spring system. The viscoelastic
model requires that the backstepping error be developed in
terms of the desired robot velocity. A challenge to backstep
on the desired robot velocity is that the desired velocity
is premultiplied by Λ(xr1, xm), which is zero when the
robot and material are not in contact. Hence, a strategic
combination of nonlinear damping and adaptive backstepping
is used in the subsequent development.

A. Control Objective

The control objective is to regulate the position of a vis-
coelastic mass attached to a spring via a two-link planar robot
that transitions from non-contact to contact with the mass-
spring assembly through an impact collision. To quantify the
control objective, the following errors are defined

er , xrd − xr em , xmd − xm, (14)

where er(t) , [er1(t), er2(t)]T ∈ R2 and em(t) ∈ R denote
the errors for the end-point of the second link of the robot
and mass-spring system (MSR) (see Fig. 1), respectively. In
(14), xmd ∈ R denotes the constant known desired position
of the mass, and xrd(t) , [xrd1(t), xrd2]T ∈ R2 denotes the
desired position of the end-point of the second link of the
robot. To facilitate the subsequent control design and stability
analysis, filtered tracking errors for the robot and the mass-
spring, denoted by rr(t) ∈ R2 and rm(t) ∈ R respectively,
are defined as

rr , ėr + αer (15)
rm , ėm + γ1em + γ2ef ,

where α ∈ R2×2 is a positive, diagonal, constant gain matrix,
γ1, γ2 ∈ R are positive constant gains and ef (t) ∈ R is an
auxiliary filter variable designed as.

ėf = −γ3ef + γ2em − k1rm, (16)

where k1, γ3 ∈ R are positive constant control gains.

B. Closed-Loop Error System

The open-loop error system for the mass can be obtained
by multiplying (15) by m and then taking its time derivative
as

mṙm = Λδnbθm + ksd− Λbδ̇δn + χ−mγ21em (17)
−mγ2k1rm,

where (2), (3), (5), (14), (15), and (16) were used, d =
xmd − x0 ∈ R is a positive constant denoting the desired
displacement of the mass-spring system, and θm ∈ R is
defined as

θm , −
λ

b
. (18)

It can be seen from (18), that θm contains constant unknown
system parameters, λ and b. In (17), χ (em, rm, ef , t) ∈
R is an auxiliary term defined as

χ , mγ1rm+(mγ22−ks)em− (mγ1γ2+mγ2γ3)ef . (19)

The auxiliary expression χ (em, rm, ef , t) defined in (19)
can be upper bounded as

χ ≤ ζ1 kzk (20)

where ζ1 ∈ R is a known positive constant and z(t) ∈ R3
is defined as

z ,
£
rm em ef

¤
. (21)
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To facilitate the subsequent backstepping-based design, the
desired velocity of the robot is designed as a virtual control
input to the unactuated mass-spring system as

ẋrd1 = θ̂m + ẋm (22)
ẋrd2 = 0; xrd2(0) = ε.

In (22), θ̂m(t) ∈ R is a parameter estimate vector for θm,
ε ∈ R is an appropriate positive constant selected to ensure
that the robot impacts the mass-spring system. The parameter

estimate
·
θ̂m(t) is generated according to the adaptive update

law ·
θ̂m = proj(ΛδnΓmrm), (23)

where Γm ∈ R is a positive, constant, adaptation gain, and
proj(·) denotes a sufficiently smooth projection algorithm
[39] utilized to guarantee that θ̂m(t) can be bounded as

θm ≤ θ̂m ≤ θ̄m, (24)

where θm, θ̄m ∈ R denote known, positive, constant lower
and upper bounds for θ̂m(t), respectively. After adding and
subtracting Λbδnẋrd1(t) defined in (22) from the open-loop
expression in (17), the closed-loop error system for rm(t)
can be obtained as

mṙm = Λδnbθ̃m + ksd+ Λbδ
nėr1 + χ−mγ21em(25)

−mγ2k1rm,

where θ̃m(t) ∈ R denotes a parameter estimation error
defined as

θ̃m , θm − θ̂m. (26)

In (25), k1 ∈ R is a positive constant control gain defined as

k1 , kn1
4γ2

+
1

γ2
+

1

4mγ2
(ζ21kn2 + kn3) (27)

+
1

4mγ2
(b̄2μ2kn4 + b̄2μ2kn5),

where kn1, kn2, kn3, kn4, kn5 ∈ R are positive constant
nonlinear damping gains and μ, m, b̄, γ2 and ζ1 have already
been defined in (11)-(13), (15) and (20) respectively. The
open-loop robot error system can be obtained by taking the
time derivative of rr(t), premultiplying by the robot inertia
matrix M , and utilizing (1), (14), and (15) as

Mṙr = Yrθr − Crr − F, (28)

where Yr(xr, ẋr, xm, ẋm, t)θr ∈ R2 is defined as

Yrθr , Mẍrd + αMėr + h+ Cẋrd + αCxrd (29)

+

∙
Λ(λδn + bδ̇δn)

0

¸
− αCxr,

where Yr(xr, ẋr, xm, ẋm, t) ∈ R2×P denotes a known
regression matrix of measurable quantities, and θr
∈ RPdenotes an unknown constant parameter vector. The
appendix provides an expression for ẍrd1(t) to illustrate that
the second derivative of the desired trajectory is continuous

and does not require acceleration measurements. Based on
(28) and the subsequent stability analysis, the robot force
control input is designed as

F = Yrθ̂r + er + k2rr, (30)

where k2 ∈ R is a positive constant control gain, and θ̂r(t) ∈
RP is an estimate for θr generated by the following adaptive
update law:

·
θ̂r = proj(ΓrY

T
r rr) (31)

In (31), Γr ∈ RP×P is a positive definite, constant, diagonal,
adaptation gain matrix, and proj(·) denotes a projection
algorithm utilized to guarantee that the i − th element of
θ̂r(t) can be bounded as

θri ≤ θ̂ri ≤ θ̄ri, (32)

where θri, θ̄ri ∈ R denote known, constant lower and upper
bounds for each element of θr(t), respectively. The closed-
loop error system for rr(t) can be obtained after substituting
(30) into (28) as

Mṙr = Yrθ̃r − k2rr − Crr − er, (33)

where the parameter estimation error θ̃r(t) ∈ RP is defined
as

θ̃r , θr − θ̂r. (34)

IV. STABILITY ANALYSIS
Theorem: The controller given by (22), (23), (30), and

(31) ensures uniformly ultimately bounded regulation of the
MSR system in the sense that

|em(t)| , ker(t)k→ ε0 exp(−ε1t) + ε2 (35)

provided kn3 is chosen sufficiently large and the control
gains kn1, kn2, kn4, kn5, γ1 and α are selected according
to the sufficient gain conditions

kn1 >
γ21k

2
1

γ3
, kn4 >

1

k2
, kn5 > α, (36)

kn2 >
1

mmin
n
γ31,

³
γ3γ

2
1 −

γ41k
2
1

kn1

´
, 1
o ,

where ε0, ε1, ε2 ∈ R denote positive constants; kn1, kn2,
kn4 and kn5 are defined in (27); α and γ1 are defined in
(15) and k2 is defined in (30).
Proof: Let V (t) ∈ R denote a non-negative, radially

unbounded function (i.e., a Lyapunov function candidate)
defined as

V =
1

2
rTr Mrr +

1

2
eTr er +

1

2
θ̃
T

r Γ
−1
r θ̃r (37)

+
1

2
bΓ−1m θ̃

2

m +
1

2
mr2m

+
1

2
γ21me2f +

1

2
γ21me2m.

and it follows directly from the bounds given in (7), (24)
and (32), that V (rr, er, em, ef, rm, θ̃r, θ̃m, t) can be upper
and lower bounded as
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λ1 kyk2 ≤ V (t) ≤ λ2 kyk2 + η, (38)

where λ1, λ2, η ∈ R are known positive bounding constants,
and y(t) ∈ R7 is defined as

y =
£
rTr eTr zT

¤T
. (39)

After using (8), (15), (16), (23), (25), (31), and (33), the time
derivative of (37) can be determined as

V̇ = rTr (Yr θ̃r − k2rr − Crr − er) +
1

2
rTr Ṁrr (40)

+eTr (rr − αer)− θ̃
T

r Y
T
r rr − Λδnbθ̃mrm

+rm(Λδ
nbθ̃m + ksd+ Λδ

nbėr1)

+rm(χ−mγ21em −mγ2k1rm)

+γ21mef (−γ3ef + γ2em − k1rm)

+γ21mem(rm − γ1em − γ2ef ).

Using (11)-(13), (12), an upper bound can be developed for
V̇ in (40) as

V̇ ≤ −k2rTr rr − αeTr er − γ31me2m − γ3γ
2
1me2f (41)

−mγ2k1r
2
m + ζ1 |rm| kzk+ γ21mk1 |rm| |ef |

+k̄sd |rm|+ Λμb̄ krrk |rm|+ Λμb̄α kerk |rm| .

Using (27), the expression in (41) can be rewritten as

V̇ ≤ −k2 krrk2 − α kerk2 (42)
−γ31me2m − γ3γ

2
1me2f −mr2m

−
∙
1

4
mkn1r

2
m − γ21mk1 |rm| |ef |

¸
−
∙
1

4
ζ21kn2r

2
m − ζ1 |rm| kzk

¸
−
∙
1

4
kn3r

2
m − k̄sd |rm|

¸
−
∙
1

4
μ2b̄2kn4r

2
m − Λμb̄ krrk |rm|

¸
−
∙
1

4
μ2b̄2kn5r

2
m − Λμb̄α kerk |rm|

¸
.

Completing the squares on the bracketed terms in (42) and
using the gain condition on kn1 in (36), the expression can
be reduced to

V̇ ≤ −(k2 −
Λ

kn4
) krrk2 − (α−

Λα2

kn5
) kerk2 (43)

−

⎡⎢⎢⎣ mmin

⎧⎨⎩
γ31,

γ3γ
2
1 −

γ41k
2
1

kn1
,

1

⎫⎬⎭
− 1

kn2

⎤⎥⎥⎦ kzk2

+
k̄2sd

2

kn3
.

The expression in (43) can be further upper bounded as

V̇ ≤ −β1 kyk
2 +

k̄2sd
2

kn3
, (44)

where β1 ∈ R, is defined as

β1 , min

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(k2 − Λ

kn4
), (α− Λα2kn5

),⎛⎝mmin

⎧⎨⎩
γ31,

γ3γ
2
1 −

γ41k
2
1

kn1
,

1

⎫⎬⎭− 1
kn2

⎞⎠
⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,

Since the inequality in (38) can be utilized to lower bound
kyk2 as

kyk2 ≥ V (t)

λ2
− η

λ2
, (45)

the inequality in (44) can be expressed as

V̇ (t) ≤ −β1
λ2

V (t) + εx, (46)

where εx ∈ R is a positive constant defined as

εx ,
k̄2sd

2

kn3
+

β1η

λ2
(47)

The linear differential inequality in (46) can be solved as

V (t) ≤ V (0)e(−
β1
λ2
)t + εx

λ2
β1

h
1− e(−

β1
λ2
)t
i
. (48)

The inequalities in (38) can now be used along with (47)
and (48) to conclude that

kyk2 ≤
"
λ2 ky(0)k2 + η

λ1

#
e(−

β1
λ2
)t +

µ
k̄2sd

2λ2
kn3λ1β1

+
η

λ1

¶
.

(49)
Provided the gain conditions in (36) are satisfied and kn3

is chosen sufficiently large, the definitions in (21) and (39),
and the expressions in (48) and (49) can be used to prove
that rr(t), er(t), rm(t), em(t), ef (t) ∈ L∞. The parameter
error estimates θ̃r(t), θ̃m(t) ∈ L∞, from (24), (26), (32)
and (34). Since em(t) ∈ L∞, it can be shown from (14),
that xm(t) ∈ L∞. Since xr(t) ∈ L∞ from assumption
1 and er(t) ∈ L∞, it can be shown that xrd1(t) ∈ L∞.
Since rm(t), em(t), ef (t) ∈ L∞, it can be shown from
(15) that ėm(t) ∈ L∞, and hence ẋm(t) ∈ L∞ from
(14). Due to the fact that θ̂m(t), ẋm(t) ∈ L∞, it can be
shown from (22) that ẋrd1(t) ∈ L∞. Since rr(t) ∈ L∞,
linear analysis methods can be used to prove that ėr(t) ∈
L∞. Because ėr(t), ẋrd1(t) ∈ L∞, (14) can be used to
show that ẋr1(t) ∈ L∞. Since xr1(t), xm(t), ẋr1(t), ẋm(t),
rm(t) ∈ L∞, it can be shown that ẍrd1(t) ∈ L∞. It can be
further seen from (22) that xrd2, ẋrd2, ẍrd2 ∈ L∞.Since
xr(t), xm(t), ẋr(t), ẋm(t), xrd(t), ẋrd(t), ẍrd(t), ėr(t) ∈
L∞, the expression in (29) can be used to prove that that
Yr(t) ∈ L∞. Due to the fact the Yr, θ̂r, er, rr ∈ L∞, the
control force F ∈ L∞. The result in (35) can be directly
obtained from (49).
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V. CONCLUSION
In this paper, an adaptive continuous Lyapunov-based

controller is proven to control a parametrically uncertain
robot moving in free-space through a collision with an uncer-
tain Hunt-Crossley viscoelastic material so that the coupled
system converges to a desired setpoint. This result extends
our previous work in this area to include a more general
contact model, which not only accounts for stiffness but also
damping at contact. A restriction of the current work is that
the Hertzian compliance coefficient is required to be known.
A contribution of the work is that a continuous controller
is used to obtain a uniformly ultimately bounded regulation
result, and the developed controller does not require force
or acceleration measurements. An experimental testbed is
currently being developed with a two link direct drive robot
that will collide with a human tissue phantom to test the
performance of the developed controller.
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