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Abstract— The problem of output tracking control for a class
of multi-input multi-output uncertain systems is considered. A
novel adaptive robust controller is proposed, which incorporates
a variable-structure radial basis function (RBF) network to
approximate unknown system dynamics. The RBF network
can determine its structure on-line dynamically, where radial
basis functions are added or removed to ensure the desired
tracking accuracy and to prevent the network redundancy
simultaneously. The structure variation of the RBF network
is taken into account in the stability analysis of the closed-loop
system. This is accomplished by using the piecewise continuous
quadratic Lyapunov function typically for the analysis of
switched and hybrid systems.

I. INTRODUCTION

In any controller design, one of the essential elements is a

mathematical model of the plant to be controlled. However,

the available mathematical model often contains uncertainties

resulting from unknown system dynamics or disturbances.

Recently, several adaptive controller design methodologies

for uncertain systems have been introduced such as adap-

tive feedback linearization [1], adaptive backstepping [2],

nonlinear damping and swapping [3] and switching adap-

tive control [4]. Especially, a number of adaptive control

strategies have been developed for a class of feedback

linearizable nonlinear systems including both single-input

single-output (SISO) systems [5]–[8] and multi-input multi-

output (MIMO) systems [9]–[12]. To improve the robustness

of adaptive controllers, robustifying components have been

used in [5], [7], [8], [10]–[12].

To deal with dynamical uncertainties, adaptive (robust)

control strategies often involve certain types of function

approximators to approximate unknown system dynamics.

In particular, one-layer neural networks have been employed

in [5], [11], where radial basis function (RBF) networks were

used to approximate unknown system dynamics. However,

fixed-structure RBF networks require the off-line determina-

tion of the appropriate network structure. In [6], [9], multi-

layer neural network (MLNN) based adaptive robust control

strategies were proposed. Although it is not required to

define the basis function sets for MLNNs, it is still necessary

to pre-determine the number of hidden neurons. Moreover,

compared with MLNNs, RBF networks are characterized

by simpler structure, faster - computation time and superior

adaptive performance. Variable structure RBF network based

adaptive (robust) controllers have been proposed for SISO
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feedback linearizable uncertain systems in [8], [13], [14],

where the variable-structure RBF networks that can both

grow and shrink were employed. However, they are subject

to the problem of infinitely fast switching between different

structures. Moreover, the effect of the structure variation was

not considered in the stability analysis.

In this paper, we consider, as in [9]–[12], the output

tracking control problem for a class of MIMO feedback

linearizable uncertain systems. We propose a novel adap-

tive robust control strategy. The developed controller in-

corporates a variable-structure RBF network, which is an

improved version of the network considered in [14], [15],

to approximate unknown system dynamics. The employed

variable-structure RBF network avoids selecting basis func-

tions off-line by determining the network structure on-line

dynamically. It can add or remove RBFs depending on

the magnitude of the output tracking error to ensure the

tracking accuracy and to prevent the network redundancy

simultaneously. We impose a dwelling time requirement on

the structure variation to avoid the problem of infinitely fast

switching between different structures as in [16]. The raised-

cosine RBF (RCRBF) presented in [17] is utilized because

the RCRBF has compact support that results in significant

reduction of computations required for the network’s training

and output evaluation [15]. By viewing the closed-loop

system as a switched system, we can apply the piecewise

continuous quadratic Lyapunov function that has been used

in the stability analysis of switched and hybrid systems [18],

[19]. This enables us to analyze the structure variation in the

stability analysis without additional restrictive assumptions.

The journal version of this paper with all the details and

additional results can be found in [20].

II. SYSTEM DESCRIPTION AND PROBLEM STATEMENT

We consider a class of uncertain systems consisting of p
coupled subsystems modeled by the following equations,

y
(ni)
i = fi(x) +

p
∑

j=1

gij(x)uj + di, i = 1, . . . , p, (1)

where yi, ui and di are the output, input and disturbance of

the i-th subsystem, respectively, and fi(x) and gij(x) are

unknown functions with

x =
[

y1 · · · y
(n1−1)
1 · · · yp · · · y(np−1)

p

]⊤

being the state vector of the overall system. The disturbance

di can have the form of di(t), di(x) or di(t, x). Let (Ai, bi)
be the canonical controllable pair that represents a chain of ni

integrators, and let ci = [1 0 · · · 0]1×ni
, y = [y1 · · · yp]

⊤,
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u = [u1 · · · up]
⊤ and d = [d1 · · · dp]

⊤. We represent the

system (1) in a compact form as

ẋ = Ax + B (f(x) + G(x)u + d) (2)

y = Cx,

where A = diag[A1 · · · Ap], B = diag[b1 · · · bp],
C = diag[c1 · · · cp], f(x) = [f1(x) · · · fp(x)]⊤ and

G(x) = [gij(x)]p×p. The above system is often referred to

as square system, because there are same numbers of inputs

and outputs. As pointed out in [10], many physical systems,

such as natural Lagrangian systems and circuit systems, can

be modeled in the form of (1). In this paper, we assume that

f(x) and G(x) are Lipschitz continuous vector- and matrix-

valued functions of x, respectively, d is Lipschitz continuous

in x and piecewise continuous in t, and ‖d‖ ≤ do. In

addition, we consider the case where the input matrix G(x)
is definite with eigenvalues bounded away from zero for all x

of interest. Without loss of generality, we assume that G(x)
is positive definite with gIp ≤ G(x) ≤ gIp, where g and g
are positive constants.

Our goal is to develop a tracking control strategy such

that the i-th system output yi, i = 1, . . . , p, tracks a

reference signal ydi. We assume that ydi has bounded

derivatives up to the ni-th order. Thus, we have y
(n)
d =

[y
(n1)
d1 · · · y

(np)
dp ]⊤ ∈ Ωyd

, where Ωyd
is a compact subset

of R
p. Then we define the desired system state vector as

xd = [yd1 · · · y
(n1−1)
d1 · · · ydp · · · y

(np−1)
dp ]⊤. We have

xd ∈ Ωxd
, where Ωxd

is a compact subset of R
n. Let

ei = yi−ydi denote the i-th output tracking error. We define

the output tracking error as ey = [e1 · · · ep]
⊤ and then the

state tracking error as e = x − xd. It follows from (2) that

the state tracking error dynamics are given by

ė = Ae + B
(

f(x) + G(x)u − y
(n)
d + d

)

. (3)

In the next section, we first describe the variable-structure

RBF network that is employed to approximate the unknown

function f(x) in the adaptive robust controller design.

III. VARIABLE-STRUCTURE RBF NETWORK

The employed variable-structure RBF network is an im-

proved version of the self-organizing RBF network used

in [14], which, in turn, was adapted from [15]. The major

improvement is in the RBF adding and removing operations.

Moreover, we introduce a dwelling time Td, which is a design

parameter, into the structure variation of the RBF network

to prevent fast switching between different structures.

Our variable-structure RBF network has N different ad-

missible structures, where N is determined by the design

parameters discussed later. For each admissible structure

illustrated in Fig. 1, the RBF network consists of n input

neurons, Mv hidden neurons, where v ∈ {1, . . . , N} denotes

the scalar index, and p output neurons. The k-th output of

the RBF network with the v-th admissible structure can be

represented as

f̂k,v(x) =

Mv
∑

j=1

ωkj,vξj,v(x), (4)

Fig. 1. Self-organizing radial basis function network.

where ωkj,v is the weight from the j-th hidden neu-

ron to the k-th output neuron and ξj,v(x) is the radial

basis function for the j-th hidden neuron. Let W v =
[ω1,v · · · ωp,v] with ωi,v = [ωi1,v · · · ωiMv ,v]

⊤ and

ξv(x) = [ξ1,v(x) · · · ξMv ,v(x)]⊤. Then we have f̂v(x) =
W⊤

v ξv(x). We employ the raised-cosine RBF proposed

in [17] instead of the commonly used Gaussian RBF. The

one-dimensional RCRBF is defined as

ξ(x) =

{

1
2

(

1 + cos
(

π(x−c)
δ

))

if |x − c| ≤ δ

0 if |x − c| > δ,

where c is the center and δ is the radius. The n-dimensional

RCRBF can be represented as the product of n one-

dimensional RCRBFs. Although the Gaussian RBF is com-

monly used for the construction of the radial basis function

network, we prefer the raised-cosine RBF to the Gaussian

RBF because of the compact support associated with the

raised-cosine RBF. As discussed in [15], [17], the compact

support of the RCRBF enables fast and efficient training and

output evaluation of the RBF network.

In the following subsections, we provide a detailed de-

scription of the improved variable-structure RBF network.

A. Center Grid

Recall that the unknown function f(x) is approximated

over a compact set Ωx ⊂ R
n. Without loss of generality, it

is assumed that Ωx can be represented as

Ωx = {x ∈ R
n : xl ≤ x ≤ xu}

= {x ∈ R
n : xli ≤ xi ≤ xui, 1 ≤ i ≤ n} ,

where the n-dimensional vectors xl and xu denote lower

and upper bounds of x, respectively. To locate the centers of

RBFs inside the approximation region Ωx, we utilize an n-

dimensional center grid with layer hierarchy, where each grid

node corresponds to the center of one RBF. The grid nodes

of the center grid are located at S1×· · ·×Sn, where Si is the

set of locations of the grid nodes in the i-th coordinate and ×
denotes the Cartesian product. The center grid is initialized

inside the approximation region Ωx with Si = {xli, xui},

i = 1, . . . , n. The 2n grid nodes of the initial grid are referred

to as the boundary grid nodes, and they cannot be removed.
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In each coordinate, additional grid nodes will be added into

and then can be removed from the set Si as the controlled

system evolves in time. However, new grid nodes can only be

placed at the potential locations. The potential grid nodes are

determined coordinate-wise. In each coordinate, the potential

grid nodes of the first layer are the two fixed boundary grid

nodes. The second layer has only one potential grid node in

the middle of the boundary grid nodes. Then the potential

grid nodes of the subsequent layers are in the middle of the

adjacent potential grid nodes of all the previous layers.

B. Adding RBFs

As the controlled system evolves in time, the output

tracking error ey is measured. If the Euclidean norm of ey

exceeds a prespecified threshold emax, the network attempts

to add new RBFs, that is, add new grid nodes. First, the

nearest neighboring grid node in the center grid, denoted

c(nearest), to the current input x is located among existing

grid nodes. Then the “nearer” neighboring grid node in the

center grid denoted c(nearer) is located, where ci(nearer) is

determined such that xi is between ci(nearest) and ci(nearer).

Next, the adding operation is performed for each coordinate

independently. A new grid node is added into Si if the

following conditions are satisfied:

(1) ‖ey‖ > emax;

(2) the elapsed time since the last operation, adding or

removing, is greater than Td;

(3)
∣

∣xi − ci(nearest)

∣

∣ >
∣

∣ci(nearest) − ci(nearer)

∣

∣ /4;

(4)
∣

∣xi − ci(nearest)

∣

∣ > di(threshold), where di(threshold) is

a design parameter that specifies the minimum grid

distance in the i-th coordinate and thus determines the

number of admissible structures denoted by N .

C. Removing RBFs

When the Euclidean norm of the output tracking error ey

is less than or equal to the prespecified threshold emax, the

network attempts to remove some of the existing RBFs to

prevent network redundancy. The RBF removing operation

is also implemented for each coordinate independently. The

grid node located at ci(nearest) is removed from Si if

(1) ‖ey‖ ≤ emax;

(2) the elapsed time since the last operation, adding or

removing, is greater than Td;

(3) ci(nearest) /∈ {xli, xui};

(4) the the grid node in the i-th coordinate with its

coordinate equal to ci(nearest) is in the higher than

or in the same layer as the highest layer of the two

neighboring grid nodes in the same coordinate;

(5)
∣

∣xi − ci(nearest)

∣

∣ < τ
∣

∣ci(nearest) − ci(nearer)

∣

∣, for τ ∈
(0, 0.5).

D. Uniform Grid Transformation

The determination of the radius of the RBF is much easier

in a uniform grid than in a nonuniform grid because the RBF

is radially symmetric with respect to its center. To simplify

the radius determination, the one-to-one mapping z(x) =
[z1(x1) · · · zn(xn)]⊤, proposed in [17], is used to transform

the center grid into a uniform grid. Suppose that the RBF

network is now with the v-th admissible structure after the

adding or removing operation and there are Mi,v distinct

elements in Si ordered as ci(1) < · · · < ci(Mi,v), where ci(k)

is the k-th element with ci(1) = xli and ci(Mi,v) = xui. Then

the mapping function zi(xi) : [xli, xui] → [1, Mi,v] takes

the following form,

zi(xi) = k +
xi − ci(k)

ci(k+1) − ci(k)
, ci(k) ≤ xi < ci(k+1) (5)

which maps ci(k) into the integer k. Thus, the transformation

z(x) : Ωx → R
n maps the center grid into a grid with unit

spacing between adjacent grid nodes such that the radius of

the RBF can be easily chosen. For the raised-cosine RBF,

the radius in every coordinate is selected to be equal to one

unit, that is, the radius will touch but not extend beyond the

neighboring grid nodes in the uniform grid. This particular

choice of the radius guarantees that for any given input x,

the number of nonzero raised-cosine RBFs in the uniform

grid is at most 2n.

IV. ADAPTIVE ROBUST CONTROLLER DEVELOPMENT

The proposed adaptive robust controller has the form

u = ua,v + us,v

= G−1
0

(

−f̂v(x) + y
(n)
d − Ke

)

+ us,v, (6)

where G0 = g0Ip with g0 > 0, f̂v(x) = W⊤
v ξv(x),

K = diag[k1 . . . kp] is selected such that Ami =
Ai−biki is Hurwitz, and us,v is the robustifying component

to be designed later. Note that the controller architecture

varies as the structure of the RBF network changes. A

particular controller architecture is referred to as a mode.

Because there are N admissible network structures, the

proposed controller has N different modes. Let Ωe0
be

a compact set including all possible initial state tracking

errors and let ce0
= maxe∈Ωe0

1
2e⊤P me, where P m =

diag[P m1 · · · P mp] is the solution to the continuous

Lyapunov matrix equation A⊤
mP m + P mAm = −2Qm for

Qm = diag[Qm1 · · · Qmp] with Qmi = Q⊤
mi > 0. Choose

ce > ce0
and let Ωe = {e : 1

2e⊤P me ≤ ce}. Then we

define Ωx = {x : x = e + xd, e ∈ Ωe, xd ∈ Ωxd
}, over

which the unknown function f (x) is approximated.

To proceed, recall that W v = [ω1,v · · · ωp,v]. For the

practical implementation, we constrain the weight vectors

ωi,v to reside in the compact sets

Ωi,v = {ωi,v : ωi ≤ ωij,v ≤ ωi, 1 ≤ j ≤ Mv} ,

where ωi and ωi, i = 1, . . . , p, are design parameters. Let

W ∗
v = [ω∗

1,v · · · ω∗
p,v] denote the “optimal” constant weight

matrix corresponding to each admissible network structure,

which are used only in the analytical analysis and defined as

W ∗
v = argmin

ωi,v∈Ωi,v

max
x∈Ωx

∥

∥

∥
f(x) − W⊤

v ξv(x)
∥

∥

∥
.
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Let Φv = W v −W ∗
v = [φ1,v · · · φp,v] with φi,v = ωi,v −

ω∗
i,v, and let c =

∑p
i=1 ci, where

ci = max
v

(

max
ωi,v ,ω∗

i,v
∈Ωi,v

1

2η
φ⊤

i,vφi,v

)

, (7)

η > 0 is a design parameter, and maxv(·) denotes the

maximization taken over all the admissible structures of the

RBF networks. It is obvious that ci decreases as η increases.

Let σ = B⊤P me. We employ the following projection

based weight matrix adaptation law

Ẇ v = Proj
(

W v, ηξv(x)σ⊤
)

, (8)

where Proj(W v,Θv) denotes Proj(ωij,v, θij,v) for i =
1, . . . , p and j = 1, . . . , Mv and Proj(ωij,v, θij,v) is the

discontinuous projection operators used in [14]. For the

above projection operator, we have

1

η
trace

(

Φ
⊤
v

(

Ẇ v − ηξv(x)σ⊤
))

≤ 0. (9)

Furthermore, the adaptation law (8) guarantees that if

ωi,v(t0) ∈ Ωi,v, then ωi,v(t) ∈ Ωi,v for t ≥ t0.

Substituting the proposed adaptive robust controller given

by (6) into the state tracking error dynamics (3) gives

ė = Ae + B
(

f (x) + G(x)(ua,v + us,v) − y
(n)
d + d

)

= Ae + B
(

f̂v(x) + G0ua,v − y
(n)
d

)

+ BG(x)us,v

+ B
(

f(x) − f̂v(x) + (G(x) − G0)ua,v + d
)

= Ame − BΦ
⊤
v ξv(x) + BG(x)us,v

+ B
(

f(x) − W ∗
v
⊤

ξv(x)
)

+ B (G(x) − G0)ua,v + Bd. (10)

As can be seen from (10), the robustifying component us,v

has to counteract the effects of the approximation error as

well as the bounded disturbance to force the state tracking

error e converge or, at least, be bounded. Let

df = max
v

(

max
x∈Ωx

∥

∥

∥
f (x) − W ∗

v
⊤

ξv(x)
∥

∥

∥

)

and dg = maxx∈Ωx
‖G(x) − G0‖. We propose a robusti-

fying component us,v of the form

us,v =

{

−
ks,v

g
σ

‖σ‖ if ‖σ‖ ≥ ν

−
ks,v

g
σ
ν

if ‖σ‖ < ν,
(11)

where

ks,v = df + dg‖ua,v‖ + do

and ν > 0 is a design parameter.

Remark: Let the increasing sequence {ti}
∞
i=0 be a partition

of the interval [t0, ∞) such that v = vi over [ti, ti+1].
During the i-th time interval [ti, ti+1], the controller u

given by (6) and (11) has a fixed architecture. Thus, as

discussed in [21], there exists a unique solution xvi
(t) to (2)

starting at xvi
(ti) over [ti, ti+1]. On the other hand, we have

imposed the dwelling time requirement on each mode so that

ti+1−ti ≥ Td. Therefore, we can piece together the solutions

xvi
(t) over [ti, ti+1] to establish the existence of a unique

solution x(t) to (2) starting at x(t0) over [t0, ∞), where

xv0
(t0) = x(t0) and xvi+1

(ti+1) = xvi
(ti+1).

Now we consider the following piecewise continuous

quadratic Lyapunov function candidate whenever the pro-

posed adaptive robust controller (6) is in the v-th mode,

Vv =
1

2
e⊤P me +

1

2η
trace

(

Φ
⊤
v Φv

)

. (12)

This Lyapunov function has jump discontinuities when the

proposed controller switches between different modes. Eval-

uating the time derivative of Vv on the solutions to (10) and

taking into account (9), we obtain

V̇v = e⊤P mė +
1

η
trace

(

Φ
⊤
v Φ̇v

)

= −e⊤Qme + σ⊤G(x)us,v + σ⊤d

+ σ⊤
(

f(x) − W ∗
v
⊤

ξv(x) + (G(x) − G0)ua,v

)

+
1

η
trace

(

Φ
⊤
v Φ̇v

)

− σ⊤
Φ

⊤
v ξv(x)

≤ −λmin(Qm)‖e‖2 + ks,v‖σ‖ + σ⊤G(x)us,v. (13)

If ‖σ‖ > ν, we have

ks,v‖σ‖ + σ⊤G(x)us,v ≤ ks,v‖σ‖ − ks,v‖σ‖ = 0; (14)

if ‖σ‖ ≤ ν, we have

ks,v‖σ‖ + σ⊤G(x)us,v ≤ ks,v‖σ‖ − ks,v

‖σ‖2

ν
≤

ks,v

4
ν.

(15)

Recall that ks,v = df + dg‖ua,v‖ + do. Let ks = df +
dg maxv (max ‖ua,v‖)+do, where the inner maximization is

taken over e ∈ Ωe, xd ∈ Ωxd
, y

(n)
d ∈ Ωyd

and ωi,v ∈ Ωi,v.

Combining (14) and (15), we obtain

ks,v‖σ‖ + σ⊤G(x)us,v ≤
ks,v

4
ν ≤

ks

4
ν. (16)

It follows from (7) that

1

2η
trace

(

Φ
⊤
v Φv

)

=

p
∑

i=1

1

2η
φ⊤

i,vφi,v ≤

p
∑

i=1

ci = c. (17)

Taking into account (16) and (17) in (13) gives

V̇v ≤ −λmin(Qm)‖e‖2 +
ks

4
ν

≤ −2µmVv + 2µmc +
ks

4
ν

≤ −µmVv − µm(Vv − 2c̄), (18)

where µm = λmin(Qm)/λmax(P m) and c̄ = c+ksν/(8µm).
Let t0,v and tf,v denote the initial and the final time instant,

respectively, of a continuous time period during which the

controller is in the v-th mode. It follows from (18) that if

Vv(t) ≥ 2c̄ for t ∈ [t0,v, tf,v], we have V̇v(t) ≤ −µmVv(t),
which implies that

Vv(t) ≤ exp(−µm(t − t0,v))Vv(t0,v) (19)

for t ∈ [t0,v, tf,v].
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Theorem 1: Let t1, t2 and t3 be three consecutive switch-

ing time instants so that v = v1 for t ∈ [t1, t2] and v = v2

for t ∈ [t2, t3]. Suppose that Vv(t) ≥ 2c̄ for t ∈ [t1, t3]. If

the dwelling time Td of the variable-structure RBF network

is selected such that

Td ≥
1

µm

ln

(

3

2

)

, (20)

then Vv2
(t2) < Vv1

(t1) and Vv2
(t3) < Vv1

(t2).
Proof: When the controller switches from the v1-th to

the v2-th mode, there exists a jump between Vv2
(t2) and

Vv1
(t2), which is denoted as

∆ = Vv2
(t2) − Vv1

(t2). (21)

We know that e is continuous because x is continuous.

Hence, it follows from (12) and (17) that

∆ =
1

2η
trace

(

Φ
⊤
v2

(t2)Φv2
(t2)

)

−
1

2η
trace

(

Φ
⊤
v1

(t2)Φv1
(t2)

)

and |∆| ≤ c. Because Vv2
(t) ≥ 2c̄ for t ∈ [t2, t3], it follows

from (19) and (21) that

Vv2
(t3) ≤ exp(−µm(t3 − t2))Vv2

(t2)

= exp(−µm(t3 − t2)) (Vv1
(t2) + ∆)

≤ exp(−µm(t3 − t2)) (Vv1
(t2) + c) .

Due to the dwelling time requirement on the variable-

structure RBF network, we have t3 − t2 ≥ Td, which

implies that exp(−µm(t3 − t2)) ≤ exp(−µmTd). Thus, we

have Vv2
(t3) ≤ exp(−µmTd) (Vv1

(t2) + c). In order to have

Vv2
(t3) < Vv1

(t2), it is sufficient to have

exp(−µmTd) (Vv1
(t2) + c) < Vv1

(t2). (22)

Solving (22) for Td, we obtain

Td >
1

µm

ln

(

Vv1
(t2) + c

Vv1
(t2)

)

.

It is easy to verify that the right-hand side of the above in-

equality is a decreasing function of Vv1
(t2) when Vv1

(t2) ≥
2c̄. Recall that c̄ > c. It follows that

ln

(

Vv1
(t2) + c

Vv1
(t2)

)

≤ ln

(

2c̄ + c

2c̄

)

< ln

(

3

2

)

.

Therefore, if we choose Td to satisfy the condition (20),

then (22) is satisfied, which implies that Vv2
(t3) < Vv1

(t2).
On the other hand, because Vv1

(t) ≥ 2c̄ for t ∈ [t1, t2], it

follows from (19) that Vv1
(t2) ≤ exp(−µm(t2−t1))Vv1

(t1),
which implies that

Vv1
(t1) ≥ exp(µm(t2 − t1))Vv1

(t2) ≥ exp(µmTd)Vv1
(t2),

because t2 − t1 ≥ Td. Note that, for the condition given

by (20), we have Vv1
(t2) > exp(−µmTd) (Vv1

(t2) + c).
Then it follows that

Vv1
(t1) ≥ exp(µmTd)Vv1

(t2)

> Vv1
(t2) + c ≥ Vv1

(t2) + ∆ = Vv2
(t2).

Hence, if the dwelling time Td satisfies the condition (20),

then Vv2
(t2) < Vv1

(t1) and Vv2
(t3) < Vv1

(t2). The proof of

the theorem is complete.

Theorem 2: Consider the system (2) driven by the pro-

posed adaptive robust controller (6) and (11) with the adap-

tation laws (8). Suppose that Td satisfies (20). If ce ≥
max {ce0

+ c, 2c̄ + c}, then e(t) ∈ Ωe and x(t) ∈ Ωx for

t ≥ t0. Moreover, there exists a finite time T1 ≥ t0 such

that 1
2e⊤(t)P me(t) ≤ 2c̄ + c for t ≥ T1. If, in addition,

there exists a finite time Ts ≥ t0 such that v = vs for

t ≥ Ts, then there exists a finite time T2 ≥ Ts such that
1
2e⊤(t)P me(t) ≤ 2c̄ for t ≥ T2.

Proof: If Td satisfies (20), it follows from Theorem 1

that Vv(t) will visit the interval [0, 2c̄] infinitely often.

That is, for any T ≥ t0, there exists a time t ≥ T such

that Vv(t) ≤ 2c̄. Let T1 ≥ t0 be the first time such that

Vv(T1) ≤ 2c̄. The trajectory of Vv(t) starting at t = T1

will stay inside the interval [0, 2c̄] until it jumps outside

when the controller switches the mode. However, the jump

of Vv(t) between different modes satisfies that |∆| ≤ c.

Hence, we have Vv(t) ≤ 2c̄ + c for t ≥ T1. On the other

hand, we know that Vv(t0) ≤ ce0
+ c. Therefore, if ce ≥

max {ce0
+ c, 2c̄ + c}, then Vv(t) ≤ ce for t ≥ t0. Because

1
2e⊤(t)P me(t) ≤ Vv(t), we have 1

2e⊤(t)P me(t) ≤ ce,

which implies that e(t) ∈ Ωe and x(t) ∈ Ωx, for t ≥ t0.

Moreover, we have 1
2e⊤(t)P me(t) ≤ 2c̄ + c for t ≥ T1.

If, in addition, we have v = vs for t ≥ Ts, then it follows

from (18) that V̇vs
≤ −µmVvs

− µm(Vvs
− 2c̄) for t ≥ Ts.

Thus, there exists a finite time T2 ≥ Ts such that Vvs
≤ 2c̄,

which implies that 1
2e⊤(t)P me(t) ≤ 2c̄, for t ≥ T2. The

proof of the theorem is complete.

V. EXAMPLE

We illustrate the effectiveness of the proposed variable-

structure RCRBF network based adaptive robust controller

with a planar articulated two-link manipulator, whose model

is given in [22, p. 394]. Recall that q1 and q2 denote the

angular positions of joint 1 and 2, respectively, and τ1 and τ2

denote the applied torques. We assume that there exist input

disturbances η1 and η2 associated with the applied torques

τ1 and τ2, respectively. The dynamics of this two-link rigid

robot are described by
[

H11 H12

H21 H22

] [

q̈1

q̈2

]

+

[

−hq̇2 −h (q̇1 + q̇2)
hq̇1 0

] [

q̇1

q̇2

]

=

[

τ1 + η1

τ2 + η2

]

,

where H11 = a1 + 2a3 cos(q2) + 2a4 sin(q2), H12 = H21 =
a2 +a3 cos(q2)+a4 sin(q2), H22 = a2 and h = a3 sin(q2)−
a4 cos(q2) with a1 = I1 + m1l

2
c1 + Ie + mel

2
ce + mel

2
1, a2 =

Ie + mel
2
ce, a3 = mel1lce cos(δe) and a4 = mel1lce sin(δe).

The same plant model was also used in [9], [11] to test

the proposed controllers there but without input disturbances,

that is, η = 0. In our simulation, we use the same numerical

values as in [9], [11], [22, p. 396], that is,

m1 = 1.0 me = 2.0 I1 = 0.12 Ie = 0.25
lc1 = 0.5 lce = 0.6 l1 = 1 δe = π/6.
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Fig. 2. Tracking errors e1 and e2.
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Fig. 3. Variation of the number of grid nodes.

We select the input disturbances η1 and η2 to be the band-

limited white noise signals. The manipulator is initially at

rest, that is, q1 = q2 = 0 and q̇1 = q̇2 = 0.

We consider the same reference signals as in [11], which

are defined as

qd1(t) =
π

6
cos(2πt) and qd2(t) =

π

4
cos(2πt).

Thus, we choose the grid boundaries for q1, q̇1, q2 and q̇2

to be [−1.0 1.0], [−4.0 4.0], [−1.0 1.0] and [−5.5 5.5],
respectively. For the controller, we choose k1 = [1 2],
k2 = [4 4], Q1 = Q2 = 0.5I2, df = dg = do = 5,

ν = 0.025, g = 0.1 and G0 = 2I2. The rest of the

design parameters of the variable-structure RCRBF network

are selected as emax = 0.005, dthreshold = [0.2 0.3 0.2 0.3],
ω1 = ω2 = −25, ω1 = ω2 = 25, η = 500 and Td = 1.5. In

Fig. 2 and Fig. 3, we show the performance of the proposed

adaptive robust controller.

VI. CONCLUSIONS

A novel adaptive robust controller has been proposed for

the output tracking control of a class of MIMO uncertain

systems, where a variable-structure RBF network is used to

approximate unknown system dynamics. The RBF network

can grow or shrink on-line dynamically according to the

tracking performance. The raised-cosine RBF was employed

in order to guarantee the overall computational efficiency. To

account for the effects of the structure variation of the RBF

network in the stability analysis of the closed-loop system,

the piecewise continuous Lyapunov function for switched

and hybrid systems was used. Simulation results confirm the

effectiveness of the proposed adaptive robust controller.
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