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Abstract— An architecture for the decentralized prognosis
of discrete event systems (DES) was recently proposed in [1],
where several local prognosers cooperate for predicting failures
in a system modeled as a DES. In this paper, we first formulate
the proposition of [1] as a disjunctive architecture, and we
develop a conjunctive architecture which is dual and comple-
mentary to the disjunctive one. Then, we develop a so-called
multi-decision prognosis which generalizes the conjunctive and
disjunctive prognosis architectures. The basic principle of
multi-decision prognosis consists in using several decentralized
prognosis architectures working in parallel. We finally show
that our work can be easily extended for predicting a failure
at least k steps before its occurrence, for a given k≥1.

I. INTRODUCTION

Prognosis of a discrete event system (DES) aims at pre-

dicting failure events of a DES before their occurrences.

Note the contrast with diagnosis, which aims at detecting

failures after their occurrence [2], [3]. Failure prognosis is

an active area of research (e.g., [4] and its bibliography).

In this study, we consider that a failure prognosis is issued

when a failure will certainly occur, contrary to the statistical

approach where a failure prognosis is issued when a failure

will very probably occur [5].

The authors of [6] have proposed a prognosis framework in

the case of a partially-observed DES. A so-called prognoser

issues a prognosis on whether a failure will occur, based

on the partial observation it has of the plant. The notion

of predictability (we will say prognosability) was defined

formally for characterizing the class of languages for which :

1) every failure is prognosed before its occurrence, and

2) after a failure has been prognosed, it will certainly occur.

In [7], an off-line polynomial-time and an on-line algorithms

were proposed for checking prognosability.

More recently, the authors of [1] proposed a framework for

the decentralized prognosis, where several local prognosers

cooperate in their tasks of failure prediction. It is assumed

that the prognosers do not communicate directly among

each other. Based on the partial observation it has of the

plant, a local prognoser issues a prognosis “1” when it is

certain that a failure will occur. Otherwise, a prognosis “0”

is issued. Because of their limited observation capability,

the prognosers cooperate by fusing their local prognoses, in

order to synthesize a global prognosis. In [1], the notion of

coprognosability is defined for generalizing prognosability to

the decentralized case.

This work is partially supported by a grant from NSERC.

The prognosis method of [1] is the starting point of our

study. Being inspired by methods developed in decentralized

supervisory control [8], [9], [10], [11], [12] and decentralized

diagnosis [2], [13], [14], [15], our essential contribution

consists of the following points :

1) We formulate the proposition of [1] as a disjunctive

architecture. We define the notion of ∨-COPROG,

which is equivalent to the coprognosability of [1].

2) We develop a conjunctive prognosis architecture which

is complementary to the disjunctive one. We define

the notion of ∧-COPROG, which characterizes the

class of languages prognosable with the conjunctive

architecture. We also propose the idea of a gene-

ral architecture which combines the disjunctive and

conjunctive architectures.

3) We develop a multi-decision prognosis which gene-

ralizes the conjunctive and disjunctive architectures.

The basic principle of multi-decision consists in using

several decentralized architectures working in parallel.

We define the notions of ∨-∧m-COPROG and ∧-

∨m-COPROG which generalize ∨-COPROG and ∧-

COPROG, respectively. Note that the multi-decision

approach has also been developed in supervisory

control and diagnosis of DES [11], [12], [15].

4) In the above points 1 to 3, a failure could be prognosed

just before its occurrence. We will show that our work

can be easily extended for predicting a failure at least

k steps before its occurrence, for a given k ≥ 1.

This paper is structured as follows. In Section II, we

present some preliminaries and notations. Section III formu-

lates the prognosis method of [1] as a disjunctive architec-

ture. In Section IV, we develop a conjunctive prognosis ar-

chitecture and propose a general architecture which combines

and generalizes the disjunctive and conjunctive architectures.

Sections V and VI use a multi-decision approach for develo-

ping Conj-Disj and Disj-Conj prognosis architectures, which

generalize the disjunctive and conjunctive architectures, res-

pectively. In Section VII, we discuss the idea of a general

multi-decision architecture which combines and generalizes

the Conj-Disj and Disj-Conj architectures. We also explain

how all our work can be easily extended for predicting a

failure at least k steps before its occurrence, for a given

k ≥ 1. Section VIII recapitulates the contributions of the

paper and proposes some relevant future work.
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II. PRELIMINARIES AND NOTATIONS

We denote by Σ the finite set of events (also called

alphabet) that can be executed by the plant (i.e., the DES

to be prognosed). Σ∗ is the set of all finite sequences of

events of Σ, including the empty sequence ε. For any event

sequence λ ∈ Σ∗, |λ| denotes the length of λ. Σ≥k (resp.

Σ≤k) is the subset of Σ∗ consisting of the sequences whose

length is greater (resp. smaller) than or equal to k. For any

event sequences λ, µ ∈ Σ∗, µ ≤ λ means that µ is a prefix

of λ, i.e., ∃ν ∈ Σ∗ s.t. λ = µν. The set of all prefixes of

a language K is denoted K, and K is said prefix-closed if

K = K . Let N
+ denote the set of strictly positive integers.

The plant is assumed modeled by a prefix-closed language

L, which consists of a failure part and a non-failure (or

healthy) part, modeled by F and H, respectively. We have

L = H∪F and H∩F = ∅. Typically, F and H are related

to an unobservable failure event f ∈ Σ as follows : F (resp.

H) consists of the sequences of L containing (resp. without)

f . In this case, H is prefix-closed. Without loss of generality,

we study uniquely the case of a single failure. In the presence

of several failures, the same study is done for each failure.

This article has used [1] as starting point, where the

prognosis is based on the following two notions.

Definition 2.1: (Boundary, Non-Indicator) Given two

prefix-closed languages L and H such that H ⊆ L, we define

the following sequences and languages :

– A boundary sequence of H w.r.t L is a sequence of H
for which a failure in a next step is possible. The set

of boundary sequences of H w.r.t L is formally defined

by : ∂ = {λ ∈ H | {λ}Σ ∩ F 6= ∅}.

– A non-indicator sequence of H w.r.t L is a sequence of

H for which a failure in future is not guaranteed. The

set of non-indicator sequences of H w.r.t L is defined

by : Υ = {λ ∈ H | ∀k ∈ N
+ : {λ}Σ≥k ∩H 6= ∅}.

For simplicity of notation, L and H are implicit in ∂ and Υ.

As indicated in [1], we consider the case where the

objective of a prognosis system is to observe the plant and

respect the following two properties, where X(λ) denotes

the global prognosis taken after the execution of a sequence

λ ∈ H, it takes the value “1” when a fault is predicted :

Property 2.1: Each failure is prognosed before its occur-

rence. We propose the equivalent expression : a failure is

prognosed if its occurrence is possible in the next step, i.e. :

∀λ ∈ ∂ : X(λ) = 1 (1)

Property 2.2: A failure prognosis guarantees that a failure

will occur in future. We propose the equivalent expression :

a failure is not prognosed if its occurrence in future is not

guaranteed, i.e. :
∀λ ∈ Υ : X(λ) = 0 (2)

Respecting Equations (1,2) w.r.t (∂, Υ) will be the objec-

tive of all the proposed decentralized architectures.

In decentralized prognosis, n local prognosers

(Prog i)1≤i≤n observe the plant and cooperate with

each other in order to synthesize a correct prognosis. Each

Prog i has a partial view of the plant, that is, its set of

observable events is Σo,i ⊂ Σ. Let Σo =
⋃

1≤i≤n Σo,i and

Σuo = Σ \ Σo. Therefore, an event of Σo is observable by

at least one prognoser, and no prognoser can observe an

event of Σuo . We denote by Pi the natural projection that

hides the events of Σ \ Σo,i from any sequence λ ∈ Σ∗.

III. DISJUNCTIVE PROGNOSIS ARCHITECTURE OF [1]

We consider two prefix-closed languages L and H mode-

ling the plant and its healthy part, respectively. The failure

part is deduced by F = L \ H.

A. Disjunctive Prognosers

In decentralized prognosis, n local prognosers

(Prog i)1≤i≤n observe the plant and cooperate with

each other in order to predict a failure before its occurrence.

After the execution of a sequence λ ∈ H, each Progi

makes a local prognosis Xi(Pi(λ)) depending on what it

has observed, i.e., Pi(λ). Then, the global prognosis is

synthesized from the local prognoses. A global prognosis

“1” means that a failure is prognosed. For the purpose of

our study, let us present the prognosis method of [1] as a

disjunctive architecture.

Each local prognoser Prog i (i = 1, · · · , n) makes a local

prognosis Xi(Pi(λ)) ∈ {0, 1}. Then, the global prognosis

X(λ) is obtained by fusing Xi(Pi(λ)) (i = 1, · · · , n)

disjunctively, that is :

X(λ) =
∨

i=1,···,n

Xi(Pi(λ)) (3)

Definition 3.1: (Disjunctive prognoser, ∨-prognoser) A

set of local prognosers satisfying Equation 3 is called dis-

junctive prognoser or more shortly ∨-prognoser.

A particular rule for computing the local decisions

Xi(Pi(λ)) in the disjunctive architecture, is to issue a local

prognosis “1” if and only if the local prognoser is certain

that a failure in future is guaranteed.

∀i ∈ {1, · · · , n} :

Xi(Pi(λ)) =

{

0, if Pi(λ) ∈ Pi(Υ)
1, otherwise

}

(4)

Let us consider the example of Fig. 1, where Σo,1 =
{a1, σ}, Σo,2 = {a2, σ}, Σuo = {f}. H = σ∗(a1 + a2) =
σ∗(ε + a1 + a2) contains the sequences without f , and

F = σ∗(a1 + a2)ff∗ contains the sequences with f . ∂ =
σ∗(a1 + a2) contains the sequences of H for which f is

possible in the next step. Υ = σ∗ contains the sequences of

H for which f is not guaranteed in future (because σ can

be executed indefinitely).

Let us show that the ∨-prognoser defined by Eqs. (3,4)

satisfies Eqs. (1,2). Table I outlines the local and global

prognoses for all sequences before f (since the aim is to

predict f ). We see that the global prognosis “X(λ) = 1”

is issued only for the sequences σ∗a1 and σ∗a2, which is

conform to Eqs. (1,2).

1 2

σ
a

a1

2
f

Fig. 1. Example for illustrating the disjunctive prognosis of [1]
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λ P1(λ) X1(P1(λ)) P2(λ) X2(P2(λ)) X(λ)

σ∗ σ∗ 0 σ∗ 0 0
σ∗a1 σ∗a1 1 σ∗ 0 1
σ∗a2 σ∗ 0 σ∗a2 1 1

TABLE I

DISJUNCTIVE PROGNOSIS RESULTS FOR THE EXAMPLE OF FIG. 1

B. Existence Results

We consider a pair (L,H) of prefix-closed languages such

that H ⊆ L, and their corresponding (∂, Υ). In order to

determine whether there exists a ∨-prognoser defined by

Eq. 3 and satisfying Eqs. (1,2), the authors of [1] have

defined the notion of coprognosability. Intuitively, (∂, Υ)
is coprognosable if before a failure occurs, at least one

local prognoser Prog i is certain that the failure is inevitable.

Since we will need to define coprognosability also for the

conjunctive architecture, we rename the coprognosability

of [1] as disjunctive coprognosability, or more shortly ∨-

COPROG, which can be expressed formally as follows :

Definition 3.2: (∨-COPROG) Given a pair (L,H) of

prefix-closed languages with H ⊆ L, the corresponding

(∂, Υ) is ∨-COPROG if :
⋂

i=1,···n

[P−1
i Pi(Υ)] ∩ ∂ = ∅ (5)

The following theorem relates ∨-COPROG to the exis-

tence of ∨-prognoser.

Theorem 3.1: Given a pair (L,H) of prefix-closed lan-

guages with H ⊆ L, the following two points are equivalent :
1) (∂, Υ) is ∨-COPROG.

2) There exists a ∨-prognoser defined by Eq. 3 and

satisfying Eqs. (1,2).

The following proposition implies that it is not restrictive

to consider as solution uniquely the ∨-prognoser respecting

Eqs. (3,4), instead of any ∨-prognoser respecting Eqs. 3.

Proposition 3.1: Given a pair (L,H) of prefix-closed lan-

guages with H ⊆ L, the following Point 1 implies Point 2 :
1) There exists a ∨-prognoser defined by Eq. 3 and

satisfying Eqs. (1,2)

2) The ∨-prognoser defined by Eqs. (3,4) satisfies

Eqs. (1,2).

Let us return to the example of Fig. 1, where Υ = σ∗ and

∂ = σ∗(a1+a2). Let us show that (∂, Υ) is ∨-COPROG. We

compute : Pi(Υ) = σ∗, [P−1
i Pi(Υ)]∩∂ = σ∗aj , for i = 1, 2

and i 6= j, and thus
⋂

i=1,2[P
−1
i Pi(Υ)] ∩ ∂ = ∅. From

Def. 3.2, (∂, Υ) is ∨-COPROG. And from Theorem 3.1,

there exists a ∨-prognoser defined by Eq. 3 and satisfying

Eqs. (1,2). Proposition 3.1 confirms that a solution is the

∨-prognoser defined by Eqs. (3,4) and outlined in Table I.

IV. CONJUNCTIVE AND GENERAL PROGNOSIS

ARCHITECTURES

A. Conjunctive Prognosers

The disjunctive architecture was defined as the one where

the global prognosis is obtained by fusing disjunctively

the local prognoses. In the same way, in the conjunctive

architecture, the local prognoses are fused conjunctively :

X(λ) =
∧

i=1,···,n

Xi(Pi(λ)) (6)

Definition 4.1: (Conjunctive prognoser, ∧-prognoser) A

set of local prognosers satisfying Eq. 6 is called conjunctive

prognoser or more shortly ∧-prognoser.

A particular interesting rule for computing the local de-

cisions Xi(Pi(λ)) in the conjunctive architecture, consists

in issuing a local prognosis “0” when the local prognoser

is certain that the next event is not a failure. Otherwise, the

local prognosis is “1”. Formally :

∀i ∈ {1, · · · , n} :

Xi(Pi(λ)) =

{

1, if Pi(λ) ∈ Pi(∂)
0, otherwise

}

(7)

Consider the example of Fig. 2, where Σo,1 = {a1, σ},

Σo,2 = {a2, σ}, Σuo = {f}. H = σ∗(a1σ∗a2 + a2σ∗a1)
contains the sequences without f , and F = σ∗(a1σ

∗a2 +
a2σ

∗a1)ff∗ contains the sequences with f . ∂ =
σ∗(a1σ

∗a2+a2σ
∗a1) contains the sequences of H for which

f is possible in the next step. Υ = σ∗(a1 + a2)σ
∗ =

σ∗ + σ∗a1σ
∗ + σ∗a2σ

∗ contains the sequences of H for

which f is not guaranteed in future.

Let us show that the ∧-prognoser defined by Eqs. (6,7)

satisfies Eqs. (1,2). Table II outlines the local and global

prognoses for all sequences before f . We see that the global

prognosis “X(λ) = 1” is issued only for the sequences

σ∗a1σ
∗a2 and σ∗a2σ

∗a1, which is conform to Eqs. (1,2).

a1

a2

a2

a1

2 3

1

4

σ σ

f

σ

Fig. 2. Example for illustrating the conjunctive prognosis

λ P1(λ) X1(P1(λ)) P2(λ) X2(P2(λ)) X(λ)

σ∗ σ∗ 0 σ∗ 0 0
σ∗a1σ∗ σ∗a1σ∗ 1 σ∗ 0 0
σ∗a1σ∗a2 σ∗a1σ∗ 1 σ∗a2 1 1
σ∗a2σ∗ σ∗ 0 σ∗a2σ∗ 1 0
σ∗a2σ∗a1 σ∗a1 1 σ∗a2σ∗ 1 1

TABLE II

CONJUNCTIVE PROGNOSIS RESULTS FOR THE EXAMPLE OF FIG. 2

B. Existence Results

We consider a pair (L,H) of prefix-closed languages such

that H ⊆ L, and their corresponding (∂, Υ). In order to

determine whether there exists a ∧-prognoser defined by

Eq. 6 and satisfying Eqs. (1,2), we define the notion of

conjunctive coprognosability, or more shortly ∧-COPROG.

Intuitively, (∂, Υ) is ∧-COPROG if while a failure is not

guaranteed in future, at least one local prognoser Prog i is

certain that a failure is impossible in the next step. Formally :

Definition 4.2: (∧-COPROG) Given a pair (L,H) of

prefix-closed languages with H ⊆ L, the corresponding

(∂, Υ) is ∧-COPROG if :
⋂

i=1,···n

[P−1
i Pi(∂)] ∩ Υ = ∅ (8)

The following theorem is an important result that relates

∧-COPROG to the existence of ∧-prognoser.
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Theorem 4.1: Given a pair (L,H) of prefix-closed lan-

guages with H ⊆ L, the following two points are equivalent :

1) (∂, Υ) is ∧-COPROG.

2) There exists a ∧-prognoser defined by Eq. 6 and

satisfying Eqs. (1,2).

The following proposition implies that it is not restrictive

to consider as solution uniquely the ∧-prognoser respecting

Eqs. (6,7), instead of any ∧-prognoser respecting Eq. 6.

Proposition 4.1: Given a pair (L,H) of prefix-closed lan-

guages with H ⊆ L, the following Point 1 implies Point 2 :

1) There exists a ∧-prognoser defined by Eq. 6 and

satisfying Eqs. (1,2)

2) The ∧-prognoser defined by Eqs. (6,7) satisfies

Eqs. (1,2).

Let us return to the example of Fig. 2, where Υ = σ∗ +
σ∗a1σ

∗ + σ∗a2σ
∗, ∂ = σ∗(a1σ

∗a2 + a2σ
∗a1). Let us show

that (∂, Υ) is ∧-COPROG. We compute : Pi(∂) = σ∗aiσ
∗,

[P−1
i Pi(∂)] ∩ Υ = σ∗aiσ

∗aj , for i = 1, 2 and i 6= j, and

thus
⋂

i=1,2[P
−1
i Pi(∂)] ∩ Υ = ∅. Therefore, from Def. 4.2,

(∂, Υ) is ∧-COPROG. We deduce from Theorem 4.1 that

there exists a ∧-prognoser defined by Eq. 6 and satisfying

Eqs. (1,2). And Prop. 4.1 confirms that a solution is the ∧-

prognoser defined by Eqs. (6,7) and outlined in Table II.

C. Idea of General Architecture

We have the following Proposition :

Proposition 4.2: ∨-COPROG and ∧-COPROG are incom-

parable, i.e., none of them implies the other.

Let us illustrate Prop. 4.2 using the two examples of

Figures (1,2). We have shown in Sect. III that the example

of Fig. 1 is ∨-COPROG ; it can be checked that it is not ∧-

COPROG by computing
⋂

i=1,2[P
−1
i Pi(∂)] ∩ Υ = Υ 6= ∅.

And we have shown that the example of Fig. 2 is ∧-

COPROG ; it can be checked that it is not ∨-COPROG by

computing
⋂

i=1,2[P
−1
i Pi(Υ)] ∩ ∂ = ∂ 6= ∅.

To recapitulate, we have found an example which is ∨-

COPROG and not ∧-COPROG (Fig. 1), and an example

which is ∧-COPROG and not ∨-COPROG (Fig. 2). We can

think of a general prognosis architecture for systems with two

categories of failures : failures for which the system is ∨-

COPROG, and failures for which the system is ∧-COPROG.

The disjunctive (resp. conjunctive) architecture is applied for

predicting the first (resp. second) category of faults. Such a

general architecture is not detailed here for lack of space.

V. CONJ-DISJ ARCHITECTURE : GENERALIZATION OF

THE DISJUNCTIVE ARCHITECTURE

Let us present a Conj-Disj architecture which generalizes

the disjunctive architecture using an approach called multi-

decision. The generalization of the conjunctive architecture

is studied in Section VI.

A. ∧-∨-prognoser

The multi-decision when applied to the disjunctive archi-

tecture consists in using several (say m) decentralized dis-

junctive architectures working in parallel and whose global

decisions are combined conjunctively into a “final” global

decision which must satisfy Equations (1,2). The resulting ar-

chitecture is thus qualified as Conj-Disj. The m ∨-prognosers

are indexed by j = 1 · · ·m. The global decision Xj(λ) of

the jth ∨-prognoser is computed by combining disjunctively

its local decisions (Xj
i (Pi(λ)))i=1···n as in Eq. 3, that is :

∀j ∈ {1, · · · , m} : Xj(λ) =
∨

i=1,···,n

X
j
i (Pi(λ)) (9)

Then the global prognoses of the m ∨-prognosers are

fused conjunctively in order to obtain the global actual

prognosis X(λ). Formally :

X(λ) =
∧

j=1,···,m

Xj(λ) (10)

Definition 5.1: (∧-∨m-prognoser, ∧-∨-prognoser) Given

m ∈ N
+, a set of m ∨-prognosers which are fused conjunc-

tively (i.e., satisfying Equations (9,10) is called ∧-∨m-

prognoser. When m is not specified, we say ∧-∨-prognoser.

B. Decomposing Υ for computing the local decisions

We have explained that, given m ∈ N
+, a ∧-∨m-

prognoser is obtained by using m ∨-prognosers (Eq. 9) and

combining them conjunctively (Eq. 10). Let us propose a

rule for computing the local decisions (Xj
i (Pi(λ)))i=1···n

of the jth architecture, for each j = 1 · · ·m. We assume

we are given a decomposition (Υj)j=1···m of Υ, that is,

Υ = Υ1 ∪ · · · ∪ Υm. We say “decomposition” instead of

“partition”, because we may have Υj ∩ Υk 6= ∅ for j 6= k.

For each j = 1 · · ·m, the local decisions are computed like

in Eq. 4, but w.r.t Υj instead of Υ. That is :

∀j ∈ {1, · · · , m}, ∀i ∈ {1, · · · , n} :

X
j
i (Pi(λ)) =

{

0, if Pi(λ) ∈ Pi(Υ
j)

1, otherwise

}

(11)

The idea behind this approach is that for each j = 1 · · ·m,

the global decision of the jth disjunctive architecture respects

Eqs (1,2), but w.r.t (∂, Υj) instead of (∂, Υ). And by fusing

conjunctively these m global decisions, we obtain a “final”

global decision that respects Eqs (1,2) w.r.t (∂, Υ).

Consider the example of Fig. 3, where Σuo ={f}, Σo,1=
{a1, σ}, Σo,2 ={a2, σ}. F = σ∗(a1 + a2)σff∗ contains the

sequences with f , and H = σ∗(a1 + a2 + a1a2 + a2a1)σ
contains the sequences without f . Υ = σ∗(a1a2 + a2a1)σ =
σ∗(ε+a1a2σ+a2a1σ) corresponds to states 1, 2, 3, 5, 6 ; it

contains the sequences of H for which f is not guaranteed in

future. ∂ = σ∗(a1 + a2)σ corresponds to state 4 ; it contains

the sequences of H for which f is possible in the next

step. Υ is decomposed into Υ1 = σ∗(a1a2 + a2a1)σ and

Υ2 = σ∗(a1a2 + a2a1). Υ1 corresponds to state 6, and Υ2

corresponds to states 1, 2, 3, 5.

Let us show that with this decomposition of Υ, the ∧-

∨2-prognoser defined by Eqs. (9,10,11) satisfies Eqs. (1,2).

Table III outlines X
j
i (Pi(λ)), Xj(λ) and X(λ) computed

using Eqs. (9,10,11) for all sequences λ without f . We see

that “X(λ) = 1” is issued only for the sequences σ∗a1σ and

σ∗a2σ, which is conform to Eqs. (1,2).
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λ P1(λ) X
1

1
(P1(λ)) X

2

1
(P1(λ)) P2(λ) X

1

2
(P2(λ)) X

2

2
(P2(λ)) X

1(λ) X
2(λ) X(λ)

σ
∗

σ
∗ 1 0 σ

∗ 1 0 1 0 0
σ
∗
a1 σ

∗
a1 1 0 σ

∗ 1 0 1 0 0
σ
∗
a1σ σ

∗
a1σ 0 1 σσ

∗ 1 0 1 1 1
σ
∗
a1a2 σ

∗
a1 1 0 σ

∗
a2 1 0 1 0 0

σ
∗
a1a2σ σ

∗
a1σ 0 1 σ

∗
a2σ 0 1 0 1 0

σ
∗
a2 σ

∗ 1 0 σ
∗
a2 1 0 1 0 0

σ
∗
a2σ σσ

∗ 1 0 σ
∗
a2σ 0 1 1 1 1

σ
∗
a2a1 σ

∗
a1 1 0 σ

∗
a2 1 0 1 0 0

σ
∗
a2a1σ σ

∗
a1σ 0 1 σ

∗
a2σ 0 1 0 1 0

TABLE III

CONJ-DISJ PROGNOSIS RESULTS FOR THE EXAMPLE OF FIG. 3

6

σ

f

2

1

3

4

σ σ

5
σ

a a

aa2

1 2

1

Fig. 3. Example for illustrating the Conj-Disj prognosis

C. Existence Results

We are given a pair (L,H) of prefix-closed languages such

that H ⊆ L, and m ∈ N
+. An important question that arises

in the Conj-Disj architecture is :

Question 1: Does there exist a ∧-∨m-prognoser defined

by Eqs. (9,10) and satisfying Eqs. (1,2) ?

We will show further that answering this question amounts

to answering the following question :

Question 2: Does there exist a decomposition (Υ1)j=1···m

of Υ such that each (∂, Υj) is ∨-COPROG, that is :

∀j = 1, · · · , m :
⋂

i=1,···n

[P−1
i Pi(Υ

j)] ∩ ∂ = ∅ (12)

Since Υ is in general infinite, we are confronted to the

problem of decomposing an infinite set, which is known to

be a challenging and open problem. We propose to transform

the problem of decomposing the infinite regular language

Υ 1 into a problem of decomposing the finite set of states of

the corresponding finite state automation (FSA). The solution

consists in considering the finite equivalence relation Nerode

NΥ over Υ. That is, if we consider the minimal FSA ANΥ

accepting Υ, then each equivalence class of NΥ is the set of

traces leading to the same state of ANΥ
.

Definition 5.2: (Stronger equivalence relation) Consider

two finite equivalence relations R1
E and R2

E on a set E. R1
E

is said stronger than R2
E , noted R1

E ≤ R2
E , if every equi-

valence class of R2
E consists of one or several equivalence

classes of R1
E .

Instead of NΥ, we may also use any finite equivalence

relation (i.e., having a finite number of equivalence classes)

RΥ which is stronger than NΥ That is, RΥ can be defined

like NΥ, but by using a FSA AR
Υ

accepting Υ which is

not necessarily minimal. Given a finite relation RΥ ≤ NΥ,

we consider uniquely the decompositions (Υ1, · · · , Υm) of

Υ that respect the following assumption :

1. L and H, and thus Υ, are assumed to be regular languages.

A1 : For every j = 1, · · · , m, Υj consists of one or

several equivalence classes of RΥ.

Therefore, finding a decomposition of Υ respecting As-

sumption A1 w.r.t RΥ amounts to finding a decomposition

of the finite state set of the FSA AR
Υ

.

For the FSA of Fig. 3, we obtain ANΥ
by removing state 4.

Decomposing Υ amounts therefore to decomposing the finite

state set {1, 2, 3, 5, 6}. The number of decompositions is

therefore finite. The following decomposition has been used :

– Υ1 = σ∗(a1a2 + a2a1)σ corresponds to state 6,

– Υ2 = σ∗(a1a2 + a2a1) corresponds to states 1, 2, 3, 5.

We have defined the relation “Stronger than” because,

when R1
Υ ≤ R2

Υ ≤ NΥ, R1
Υ permits more decompositions

of Υ than R2
Υ respecting Assumption A1.

Given a finite equivalence relation RΥ s.t. RΥ ≤ NΥ (RΥ

may be NΥ), the previous Question 2 is strengthened into

checking the following notion of ∧-∨m-COPROG w.r.t RΥ :

Definition 5.3: (∧-∨m-COPROG w.r.t RΥ) Consider a

pair (L,H) of prefix-closed languages with H ⊆ L, and

a finite equivalence relation RΥ such that RΥ ≤ NΥ.

(∂, Υ) is said ∧-∨m-COPROG w.r.t RΥ if there exists a

decomposition (Υ1, · · · , Υm) of Υ respecting Assumption

A1 and such that each (∂, Υj) is ∨-COPROG (i.e., Eq. 12).

Proposition 5.1: Consider a pair (L,H) of prefix-closed

languages with H ⊆ L, and a finite equivalence relation RΥ

such that RΥ ≤ NΥ. If (∂, Υ) is ∧-∨m-COPROG w.r.t RΥ

for some m ∈ N
+, then for every equivalence class A of

RΥ (A ⊆ Υ) :
⋂

i=1,···n[P−1
i Pi(A)] ∩ ∂ = ∅.

The link between previous Questions 1 and 2 is stated by

the following theorem :

Theorem 5.1: Consider a pair (L,H) of prefix-closed

languages with H⊆L, and a finite equivalence relation RΥ

such that RΥ ≤ NΥ. The following Point 1 ensures Point 2 :

1) (∂, Υ) is ∧-∨m-COPROG w.r.t RΥ.

2) There exists a ∧-∨m-prognoser defined by Eqs. (9,10)

and satisfying Eqs. (1,2).

The following proposition implies that it is not restric-

tive to consider as solution uniquely the ∧-∨m-prognoser

respecting Eqs. (9,10,11), instead of any ∧-∨m-prognoser

respecting Eqs. (9,10).

Proposition 5.2: Consider a pair (L,H) of prefix-closed

languages with H ⊆ L, and a finite equivalence relation RΥ

such that RΥ ≤ NΥ. The following Point 1 ensures Point 2 :

1) (∂, Υ) is ∧-∨m-COPROG w.r.t RΥ.
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2) We consider any decomposition of Υ satisfying As-

sumption A1 and Eq. 12 (exists by definition of ∧-

∨m-COPROG w.r.t RΥ). The corresponding ∧-∨m-

prognoser defined by Eqs. (9,10,11) satisfies Eqs. (1,2).

Let us return to the example of Fig. 3, where ∂ = σ∗(a1+
a2)σ, and Υ was decomposed into Υ1 = σ∗(a1a2 + a2a1)σ
and Υ2 = σ∗(a1a2 + a2a1). Let us show that (∂, Υ) is ∧-

∨2-COPROG w.r.t NΥ. NΥ contains five equivalence classes

corresponding to states 1, 2, 3, 5, 6, respectively. Υ1 contains

the class corresponding to state 6, and Υ2 contains the classes

corresponding to states 1, 2, 3, 5. We compute :

Pi(Υ
1) = σ∗aiσ, Pi(Υ

2) = σ∗ + σ∗ai, for i = 1, 2,

[P−1
i Pi(Υ

1)] ∩ ∂ = σ∗aiσ, for i = 1, 2,

[P−1
i Pi(Υ

2)] ∩ ∂ = σ∗ajσ, for i, j = 1, 2 and i 6= j.
⋂

i=1,2[P
−1
i Pi(Υ

1)] ∩ ∂ =
⋂

i=1,2[P
−1
i Pi(Υ

2)] ∩ ∂ = ∅.

Therefore, from Def. 5.3, (∂, Υ) is ∧-∨2-COPROG w.r.t

NΥ. We deduce from Theor. 5.1 that there exists a ∧-∨2-

prognoser defined by Eqs. (9,10) and satisfying Eqs. (1,2).

Prop. 5.2 confirms that a solution is the ∧-∨2-prognoser

defined by Eqs. (9,10,11) and outlined in Table III.

The following proposition implies that the Conj-Disj ar-

chitecture is more general than the disjunctive architecture.

Proposition 5.3: Given a pair (L,H) of prefix-closed lan-

guages with H⊆L, if (∂, Υ) is ∨-COPROG then there exists

m∈N
+ such that (∂, Υ) is ∧-∨m-COPROG w.r.t NΥ.

Proposition 5.3 is confirmed by the fact that ∨-COPROG

is equivalent to ∧-∨1-COPROG w.r.t NΥ. The example of

Fig. 3 proves that the converse of Prop. 5.3 is not true.

Indeed, we have shown that (∂, Υ) is ∧-∨2-COPROG w.r.t

NΥ, and now we show that it is not ∨-COPROG as follows :

Pi(Υ) = σ∗ + σ∗ai + σ∗aiσ for i = 1, 2,

[P−1
i Pi(Υ)] ∩ ∂ = ∂, for i = 1, 2.

Thus,
⋂

i=1,2[P
−1
i Pi(Υ)] ∩ ∂ = ∂ 6= ∅.

Note that this example is not ∧-COPROG as well, because
⋂

i=1,2[P
−1
i Pi(∂)] ∩ Υ = σ∗(a1a2 + a2a1 + ε)σ 6= ∅.

The following proposition is due to the fact that if R1
Υ ≤

R2
Υ ≤ NΥ, then R1

Υ permits more decompositions than R2
Υ.

Proposition 5.4: Consider a pair of finite equivalence re-

lations (R1
Υ,R2

Υ) such that R1
Υ ≤ R2

Υ ≤ NΥ, a pair (L,H)
of prefix-closed languages with H ⊆ L, and an integer

m ∈ N
+. If (∂, Υ) is ∧-∨m-COPROG w.r.t R2

Υ, then it

is also ∧-∨m-COPROG w.r.t R1
Υ.

VI. DISJ-CONJ ARCHITECTURE : GENERALIZATION OF

THE CONJUNCTIVE ARCHITECTURE

In Sect. V, we proposed a Conj-Disj architecture which

generalizes the disjunctive architecture. Let us now propose

a Disj-Conj architecture which generalizes the conjunctive

architecture. The two architectures of Sects. (V,VI) are dual,

in the sense that one is obtained from the other essentially by

switching : 1) between the OR and AND boolean operators,

and 2) between decomposing ∂ and decomposing Υ.

A. ∨-∧-prognoser,

Now, m conjunctive architectures indexed by j =
1, · · · , m are working in parallel and their global decisions

are combined disjunctively into a “final” global decision

which must satisfy Equations (1,2). The resulting architecture

is thus qualified as Disj-Conj. The global decision Xj(λ) of

the jth ∧-prognoser is computed using Eq. 13 and the final

global decision using Eq. 14.

∀j ∈ {1, · · · , m} : Xj(λ) =
∧

i=1,···,n

X
j
i (Pi(λ)) (13)

X(λ) =
∨

j=1,···,m

Xj(λ) (14)

Definition 6.1: (∨-∧m-prognoser, ∨-∧-prognoser) Given

m ∈ N
+, a set of m ∨-prognosers which are fused disjunc-

tively is called ∧-∨m-prognoser. When m is not specified,

we say ∧-∨-prognoser.

B. Decomposing ∂ for computing the local decisions

We assume we are given a decomposition (∂1, · · · ∂m)
of ∂. That is, ∂ = ∂1 ∪ · · · ∪ ∂m, where the ∂j are not

necessarily disjoint with each other. A rule for computing the

local decisions (Xj
i (Pi(λ)))i=1···n of the jth architecture, for

each j = 1, · · · , m, is to adapt Eq. 7 as follows :

∀j ∈ {1, · · · , m}, ∀i ∈ {1, · · · , n} :

X
j
i (Pi(λ)) =

{

1, if Pi(λ) ∈ Pi(∂
j)

0, otherwise

}

(15)

The idea of this approach is that for each j = 1 · · ·m, the

global decision of the jth conjunctive architecture respects

Eqs (1,2), but w.r.t (∂j , Υ) instead of (∂, Υ). And by fusing

disjunctively these m global decisions, we obtain a “final”

global decision that respects Eqs (1,2) w.r.t (∂, Υ).
Let us consider the example of Fig. 4, where Σuo = {f},

Σo,1 = {a1, σ}, Σo,2 = {a2, σ}. F = a1σfa∗
1 + a2σfa∗

2,

and H = (a1 + a2)σ + (σ + a1a2 + a2a1)σ∗. Υ = σ∗ +
(a1a2 + a2a1)σ∗ corresponds to states 1, 2, 3, 4. ∂ =
(a1 + a2)σ is decomposed into ∂1 = a1σ and ∂2 = a2σ,

corresponding to states 5 and 6, respectively.

Let us show that with this decomposition of ∂, the ∨-

∧2-prognoser defined by Eqs. (13,14,15) satisfies Eqs. (1,2).

Table IV outlines X
j
i (Pi(λ)), Xj(λ) and X(λ) computed

using Eqs. (15,13,14) for all sequences λ without f . We see

that “X(λ) = 1” is issued only for the sequences a1σ and

a2σ, which is conform to Eqs. (1,2).

2 357 6 8

1

4

σ

σσ σf f

a

a

a a

a

a
1

1

2 1

2

2

Fig. 4. Example for illustrating the Disj-Conj prognosis

C. Existence Results

Using the same approach as for the Conj-Disj architecture

in Sect. V, we consider decompositions of ∂ based on the

Nerode relation N∂ over ∂, or any finite relation R∂ such

that R∂ ≤ N∂ , and respecting the following assumption A2 :

A2 : For every j = 1, · · · , m, ∂j consists of one or

several equivalence classes of R∂ .

We thus define Equation (16) and the notion of ∨-∧m-

COPROG w.r.t R∂ :

4979



λ P1(λ) X
1

1
(P1(λ)) X

2

1
(P1(λ)) P2(λ) X

1

2
(P2(λ)) X

2

2
(P2(λ)) X

1(λ) X
2(λ) X(λ)

σ σ 0 1 σ 1 0 0 0 0
σσ

∗
σσ

∗ 0 0 σσ
∗ 0 0 0 0 0

a1 a1 0 0 ε 0 0 0 0 0
a1σ a1σ 1 0 σ 1 0 1 0 1
a1a2 a1 0 0 a2 0 0 0 0 0
a1a2σ a1σ 1 0 a2σ 0 1 0 0 0
a1a2σσσ

∗
a1σσσ

∗ 0 0 a2σσσ
∗ 0 0 0 0 0

a2 ε 0 0 a2 0 0 0 0 0
a2σ σ 0 1 a2σ 0 1 0 1 1
a2a1 a1 0 0 a2 0 0 0 0 0
a2a1σ a1σ 1 0 a2σ 0 1 0 0 0
a2a1σσσ∗ a1σσσ∗ 0 0 a2σσσ∗ 0 0 0 0 0

TABLE IV

DISJ-CONJ PROGNOSIS RESULTS FOR THE EXAMPLE OF FIG. 4

∀j = 1, · · · , m :
⋂

i=1,···n

[P−1
i Pi(∂

j)] ∩ Υ = ∅ (16)

Definition 6.2: (∨-∧m-COPROG w.r.t R∂ ) Consider a

pair (L,H) of prefix-closed languages with H ⊆ L, and

a finite equivalence relation R∂ such that R∂ ≤ N∂ . (∂) is

said ∨-∧m-COPROG w.r.t R∂ if there exists a decomposition

(∂1, · · · , ∂m) of ∂ respecting Assumption A2 and such that

each (∂j , Υ) is ∧-COPROG (i.e., Eq. 16).

Proposition 6.1: Consider a pair (L,H) of prefix-closed

languages with H ⊆ L, and a finite equivalence relation R∂

such that R∂ ≤ N∂ . If (∂, Υ) is ∨-∧m-COPROG w.r.t R∂

for some m ∈ N
+, then for every equivalence class A of

R∂ (A ⊆ ∂) :
⋂

i=1,···n[P−1
i Pi(A)] ∩ Υ = ∅.

The following theorem relates ∨-∧m-COPROG w.r.t R∂

to the existence of ∨-∧m-prognoser.

Theorem 6.1: Consider a pair (L,H) of prefix-closed

languages with H ⊆ L, and a finite equivalence relation R∂

such that R∂ ≤ N∂ . The following Point 1 ensures Point 2 :

1) (∂, Υ) is ∨-∧m-COPROG w.r.t R∂ .

2) There exists a ∨-∧m-prognoser defined by Eqs. (13,14)

and satisfying Eqs. (1,2).

The following proposition implies that it is not restric-

tive to consider as solution uniquely the ∨-∧m-prognoser

respecting Eqs. (13,14,15), instead of any ∨-∧m-prognoser

respecting Eqs. (13,14).

Proposition 6.2: Consider a pair (L,H) of prefix-closed

languages with H ⊆ L, and a finite equivalence relation R∂

such that R∂ ≤ N∂ . The following Point 1 implies Point 2 :

1) (∂, Υ) is ∨-∧m-COPROG w.r.t R∂ .

2) We consider any decomposition of ∂ satisfying As-

sumption A2 and Eq. (16) (exists by definition of

∨-∧m-COPROG w.r.t R∂ ). The corresponding ∨-

∧m-prognoser defined by Eqs. (13,14,15) satisfies

Eqs. (1,2).

Let us return to the example of Fig. 4, where Υ = σ∗ +
(a1a2 + a2a1)σ∗, and ∂ was decomposed into ∂1 = a1σ

and ∂2 = a2σ. Let us show that (∂, Υ) is ∨-∧2-COPROG

w.r.t N∂ . N∂ contains two equivalence classes, ∂1 and ∂2,

corresponding to states 5 and 6, respectively. We compute :

P1(∂
1) = a1σ,P2(∂

1) = σ, P1(∂
2) = σ,P2(∂

2) = a2σ.

[P−1
1 P1(∂

1)]∩Υ = [P−1
2 P2(∂

2)]∩Υ = (a1a2 + a2a1)σ.

[P−1
1 P1(∂

2)] ∩ Υ = [P−1
2 P2(∂

1)] ∩ Υ = σ.

Therefore,
⋂

i=1,2[P
−1
i Pi(∂

j)] ∩ Υ = ∅, for j = 1, 2.

From Def. 6.2, (∂, Υ) is ∨-∧2-COPROG w.r.t N∂ . And from

Theor. 6.1, we deduce that there exists a ∨-∧2-prognoser

defined by Eqs. (13,14) and satisfying Eqs. (1,2). Prop. 6.2

confirms that a solution is the ∨-∧2-prognoser defined by

Eqs. (13,14,15) and outlined in Table IV.

The following proposition implies that the Disj-Conj ar-

chitecture is more general than the conjunctive architecture.

Proposition 6.3: Given a pair (L,H) of prefix-closed lan-

guages with H⊆L, if (∂, Υ) is ∧-COPROG then there exists

m∈N
+ such that (∂, Υ) is ∨-∧m-COPROG w.r.t N∂ .

Proposition 6.3 is confirmed by the fact that ∧-COPROG

is equivalent to ∨-∧1-COPROG w.r.t N∂ . The example of

Fig. 4 proves that the converse of Prop. 6.3 is not true.

Indeed, we have shown that (∂, Υ) is ∨-∧2-COPROG w.r.t

N∂ , and now we show that it is not ∧-COPROG as follows :

Pi(∂) = aiσ + σ, for i = 1, 2,

[P−1
i Pi(∂)] ∩ Υ = σ + (a1a2 + a2a1)σ, for i = 1, 2.

Thus,
⋂

i=1,2[P
−1
i Pi(∂)] ∩ Υ = σ + (a1a2 + a2a1)σ 6= ∅.

Note that this example is not ∨-COPROG as well, because

we compute
⋂

i=1,2[P
−1
i Pi(Υ)] ∩ ∂ = ∂ 6= ∅.

The following proposition is due to the fact that if R1
∂ ≤

R2
∂ ≤ N∂ , then R1

∂ permits more decompositions than R2
∂ .

Proposition 6.4: Consider a pair of finite equivalence re-

lations (R1
∂ ,R2

∂) such that R1
∂ ≤ R2

∂ ≤ N∂ , a pair (L,H)
of prefix-closed languages with H ⊆ L, and an integer

m ∈ N
+. If (∂, Υ) is ∨-∧m-COPROG w.r.t R2

∂ , then it

is also ∨-∧m-COPROG w.r.t R1
∂ .

VII. GENERAL MULTI-DECISION ARCHITECTURE,

PREDICTION IN ADVANCE

A. General Multi-Decision Architecture

In Section IV-C, we proposed a general architecture that

combines and generalizes the disjunctive and conjunctive

architectures. We propose here a general multi-decision

architecture that combines and generalizes the Conj-Disj and

Disj-Conj architectures.

Proposition 7.1: Given two finite equivalence relations

RΥ and R∂ , ∧-∨m-COPROG w.r.t RΥ and ∨-∧m-COPROG

4980



w.r.t R∂ are incomparable, i.e., none of them guarantees the

other.

Let us illustrate Proposition 7.1 using the two examples of

Figures (3,4). We have shown in Section V that the example

of Fig. 3 is ∧-∨2-COPROG w.r.t NΥ. On the other hand, we

have seen that : 1) it is not ∧-COPROG and 2) ∂ consists

of a single equivalence class A w.r.t N∂ . From these two

points and Prop. 5.1, we deduce that, for every m ∈ N
+,

the example is not ∨-∧m-COPROG w.r.t N∂ .

We have shown in Section VI that the example of Fig. 4

is ∨-∧2-COPROG w.r.t N∂ . We have also seen that it is not

∨-COPROG and that Υ consists of four equivalence classes

w.r.t NΥ (states 1, 2, 3, 4). If we consider the equivalence

class A corresponding to state 4, we compute A = σσ∗ +
(a1a2+a2a1)σσ∗, Pi(A) = σσ∗+aiσσ∗, [P−1

i Pi(A)]∩∂ =
∂, and thus

⋂

i=1,2[P
−1
i Pi(A)]∩∂ = ∂ 6= ∅. From Prop. 6.1,

we deduce that, for every m ∈ N
+, the example is not ∧-

∨m-COPROG w.r.t NΥ.

To recapitulate, we have found an example which is ∧-

∨2-COPROG w.r.t NΥ and not ∨-∧m-COPROG w.r.t N∂

(Fig. 3), and an example which is ∨-∧2-COPROG w.r.t N∂

and not ∧-∨m-COPROG w.r.t NΥ (Fig. 4). Therefore, the

Conj-Disj and Disj-Conj architectures can be respectively

used for these two examples. We can think of a general multi-

decision prognosis architecture for systems with two catego-

ries of failures : failures which can be predicted using the

Conj-Disj architecture, and failures which can be predicted

using the Disj-Conj architecture. It can be shown that such a

general multi-decision architecture is more general than the

Conj-Disj and Disj-Conj architectures. For lack of space, we

do not give more details on this general architecture.

B. Failure Prediction in Advance

The four architectures of Sections (III,IV,V,VI) are based

on the use of Υ and ∂. Remind that ∂ = {λ ∈ H | {λ}Σ ∩
F 6= ∅}. This definition of ∂ guarantees that the failure is

predicted at the latest just before its occurrence.

Let us now consider that the objective is to predict a failure

at least k steps before its occurrence, for a given k ≥ 1.

The interest of our framework is that it remains applicable

with this new objective by just replacing ∂ by ∂(k) = {λ ∈
H | {λ}Σ≤k ∩ F 6= ∅}. Note that ∂(1) = ∂.

VIII. CONCLUSION

We have studied the decentralized prognosis, where lo-

cal prognosers cooperate in order to predict failures. Our

essential contributions can be summarized by the following

points :

1) We formulate the architecture of [1] as a disjunctive

prognosis architecture.

2) We develop a conjunctive prognosis architecture which

is dual and complementary to the disjunctive one. We

also propose and discuss the idea of a general archi-

tecture which combines and generalizes the disjunctive

and conjunctive architectures.

3) We develop a multi-decision framework whose ba-

sic principle consists in using several decentralized

architectures working in parallel. We use the multi-

decision to develop Conj-Disj and Disj-Conj architec-

tures, which generalize the disjunctive and conjunctive

architectures, respectively.

4) In the above points 1, 2 an 3, a failure can be predicted

at the latest just before its occurrence. We show that

our work can be very easily extended for predicting

a failure at least k steps before its occurrence, for a

given k ≥ 1.

In a near future, we plan to study the complexity of our

framework in terms of computation time and used memory.
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