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Abstract— We provide new techniques for building explicit
global strict Lyapunov functions for broad classes of time
varying nonlinear systems satisfying LaSalle conditions. Our
new constructions are simpler than the designs available in
the literature. We illustrate our work using the Lotka-Volterra
model, which plays a fundamental role in bioengineering.

I. INTRODUCTION

Lyapunov functions provide vital tools for the analysis

of, and controller design for, nonlinear systems [5], [6],

[15]. The two main types of Lyapunov functions are strict

Lyapunov functions (also called strong Lyapunov functions,

having negative definite time derivatives along the trajecto-

ries of the system) and nonstrict Lyapunov functions (also

called weak Lyapunov functions, whose time derivatives

along the trajectories are negative semidefinite); see Section

II below for precise definitions.

Strict Lyapunov functions are typically far more useful

than nonstrict ones. In general, nonstrict Lyapunov functions

can only be used to prove asymptotic stability, via e.g. the

LaSalle invariance principle, while strict Lyapunov functions

can often be used to show robustness properties, such as

input-to-state stability (ISS). Robustness is essential in engi-

neering, largely due to uncertainty in dynamical models and

noise entering into controllers. For this reason, it is important

to construct strict Lyapunov functions, even for systems that

are already known to be asymptotically stable.

Moreover, many controller methods (such as backstepping

[6], forwarding [13], [15] and universal stabilizing controllers

[16]) require strict Lyapunov functions. For example, if V is

a global strict Lyapunov function for a system ẋ = f(x) for

which −∇V (x)f(x) is radially unbounded and g is locally

Lipschitz, then ẋ = f(x) + g(x)[K(x) + d] is input-to-

state stable if K(x) = −∇V (x)g(x). Consequently, when an

explicit strict Lyapunov function is known, many important

stabilization problems can be solved almost immediately.

In general, it is much easier to construct nonstrict Lya-

punov functions, owing to the more restrictive decay condi-

tion for strict Lyapunov functions. For instance, when a pas-

sive nonlinear system is stabilized by linear output feedback,

the energy (i.e., storage) function can typically be used as the

weak Lyapunov function. When a system is stabilized via

the Jurdjevic-Quinn theorem, nonstrict Lyapunov functions
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are typically available, e.g., using the Hamiltonian for Euler

Lagrange systems [2], [4], [10], [14]. If a system is known

to be asymptotically stable, then converse Lyapunov function

theory typically guarantees the existence of a strict Lya-

punov function. However, the Lyapunov functions provided

by converse theory are often abstract and nonexplicit, and

therefore may not always lend themselves to applications.

This has motivated a significant literature on constructing

strict Lyapunov functions, e.g., [1], [2].

In this note, we present two new strict Lyapunov function

constructions, based on transforming nonstrict Lyapunov

functions into strict ones, under Lie derivative conditions.

The assumptions for our first construction are more general

than those of [12] and different from those of [8, Corollary

2]. This is because we allow time varying systems, including

cases where all of the higher order Lie derivatives are allowed

to vanish at some points outside the equilibrium, on some

time intervals. Our construction is simpler than the one in

[12], even in the special case of time invariant systems.

Our second result uses the Matrosov approach. In general,

Matrosov’s method can be difficult to apply, because one

needs to find the necessary auxiliary functions. Here we give

simple sufficient conditions leading to a systematic design of

auxiliary functions. This makes it possible to construct strict

Lyapunov functions via the Matrosov theorem from [11]. We

illustrate our approach by building a strict Lyapunov function

for the Lotka-Volterra dynamics, which plays a fundamental

role in bioengineering.

II. DEFINITIONS AND ASSUMPTIONS

Throughout this note, X is any open subset of R
n contain-

ing the origin. Consider a nonlinear time varying dynamics

ẋ = f(t, x), x ∈ X (1)

where f : [0,∞)×X → R
n is C∞, X is positively invariant

for (1), and f(t, 0) = 0 for all t ≥ 0. For convenience, we

always assume that (1) is periodic of period T in t, meaning

there is a constant T > 0 so that f(t+T, x) = f(t, x) for all

(t, x) ∈ [0,∞) × X . We further assume that (1) is forward

complete, meaning for each initial condition x(t0) = x0

with t0 ≥ 0 and x0 ∈ X , the solution x(t, t0, x0) for

the corresponding initial value problem for (1) is uniquely

defined on [t0,∞). Set N = {1, 2, 3, . . .}. Given a C∞

function V : [0,∞) ×X → R, define {ai : i ∈ N} by

a1(t, x) = −∂V
∂x (t, x)f(t, x) − ∂V

∂t (t, x) and

ar(t, x) = −∂ar−1

∂x (t, x)f(t, x) − ∂ar−1

∂t (t, x)
(2)
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for all r ≥ 2. If V and f are time invariant, then ar =
(−1)rLr

fV for all r ≥ 1, where Lr
f is the usual iterated

Lie derivative defined by L0
fV = V , LfV (x) = L1

fV (x) =

(∂V/∂x)(x)f(x) and Lk
fV = Lf (Lk−1

f V ) for k ≥ 2. If

we use Ġ = (∂G/∂t)(t, x) + (∂G/∂x)(t, x)f(t, x) for any

C1 function G, then ȧr = −ar+1 for all r. A continuous

function k : [0,∞) → [0,∞) is of class K∞ (written

k ∈ K∞) provided it is zero at zero, strictly increasing and

unbounded. A continuous function G : [0,∞) × X → R is

positive definite (resp., positive semi-definite) on X provided

G(t, 0) = 0 for all t and inf{G(t, x) : t ≥ 0} > 0 (resp.,

≥ 0) for all x ∈ X \ {0}. A function G is negative (semi-

)definite provided −G is positive (semi-)definite.

A function V : [0,∞) ×X → R is called a storage func-

tion provided there exist positive definite functions α1, α2 :
X → [0,∞) such that the following hold: (a) for each i,
αi(q) → +∞ whenever |q| → +∞ with q remaining in X ;

and (b) α1(x) ≤ V (t, x) ≤ α2(x) for all x ∈ X . A storage

function V is called a non-strict (resp., strict) Lyapunov-like

function for (5) provided it is C1 and V̇ (t, x) is negative

semi-definite (resp., negative definite). If, in addition, for

each i and each q̄ ∈ ∂X , αi(q) → +∞ when q → q̄ then

a non-strict (resp., strict) Lyapunov-like function is called a

non-strict (resp., strict) Lyapunov function. The existence of

strict Lyapunov functions is key to proving uniform global

asymptotic stability (UGAS) [11].

III. FIRST CONSTRUCTION: ITERATED LIE DERIVATIVES

To motivate our assumptions, suppose that a given C∞

time invariant system ẋ = f(x) evolving on R
n admits a

time invariant C∞ nonstrict Lyapunov function V (x) such

that for each q ∈ R
n \ {0}, there is an i ∈ N such that

Li
fV (q) 6= 0. Then if LfV (x(t, x0)) ≡ 0 along some trajec-

tory x(·, x0) of the system, we can differentiate repeatedly

in time to get Lk
fV (x(t, x0)) ≡ 0 for all t ≥ 0 and k ∈ N.

Hence, UGAS follows from the LaSalle invariance principle.

However, it is not obvious how to construct a global strict

Lyapunov function in this situation. This motivates our (more

general) hypotheses in the following theorem:

Theorem 1: Consider the time varying system (1) with

state space X = R
n and period T > 0 in t. Assume that

there exists a C∞ storage function V : [0,∞)×R
n → [0,∞)

having period T in t such that the following hold:

(i) V (·) is a nonstrict Lyapunov function for (1); and

(ii) there exist constants τ ∈ (0, T ] and ℓ ∈ N and a positive

definite continuous function ρ such that for all x 6= 0
and all t ∈ [0, τ ],

a1(t, x) +
∑ℓ

m=2 a2
m(t, x) ≥ ρ(V (t, x)) . (3)

(See (2).) Then we can explicitly determine functions Fj and

G, with G periodic of period T in t, such that

V ♯(t, x) =
∑ℓ−1

j=1 Fj

(

V (t, x)
)

Aj(t, x)+G
(

t, V (t, x)
)

where Aj(t, x) =
∑j

m=1 am+1(t, x)am(t, x) ∀j
(4)

is a strict Lyapunov function for (1), giving UGAS of (1).

Remark 1: Theorem 1 remains true if V is merely Cℓ+1

(instead of C∞). The assumptions of Theorem 1 are related

to, but more general than, the assumptions of the strict

Lyapunov function construction from [12] and different from

the assumptions of [8, Corollary 2]. In fact, the assumptions

of [12] are the special case of (i)-(ii) in which f and V
are time invariant; in that case, (3) is the requirement that

there is a continuous positive definite function ρ so that

−LfV (x) +
∑ℓ

m=2(L
m
f (x))2 ≥ ρ(V (x)) for all x ∈ R

n.

Our result is new, even in this special case, because the strict

Lyapunov function construction in our proof of Theorem 1

is simpler than the one in [12]; the construction in [12] uses

a complicated smooth dynamic scaling that we do not need

here. It is important to have strict Lyapunov functions that are

as simple as possible when they are used for feedback design

and robustness analysis. We prove Theorem 1 in Section V.

IV. SECOND CONSTRUCTION: MATROSOV CONDITIONS

To simplify the notation in our next theorem, we consider

only time invariant systems

ẋ = f(x), x ∈ X (5)

for which X ⊆ R
n is positively invariant, where f(0) =

0; see Remark 2 below for the generalization to (1). We

use the Matrosov approach from [11] to construct global

strict Lyapunov functions for (5). In addition to a nonstrict

Lyapunov function, the Matrosov results from [11] require

appropriate auxiliary functions, which can be difficult to find

in practice. The paper [11] does not provide any general

methods for constructing auxiliary functions. Hence, the

theorem we give next sheds new light on the Matrosov

theorems, because it gives a new mechanism for choosing

auxiliary functions.

However, the most important features of our second con-

struction are that (A) it applies to systems whose state space

is only a subset of R
n and (B) it may yield Lyapunov

functions that are simpler than the ones from Theorem

1, and that also have desirable local properties, such as

local boundedness from below by positive definite quadratic

functions; see Section VII. For the rest of this section, we

assume that all of our functions are sufficiently smooth.

Assumption 1: There exist a storage function V1 : X →
[0,∞); functions h1, . . . , hm such that hj(0) = 0 for all

j; everywhere positive functions r1, . . . , rm and ρ; and an

integer N > 0 for which

∇V1(x)f(x) ≤ −r1(x)h2
1(x) − ... − rm(x)h2

m(x) (6)

and
N−1
∑

l=0

m
∑

j=1

[

Ll
fhj(x)

]2 ≥ ρ(V1(x))V1(x) (7)

hold for all x ∈ X . Moreover, f is defined on R
n, and there

is a function Γ ∈ K∞ such that

|f(x)| ≤ Γ(|x|) ∀x ∈ R
n. (8)

Also, V1 has a positive definite quadratic lower bound in

some neighborhood of the origin.

In Section VI, we prove the following:
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Theorem 2: If (5) satisfies Assumption 1, then one can

determine explicit functions ki,Ωi ∈ K∞ ∩ C1 such that

S(x) =
N

∑

i=1

Ωi

(

ki(V1(x)) + Vi(x)
)

(9)

with the choices

Vi(x) = −
m

∑

l=1

Li−2
f hl(x)Li−1

f hl(x) , i = 2, . . . , N (10)

satisfies S(x) ≥ V1(x) for all x ∈ X and is such that

∇S(x)f(x) is negative definite. If, in addition, X = R
n,

then the system (5) is globally asymptotically stable.

Throughout our proofs, all inequalities should be under-

stood to hold globally unless otherwise indicated, and we

leave out the arguments of our functions when they are clear.

V. PROOF OF THEOREM 1

By enlarging ℓ ≥ 1 in Theorem 1 as necessary without

relabeling, we can assume that ℓ ≥ 3. By minorizing ρ
from (3) as necessary without relabeling, we assume that

ρ(r) =
ω(r)

K(r)
(11)

for some ω ∈ K∞ ∩ C1 and some strictly increasing

everywhere positive function K ∈ C1, without loss of

generality; see [9, Lemma A.8] for the construction of ω
and K. Since the am’s and V are periodic in t, we can find

an everywhere positive increasing function Γ ∈ C1 such that

Γ
(

V (t, x)
)

≥ (ℓ+2)|am(t, x)|+1 ∀m ∈ {1, ..., ℓ+1} (12)

holds for all x ∈ R
n and t ≥ 0, e.g., by majorizing

s 7→ 1 + max{(ℓ + 2)|am(t, x)| : t ≥ 0,m ∈ {1, 2, . . . , ℓ +
1}, V (t, x) ≤ s} by a C1 function.

We use these functions, which have period T in t:

Mj(t, x) =
∑j

m=1 am+1(t, x)am(t, x) +
∫ V (t,x)

0
Γ(r)dr

and Nj(t, x) =
∑j+1

m=2 a2
m(t, x) + a1(t, x)

for j = 1, 2, . . . ℓ − 1. Since a1 = −V̇ ≥ 0, (12) gives

Ṁ1 = ȧ2(t, x)a1(t, x) − a2
2(t, x)

−Γ(V (t, x))a1(t, x)
≤ −a2

2(t, x) − a1(t, x) = −N1(t, x) ,
(13)

since ȧi = −ai+1 for all i. Also, for each j ∈ {2, ..., ℓ− 1},

Ṁj ≤ −∑j
m=1 a2

m+1(t, x)

+
∑j

m=2 |am+2(t, x)||am(t, x)|
+|a3(t, x)|a1(x) − Γ

(

V (t, x)
)

a1(t, x)

≤ −∑j
m=1 a2

m+1(t, x) + |a3(t, x)|a1(t, x)

+
∑j

m=2 |am+2(t, x)||am(t, x)|
−

[

(ℓ + 2)|a3(t, x)| + 1
]

a1(t, x).

From (12), we deduce that for all j ∈ {2, ..., ℓ − 1},

Ṁj ≤ −∑j
m=1 a2

m+1(t, x)

+Γ(V (t,x))
ℓ+2

∑j
m=2 |am(t, x)|

−
[

(ℓ + 1)|a3(t, x)| + 1
]

a1(t, x).

(14)

It follows from the Cauchy Inequality that for all j ∈
{2, ..., ℓ − 1},

Ṁj ≤ −∑j
m=1 a2

m+1(t, x)

+Γ
(

V (t, x)
)

√

∑j
m=2 a2

m(t, x)

−
[

(ℓ + 1)|a3(t, x)| + 1
]

a1(t, x)

= −∑j+1
m=2 a2

m(t, x) − a1(t, x)

+Γ
(

V (t, x)
)

√

∑j
m=2 a2

m(t, x)

−(ℓ + 1)|a3(t, x)|a1(t, x)

≤ −Nj(t, x) + Γ
(

V (t, x)
)√

Nj−1(t, x),

(15)

since a1 = −V̇ ≥ 0 everywhere. Set

Ω(v) =
2τω(v)

3TℓΓ2(v)K(v)
, (16)

kℓ−1(v) = 6T
τ K(v)ω2ℓ−1

(v), and

kp(v) = kℓ−1(v)Ω1−2l−p−1

(v)
(17)

for p = 1, 2, . . . , ℓ− 2. The functions k1, k2, . . . , kℓ−1 ∈ C1

are positive definite.

Pick a C1 everywhere positive increasing function k0 such

that
k0

(

V (t, x)
)

+ k′
0

(

V (t, x)
)

V (t, x)

≥ ∑ℓ−1
p=1

∣

∣k′
p

(

V (t, x)
)
∣

∣

∣

∣Mp(t, x)
∣

∣ + 1.
(18)

This can be done because each Mp is periodic in t, and

because V is a storage function that is also periodic in t. Let

S1(t, x) =
ℓ−1
∑

p=1

kp

(

V (t, x)
)

Mp(t, x) + k0

(

V (t, x)
)

V (t, x).

Then

Ṡ1 =
∑ℓ−1

p=1 kp

(

V (t, x)
)

Ṁp

+
[

∑ℓ−1
p=1 k′

p

(

V (t, x)
)

Mp(t, x)
]

V̇

+
[

k0

(

V (t, x)
)

+ k′
0

(

V (t, x)
)

V (t, x)
]

V̇

≤ ∑ℓ−1
p=1 kp(V (t, x))Ṁp

+
[

∑ℓ−1
p=1

∣

∣k′
p

(

V (t, x)
)
∣

∣

∣

∣Mp(t, x)
∣

∣

]

[−V̇ ]

+
[

k0

(

V (t, x)
)

+ k′
0

(

V (t, x)
)

V (t, x)
]

V̇

≤ ∑ℓ−1
p=1 kp

(

V (t, x)
)

Ṁp,

(19)

using (18) and the fact that V̇ is nonpositive. Using the

definition of a1, (13) and (15), we deduce that

Ṡ1 ≤ −k1(V )N1

+
∑ℓ−1

p=2 kp(V )
[

− Np + Γ(V )
√

Np−1

]

≤ −∑ℓ−1
p=1 kp(V )Np +

∑ℓ−1
p=2 kp(V )Γ(V )

√

Np−1.

Let q : R → [0, 1] be any continuous function with period T
that satisfies (a) q(t) = 0 when t ∈ [τ, T ] and (b) q(t) = 1
when t ∈ [ τ

3 , 2τ
3 ]. By (3), (11), and the nonnegativity of

Nl−1, we deduce that

Nℓ−1(t, x) ≥ q(t)
ω(V (t, x))

K(V (t, x))
(20)
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for all (t, x) ∈ [0,∞) × R
n. It follows that

Ṡ1 ≤ −kℓ−1(V )q(t)
ω(V )

K(V )
− ∑ℓ−2

p=1 kp(V )Np

+
∑ℓ−2

p=1 kp+1(V )Γ(V )
√

Np.
(21)

Let G be any C1 function such that

G′(v) ≥
T

∣

∣

∣

∣

kℓ−1(v)
ω′(v)K(v) − ω(v)K ′(v)

K2(v)
+ k′

ℓ−1(v)
ω(v)

K(v)

∣

∣

∣

∣

for all v ≥ 0. Let

S2(t, x) = G
(

V (t, x)
)

+

1
T

(

∫ t

t−T

∫ t

s
q(r)drds

)

kℓ−1

(

V (t, x)
) ω

(

V (t, x)
)

K
(

V (t, x)
) .

(22)

Since
∫ t

t−T

∫ t

s
q(r)drds ≤ T 2 and d

dt

∫ t

t−T

∫ t

s
q(r)drds =

Tq(t) −
∫ t

t−T
q(r)dr everywhere, we get

Ṡ2 ≤ q(t)kℓ−1

(

V (t, x)
) ω(V

(

t, x)
)

K
(

V (t, x)
)

− 1
T

(

∫ t

t−T
q(r)dr

)

kℓ−1

(

V (t, x)
) ω

(

V (t, x)
)

K
(

V (t, x)
) .

(23)

Consider the following function, which has period T in t:

S3(t, x) = S1(t, x) + S2(t, x). (24)

Since
∫ t

t−T
q(r)dr ≥ τ

3 for all t ∈ R, (21) and (23) give

Ṡ3 ≤ − 1
T

(

∫ t

t−T
q(r)dr

)

kℓ−1(V ) ω(V )
K(V )

−∑ℓ−2
p=1 kp(V )Np

+
∑ℓ−2

p=1 kp+1(V )Γ(V )
√

Np

≤ − τ
3T kℓ−1(V )

ω(V )

K(V )
− ∑ℓ−2

p=1 kp(V )Np

+
∑ℓ−2

p=1 kp+1(V )Γ(V )
√

Np.

(25)

From the triangular inequality c1c2 ≤ c2
1 + 1

4c2
2 for

nonnegative values c1 and c2, we deduce that

kp+1(V )Γ(V )
√

Np =
{

√

kp(V )Np

}

{

Γ(V )kp+1(V )√
kp(V )

}

≤ kp(V )Np +
Γ2(V )k2

p+1(V )

4kp(V )

(26)

for p = 1, 2, . . . , ℓ−2 when V 6= 0. Summing the inequalities

in (26) over p and combining the result with (25), we get

Ṡ3 ≤ − τ
3T kℓ−1(V ) ω(V )

K(V ) +
∑ℓ−2

p=1

Γ2(V )k2
p+1(V )

4kp(V )
(27)

when x 6= 0. By our choices (17) of the kp’s, (27) gives

Ṡ3 ≤ − τ
3T kℓ−1(V ) ω(V )

K(V )

+
∑ℓ−2

p=1

Γ2(V )k2
ℓ−1(V )Ω2(1−2ℓ−p−2)(V )

4kℓ−1(V )Ω1−2ℓ−p−1
(V )

≤ − τ
3T kℓ−1(V ) ω(V )

K(V )

+(ℓ − 2)Γ2(V )kℓ−1(V )Ω(V )
4

≤ − τ
6T kℓ−1(V (t, x)) ω(V (t,x))

K(V (t,x)) , x 6= 0,

(28)

where the last inequality is by our choice of Ω in (16).

Recalling our choice (17) of kℓ−1 now gives

Ṡ3(t, x) ≤ −ω(V (t, x))2
ℓ−1+1, (29)

which has a negative definite right hand side. However, S3

is not necessarily positive definite and radially unbounded,

and therefore may not be a strict Lyapunov function.

To obtain a strict Lyapunov function, consider

V ♯(t, x) = V (t, x)S3(t, x) + κ
(

V (t, x)
)

V (t, x) (30)

where κ ∈ C1 is an everywhere positive function with an

everywhere positive first derivative such that κ(V (t, x)) ≥
|S3(t, x)|+ 1 for all x ∈ R

n and t ≥ 0. Then V ♯ is positive

definite and radially unbounded because V ♯(t, x) ≥ V (t, x).
Since we also have V̇ ≤ 0 everywhere, we get

V̇ ♯ = V (t, x)Ṡ3(t, x) + V̇ (t, x)S3(t, x)

+
[

κ′
(

V (t, x)
)

V (t, x) + κ
(

V (t, x)
)]

V̇ (t, x)

≤ −ω2ℓ−1+1(V (t, x))V (t, x).

The result readily follows from the formula (24) for S3, by

collecting the functions involving V in the formula for V ♯.

VI. PROOF OF THEOREM 2

In the following proof, we omit the dependencies of the

functions on x when they are clear from the context. To

simplify our notation, we introduce the functions

N1(x) = R(x)
∑m

l=1 h2
l (x) and

Ni(x) =
∑m

l=1

[

Li−1
f hl(x)

]2

∀i ≥ 2,

where R(x) =

∏m
i=1 ri(x)

∏m
i=1[ri(x) + 1]

.

(31)

Since R is everywhere positive and satisfies R(x) ≤ ri(x)
for all x ∈ R

n and all i ∈ {1, ...,m}, (6) and (10) give

∇V1(x)f(x) ≤ −N1 ∀x ∈ X , and

∇Vi(x)f(x) = −∑m
l=1

[

Li−1
f hl

]2

−∑m
l=1 Li−2

f hlL
i
fhl

≤ −Ni +
∑m

l=1 |Li−2
f hl||Li

fhl|

(32)

for i = 2, . . . , N and all x ∈ X . In particular, we have:

∇V2(x)f(x) ≤ −N2(x) +
∑m

l=1

|L2
f hl(x)|√
R(x)

√

N1(x);

∇Vi(x)f(x) ≤ −Ni(x) +
[

∑m
l=1 |Li

fhl(x)|
]

√

Ni−1(x)

for i = 3, 4, . . . , N . Since f(0) = 0, all of the functions

Li
fhl(x) are zero at the origin and sufficiently smooth for

all i ∈ N. Also, Assumption 1 provides a positive definite

quadratic lower bound for V1 near the origin. Moreover, the

fact that V1 is a storage function implies that there exists a

function α ∈ K∞ such that V1(x) ≥ α(|x|) for all x ∈ X .

Therefore, we can use (8) to determine a continuous

everywhere positive function φ1 such that for all x ∈ X ,

∑m
l=1

|L2
f hl(x)|√
R(x)

≤ φ1

(

V1(x)
)
√

V1(x) and
∑m

l=1 |Li
fhl(x)| ≤ φ1

(

V1(x)
)
√

V1(x)
(33)
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for i = 3, . . . , N ; see [9, Chapter 5]. It follows that for all

i ≥ 2,

∇Vi(x)f(x) ≤ −Ni(x)

+φ1

(

V1(x)
)
√

Ni−1(x)
√

V1(x).
(34)

Arguing as we did to get (33) gives a continuous everywhere

nonnegative function p1 such that |Vi(x)| ≤ p1(V1(x))V1(x)
for i = 1, . . . , N on x ∈ X (by first finding an increasing

everywhere positive function α̃ so that |Vi(x)| ≤ α̃(|x|)|x|2
for all i ≥ 2 and all x near 0, using the fact that hr(0) = 0
for all r to get the estimate for the i = 2 case.) Finally,

we can find a decreasing everywhere positive function ρ so

that R(x) ≥ ρ(α(|x|)) ≥ ρ(V1(x)) on X , and so also a

continuous everywhere positive function ρ̃ so that

∑N
i=1 Ni(x) ≥ ρ̃

(

V1(x)
)

V1(x)

on X , by (7). Hence, the assumptions of [11, Theorem

1] hold with ai ≡ 1
2 , so [11, Theorem 1] constructs the

necessary strict Lyapunov-like function.

Remark 2: We can prove an analog of Theorem 2 for (1),

under a time varying version of Assumption 1. The time

varying analog of Assumption 1 is obtained by (A) replacing

the arguments of f and the Vi’s by (t, x) and (B) replacing

∇Vi(x)f(x) with (∂Vi/∂t)(t, x) + (∂Vi/∂x)(t, x)f(t, x).
The proof then proceeds as before, using a simple extension

of [11, Theorem 1] to time varying systems [11].

VII. LOTKA-VOLTERRA EXAMPLE

We illustrate Theorem 2 using the celebrated Lotka-

Volterra Predator-Prey system
{

χ̇ = γχ
(

1 − χ
L

)

− aχζ,

ζ̇ = βχζ − ∆ζ
(35)

with positive constants a, β γ, ∆, and L. System (35) is

a simple model of one predator feeding on one prey. The

population of the predator is ζ, χ is the population of the

prey, and the constants are related to the birth and death

rates; see [3], [7] for an extensive analysis of this model

and generalizations to several predators. We assume that

the population levels are positive. While there are many

Lyapunov constructions for Lotka-Volterra models available

(based on computing the LaSalle invariant set), to the best of

our knowledge, the result to follow is original and significant

because we provide a global strict Lyapunov function. We

only sketch the construction; see [9] for details.

The change of coordinates and constants

x(t) = 1
Lχ

(

t
γ

)

, y(t) = a
βLζ

(

t
γ

)

,

α = βL
γ and d = ∆

γ

(36)

produce the dynamics
{

ẋ = x (1 − x) − αxy,
ẏ = αxy − dy.

(37)

For simplicity, we assume that the model parameters are such

that α > d. Then the constants

x∗ = d
α and y∗ = 1

α − d
α2 (38)

satisfy x∗ ∈ (0, 1) and y∗ > 0. Moreover, the error variable

(x̃, ỹ) = (x − x∗, y − y∗) has the dynamics
{

˙̃x = −[x̃ + αỹ](x̃ + x∗)
˙̃y = αx̃(ỹ + y∗) ,

(39)

evolving on X = (−x∗,+∞) × (−y∗,+∞). We do our

Lyapunov construction for the system (39), which gives

f(x̃, ỹ) =

[

−[x̃ + αỹ](x̃ + x∗)
αx̃(ỹ + y∗)

]

. (40)

We verify the assumptions of Theorem 2 using m = 1,

N = 2, r1 ≡ 1, h1(x̃, ỹ) = x̃, and

V1(x̃, ỹ) = x̃−x∗ ln
(

1+ x̃
x∗

)

+ ỹ−y∗ ln
(

1+ ỹ
y∗

)

. (41)

Simple calculations show that V1 is a storage function whose

time derivative along the trajectories of (39) satisfies

V̇1 =
[

1 − x∗

x∗+x̃

]

˙̃x +
[

1 − y∗

y∗+ỹ

]

˙̃y

= − x̃
x∗+x̃ [x̃ + αỹ](x̃ + x∗) + αỹ

y∗+ỹ x̃(ỹ + y∗)

= −x̃[x̃ + αỹ] + αỹx̃ = −x̃2;

(42)

and Lfh1(x̃, ỹ) = −[x̃ + αỹ](x̃ + x∗). Taking the Ni’s

as in (31), we get N1(x̃, ỹ) = 1
2h2

1(x̃, ỹ) and N2(x̃, ỹ) =
(Lfh1(x̃, ỹ))2. One can therefore find a constant d > 0 such

that
∑2

i=1 Ni(x̃, ỹ) ≥ d V1(x̃,ỹ)
1+V 2

1 (x̃,ỹ) (43)

on X [9]. Also, V1 has a positive definite quadratic lower

bound near the origin [9, Lemma A.9]. Hence, Assumption

1 holds with ρ(r) = d/(1 + r2), so Theorem 2 constructs

the global strict Lyapunov function for (39).

Let us construct the strict Lyapunov function guaranteed

by the theorem, using the notation from (10) and (31).

We have V2(x̃, ỹ) = −h1(x̃, ỹ)Lfh1(x̃, ỹ), LfV1(x̃, ỹ) ≤
−N1(x̃, ỹ), and

LfV2(x̃, ỹ) = −(Lfh1(x̃, ỹ))2−h1(x̃, ỹ)L2
fh1(x̃, ỹ)

= −N2(x̃, ỹ)−h1(x̃, ỹ)L2
fh1(x̃, ỹ).

(44)

Substituting

L2
fh1(x̃, ỹ) = −( ˙̃x + α ˙̃y)(x̃ + x∗) − (x̃ + αỹ) ˙̃x

= − (x∗ + 2x̃ + αỹ) ˙̃x − (x∗ + x̃) α ˙̃y
= − (x∗ + 2x̃ + αỹ) Lfh1(x̃, ỹ)

−α2 (x∗+x̃) h1(x̃, ỹ)(ỹ+y∗)

(45)

into (44), we get

LfV2(x̃, ỹ) ≤ −N2(x̃, ỹ)
+ (x∗+2|x̃|+α|ỹ|) |h1(x̃, ỹ)||Lfh1(x̃, ỹ)|
+α2 (x∗ + |x̃|) (|ỹ| + y∗)h

2
1(x̃, ỹ)

≤ −N2(x̃, ỹ)
+ (x∗+2|x̃|+α|ỹ|) |h1(x̃, ỹ)||Lfh1(x̃, ỹ)|
+α2x∗y∗

(

1 + |x̃|
x∗

) (

1 + |ỹ|
y∗

)

h2
1(x̃, ỹ).

A simple calculation gives
(

1
x∗

+ 1
y∗

)

V1(x̃, ỹ) ≥
x̃
x∗

− ln
(

1 + x̃
x∗

)

+ ỹ
y∗

− ln
(

1 + ỹ
y∗

) (46)
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so the inequality 1 + A2 ≥ 1
2 (1 + |A|) and [9, Lemma A.9]

yield

e(
1

x∗

+ 1
y∗

)V1(x̃,ỹ) ≥
(

e
x̃

x∗

1+ x̃
x∗

) (

e
ỹ

y∗

1+ ỹ
y∗

)

≥ 1
36

(

1 + x̃2

x2
∗

) (

1 + ỹ2

y2
∗

)

≥ 1
144

(

1 + |x̃|
x∗

) (

1 + |ỹ|
y∗

)

.

(47)

In particular, we get

|x̃| ≤ 144x∗e
( 1

x∗

+ 1
y∗

)V1(x̃,ỹ) and

|ỹ| ≤ 144y∗e
( 1

x∗

+ 1
y∗

)V1(x̃,ỹ) ∀(x̃, ỹ) ∈ X .

The function M(r) = (289x∗ + 144αy∗) e(
1

x∗

+ 1
y∗

)r

therefore satisfies

LfV2(x̃, ỹ) ≤ −N2(x̃, ỹ)

+2M
(

V1(x̃, ỹ)
)
√

N1(x̃, ỹ)
√

N2(x̃, ỹ)

+288α2x∗y∗e
( 1

x∗

+ 1
y∗

)V1(x̃,ỹ)N1(x̃, ỹ).

By the inequality c1c2 ≤ 1
4c2

1 + c2
2 with c1 =

√N2,

M(V1)
√N1

√N2

≤ 1
4N2 + (289x∗ + 144αy∗)

2
e2( 1

x∗

+ 1
y∗

)V1N1

(48)

where we omit the dependencies on (x̃, ỹ), so also

LfV2(x̃, ỹ) ≤ −1

2
N2(x̃, ỹ) + φ1

(

V1(x̃, ỹ)
)

N1(x̃, ỹ), (49)

where

φ1(r) = 2
[

(289x∗+144αy∗)
2
+144α2x∗y∗

]

e2( 1
x∗

+ 1
y∗

)r.

Since V2(x̃, ỹ) = x̃[x̃ + αỹ](x̃ + x∗), we have

|V2(x̃, ỹ)| ≤ 2(x∗ + 1)(1 + α)
[

ỹ4 + |x̃|3 + x̃2 + ỹ2
]

. (50)

Applying [9, Lemma A.9] readily gives

|x̃/x∗| ≤ 2
{

[V1/x∗] + [V1/x∗]
2
}1/2

≤ 2
[

max{1/x∗, 1/x2
∗}{V1 + V 2

1 }
]1/2

,

and similarly for y, where we omit the dependence of V1

on (x̃, ỹ). In combination with (50), and with the choice

d̄ = 1 + x∗ + y∗, one easily checks that

|V2(x̃, ỹ)| ≤ 8(x∗+1)(1+α)
∑4

i=2

{

2d̄
√

V1 + V 2
1

}i

≤ p1(V1(x̃, ỹ))V1(x̃, ỹ),

where p1(r) = 1536(x∗ + 1)(α + 1)d̄4(1 + r)3.

The desired strict Lyapunov-like function is then

S(x̃, ỹ) = V2(x̃, ỹ) +
∫ V1(x̃,ỹ)

0
φ1(r) dr

+
[

p1

(

V1(x̃, ỹ)
)

+ 1
]

V1(x̃, ỹ)
(51)

This is because S(x̃, ỹ) ≥ V1(x̃, ỹ) and

LfS(x̃, ỹ) ≤ −1

2
[N1(x̃, ỹ) + N2(x̃, ỹ)]

hold everywhere. In fact, S is a strict Lyapunov function,

using the fact that V1(x̃, ỹ) goes to infinity when x̃ goes to

−x∗ or +∞, or when ỹ goes to −y∗ or +∞.

VIII. CONCLUSIONS

The construction of global strict Lyapunov functions is a

central problem in nonlinear control, owing to the value of

strict Lyapunov functions in robustness analysis, feedback

design, and other important situations. Even when a system

is known to be GAS, it is often still important to have closed

form expressions for strict Lyapunov functions, rather than

the abstract strict Lyapunov function constructions provided

by converse theory. We gave new methods for building global

strict Lyapunov functions under LaSalle conditions. As a

byproduct, we exhibited a general class of auxiliary functions

for which the Matrosov theorem from [11] can be applied.

We illustrated our work using the celebrated Lotka-

Volterra model, which plays a fundamental role in bio-

engineering. Our global strict Lyapunov function for the

Lotka-Volterra example allows us to quantify the effects of

uncertainty in the birth and death rates, using ISS [9]. Due

to space constraints, we omit this robustness analysis.
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