
  

Abstract—Frictional coefficient between tire and road is 
difficult to detect but crucial for vehicle active safety systems. 
Several approaches for friction coefficient estimation were 
developed based on various vehicle dynamic phenomena. This 
paper suggests nonlinear state observers that use vehicle 
dynamics, steering system dynamics, and tire force dynamics as 
a viable approach. The stability of the observer highly relies on 
observer gains. We present two different ways to select the gains 
and discuss the stability of the observer. Furthermore, we 
introduce a hybrid estimator which uses a nonlinear observer 
and a nonlinear least square method which provides enhanced 
performances. These estimators are verified using the 
commercial software, Carsim, under various scenarios. 

I. INTRODUCTION 
IRE forces and road friction coefficient are important 
information for vehicle safety warning and control 

systems because tire forces are limited by the frictional 
coefficient.   Road friction can change by an order of 
magnitude between normal and icy conditions, which means 
the vehicle response will change dramatically and the 
control/observer gains need to change significantly. Many 
algorithms for friction estimation have been developed 
[1]-[7]. Ahn [1] and Hsu [2] used nonlinear least square 
methods to detect frictional coefficient. Nonlinear least 
square method requires more computational load than a 
dynamic based observer. As mentioned in [1], vehicle lateral 
motion is more robust to disturbances than wheel motion, and 
the information about lateral motion is available if the vehicle 
has ESP (Electronic Stability Program). Furthermore, the 
increasing adaptation of electric power assisted steering 
system makes it possible to measure self-aligning torque of 
the front tires. Recently, Toyota published a series of papers 
[8]-[11] presenting measurement and estimation of 
self-aligning torque, with encouraging experimental results. 
These papers showed the possibility of vehicle/road 
parameter estimation using front tire aligning torque.  

Robustness and cost consideration lead us to focus on a 
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nonlinear observer using vehicle lateral dynamics and front 
tire dynamics as the basis of estimation. Nonlinear observers 
are used to accommodate nonlinear tire model with simple 
tuning parameters, i.e., observer gains. There is a lot of 
previous research on nonlinear observers. Canudas-de-wit [3] 
used lumped longitudinal dynamics with LuGre model which 
is only based on wheel speed signal. Hsu [4] suggested a 
nonlinear observer using an adaptive gain, but no stability 
proof was given. Ray [5] estimated tire forces and friction 
using extended Kalman-Bucy Filter without an explicit 
friction model. Baffet [6] estimated side slip angle and tire 
forces with extended Kalman filter based on a four-wheel 
vehicle model and adaptive linear tire force model. 
Dakhlallah [7] used extended Kalman Filter based on four 
wheel vehicle model and Dugoff tire model to estimate tire 
forces and sideslip angle. However, these extended Kalman 
Filter based observers also do not show stability proof. 

In this paper, firstly, we introduce a nonlinear observer 
based on linear vehicle model and nonlinear tire force/torque 
model with lateral acceleration and self-aligning torque 
measurement, the stability conditions for the observer is then 
derived. The stability conditions serve as guideline for the 
selection of observer gains. With the guideline we suggest 
two different methods for gain selection, adaptive gain and 
robust gain. The advantages and limitations of the two 
methods are analyzed. Finally, we present a hybrid method to 
combine the nonlinear observer and nonlinear least square 
methods for improved performance. The stability and 
performance of the observers are verified with computer 
simulation under various road friction conditions.  

II. SYSTEM MODELS 
Assuming pure lateral slip and constant longitudinal speed, 

a vehicle bicycle model effectively represents lateral and yaw 
dynamics of a two-axle ground vehicle with the following 
dynamics equations: 
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where u is the vehicle forward speed, v is the vehicle lateral 
speed, r is the yaw rate, m is the vehicle mass, Iz is the yaw 
moment of inertia. Fyf and Fyr are the lateral force at the front 
and rear axis, respectively. δ is the front wheel steering angle, 
and a and b are the distance from the vehicle center of gravity 
to front and rear axles. By using simple kinematics, we can 
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write αf and αr, slip angles of front and rear tires, in terms of u, 
v, and r: 
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Tire brush model is a simple tire model suitable for friction 

estimation purposes.  Tire lateral force (fy) and self-aligning 
torque (τa) are expressed as functions of tire slip angle, α, and 
frictional coefficient, µ below 
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where γ=:θyσy, αsl=:tan-1(1/θy), θy=:Cαf/(3µFz), σy=:tan(α), t is 
the half of tire contact length, α is the tire slip angle, µ is the 
tire-road frictional coefficient, Fz is the tire normal force, and 
Cαf is the cornering stiffness of the tire. 

III. NONLINEAR OBSERVER 
The dynamics of front tire slip angle are derived from (1) 

and (2).  Assuming constant road friction, the overall 
dynamics are  
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A nonlinear observer with linear error correction terms can 

then be derived: 
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where L11, L12, L21, L22 are observer gains and elements of 
observer gain matrix L.  The key problem for observer design 
is gain selection. We suggest two methods in the following. 

A. Stability Conditions 
To analyze the stability of the observer, we linearize (5), 

(6), (7), and (8). Let fn1 be the right-hand side of (5), fn2 be the 
right-hand side of (6), and F ≡ Fyf+Fyr for convenience. Then, 
the linearized dynamics along a trajectory are 
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Equation (3) and (4) are first differentiable at all x so that A 
and C are available along any trajectory. Furthermore the 
linear Luenberger observer for this plant is 
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ˆ ˆ( )( )− = − −x x A LC x x                           (11) 
 
Equation (11) indicates estimation error dynamics that is 

time varying because A and C matrices change as x varies 
along a trajectory. Stability of a linear time varying system is 
difficult to determine. However, if we assume, first, the state 
x stays in the linear region of (3) and (4), and second, A and B 
change slowly, then stability techniques of linear systems can 
be applied. Of course, the assumptions restricts the 
availability of these observer for some extreme maneuver 
cases. We will address the cases in future studies. If the real 
parts of all the eigen-values of A-LC are negative, then the 
stability of the observer is ensured. The eigen-values are 
solved from 
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The stability condition is  
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These two stability conditions serve as guidelines for 
selecting observer gains.  Two methods are suggested below.  

B. Adaptive Gains 
The stability conditions easily can be achieved because we 

have four gains to satisfy two equations. For example, if we 
choose gains as follows: 
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The gains suggested in (16) result in 
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where 
       , .= + = −yf yr yf yrF F F M aF bF  

 
These gains are effective because they adapt to varying αf, 

µ, and vehicle speed. However, there is a practical issue with 
this seemingly simple algorithm: these adaptive gains depend 
on the estimated αf and estimated µ. In other words, there are 
additional dynamic interactions.  The adaptive gains may not 
work satisfactorily if the current estimates are far from the 
actual values.  When the road surface suddenly changes (e.g., 
hitting a patch of ice), the estimation might not be reliable, in 
a situation when we are in urgent need of accurate estimation. 

C. Robust Gains 
Another gain selection method is to choose a set of 

constant (robust) gains for robust stability of the observer, 
which may or may not be doable, depending on the range of 
uncertainties. To design the robust gains, we need to change 
the observer to (20) and (21). 
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In (21), we introduce absolute operators so that the gains 

do not change signs as the signs of lateral acceleration and 
aligning torque change. In (20), however, we do not need any 
change in the equation because αf can have both negative and 
positive values, whereas µ has only positive value.  The 
robust gains we chose are 
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where K1, K2, K3, and K4 are all constant and K1<1, K2>0, 
K3>0, K4>0. 

To analyze the stability of the robust observer described in 
(20) and (21) with the robust gains, (22), we assume the 
following: 
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which are not difficult to achieve in practice by using sensor 
measurements judicially.  The linearized equations of (20) 
and (21) are the same as (10) except for the observer gain 
matrix L. Depending on the sign of αf and the sign of ay, the 
observer has four different dynamics resulting in four sets of 
L matrices with one dynamic vector equation for the purpose 
of analysis. 
 

ˆ ˆ ˆ( )x Ax Bu L y y= + + −                          (24) 
where 

     

11 12

21 22

11 12

21 22

11 12

21 22

11 12

21 22

, 0, 0

, 0, 0

, 0, 0

, 0, 0

y f

y f

y f

y f

L L
if a

L L

L L
if a

L L
L

L L
if a

L L

L L
if a

L L

α

α

α

α

⎧⎛ ⎞
< ≥⎪⎜ ⎟−⎝ ⎠⎪

⎪⎛ ⎞⎪ < <⎜ ⎟⎪ − −⎪⎝ ⎠= ⎨
⎛ ⎞⎪ ≥ ≥⎜ ⎟⎪⎝ ⎠⎪

⎪⎛ ⎞
≥ <⎪⎜ ⎟−⎪⎝ ⎠⎩

        

 
Equation (21), in fact, is not differentiable at the x where 

assumption (23) is not satisfied. The assumption, (23), is not 
true when α or ay is very small, and is detectable using sensor 
measurements. Thus, (21) is piece-wisely differentiable. 
However, we can analyze the stability of the observer in each 
continuous region. The observer may or may not be stable 
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when the assumption is not true. However, the stability 
analysis is  not presented here. Friction estimation when α or 
ay is very small is not critical for the active safety systems and 
is generally challenging to dynamic based estimation 
methods because of small excitation. Thus, consider the case 
that (23) is true not the case of small excitation. We check the 
two stability conditions considering practical vehicle 
parameters and variable ranges, such as vehicle longitudinal 
speed, front and rear tire slip angle, and road steer angle. For 
example, when sign of αf and the sign of ay are both positive, 
the first and second condition are 
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Selecting K1, K2, K3, and K4, which meet (25), (26), is not 

always possible. Thus we focus on practical variable ranges, 
as follows: 

 
300km/h, 30deg, 0 1.2.δ μ< < < <u              (27) 

 
Also, for simplicity, we consider the limited range of slip 
angles as follows: 
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Then we expand the range of slip angles and perform stability 
analysis for the whole slip angle range. Sufficient conditions 
to meet (25) and (26) are easily calculated by plugging (3) 
and (4) into (25) and (26). The sufficient conditions are 
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Using the vehicle parameters described in Table I and the 
sufficient conditions (28), we obtain 
 

1 2 3 40.678, 47.97, 0.001, 0.2.= − = = =K K K K      (30) 
 

Even though these observer gains are obtained with limited 
variable range (28), if we expand the range into whole range, 
i.e., into any αf and αr, the first condition is always met if it is 
under the conditions (27). The second condition is not always 
satisfied, but the unstable range of variables can be calculated, 
as shown in Fig. 1 which shows stability in the αf-αr-δ 
coordinate. The observer is unstable in the red space, neutral 
in the yellow space, and stable in the transparent space.   

In the red (unstable) space, the front tires completely slide 
(αf/αfsl > 1) whereas rear tires’ friction potential still remains 
(αr/αrsl < 1)—a condition known as critical understering. In 

Fig. 1.  Stability space of the nonlinear observer with the robust gains. The 
observer is unstable in the red space, neutral in the yellow space, and stable in 
the transparent space. αfsl and αrsl are the front and rear tire slip angle at which 
the tires begin to completely slide, respectively. 

TABLE I 
VEHICLE AND TIRE PARAMETERS 

Parameter Value Unit Description 

m 1412 kg Vehicle mass 

Iz 1523 kg·m2 Moment of inertia 

a 1.016 m Distance from front axle to 
the center of mass 

b 1.562 m Distance from rear axle to 
the center of mass 

t 0.178 m The half of tire contact 
length 

Cαf 5000 N/rad Cornering stiffness 
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other words, if the vehicle’s front tires are completely sliding 
and rear tires are not, then we cannot estimate αf and µ. This is 
a limitation of the robust observer. We can also find other 
unstable cases when the assumption (23) is not satisfied. 
These instabilities occur when αf or ay is very small. This 
instability happens more easily than critical understeering 
previously described. However, in this case we can disable 
the observer because the instance is very short or safety 
systems will not be activated because vehicle is driving 
straight. In the yellow space, i.e. if the observer is neither 
stable nor unstable, the observer has a negative egien value 
and a zero egien value. In this space, actually, αf is 
unobservable, whereas µ is observable because the elements 
of the first column in the C matrix of (9) are all zero but the 
elements of the second column are not. 

In summary, the robust gain design approach is practical 
and the criteria for robust stability are clearly understood.  
However, it still has limitations, especially when αf or ay have 
small magnitude. 

IV. HYBRID OBSERVER 
We introduced two nonlinear observers using different 

gains and suggested nonlinear least square method in [1]. 
Nonlinear least square method has the advantage in that 
estimated frictional coefficient is not sensitive to current 
noisy measurement because the estimator utilizes past data to 
estimate the current frictional coefficient. Because of this, the 
estimation response is slow, and in addition, getting the best 
estimates of slip angle is not always guaranteed due to the 
inherent weakness of least square methods. Whereas, 
nonlinear observers show better slip angle estimation 
performance and has fast estimation response to road surface 
change. Nevertheless, this estimator shows unstable 
estimation when αf or ay stays around zero.  

Hybrid observer combines the two algorithms to 
compensate for the disadvantages of each estimator. This 
procedure is described in Fig. 2. Nonlinear least square 
method uses tire slip angle estimated by nonlinear observer 
so that it does not need to estimate slip angles and frictional 
coefficient at the same time. Eliminating unknowns lowers 
the possibility of stalling around a local minimum and 

reduces computational load. 
The unknown variable in the nonlinear least square 

observer embedded the Hybrid observer is only a frictional 
coefficient because front tire slip angles are produced from 
the nonlinear observer and provided to nonlinear least square 
estimator, making it much easier to find a better frictional 
coefficient. 

V. SIMULATION RESULTS 
We verified the algorithms with Carsim with three levels of 

frictional coefficients. The vehicle speed is 60 km/h and steer 
input is 0.25Hz sine wave with a magnitude of 0.04 rad. The 
observer using adaptive gains shows overall stable and 
acceptable result through all friction levels. On a low 
frictional road, the observer fluctuates when αf  is around zero, 
as show Fig. 5, because estimated values and real values of αf  
and µ are different. The observer using robust gains estimates 
both αf and µ well, but shows an unstable estimation 
performance when αf is close to zero. This result is consistent 
with the stability analysis of the previous section. Even 
though robust gains depend on vehicle speed only and not on 
estimated αf or µ, the observer using robust gains has 
equivalent performance and stability as the observer using 
adaptive gains. The hybrid estimator shows the best 
performance among the three algorithms. As shown in Fig. 4 
and Fig. 5, the hybrid estimator has smooth and accurate 
estimations. 

On a high friction road, all three observers estimate αf on 
the high friction road very well, whereas, they overestimate µ. 
However, on a low friction road, such as when frictional 
coefficient is 0.5 or 0.2, the error variation of estimated 
friction is smaller than that on a high friction road, even 
though the slip angle estimation is worse than that of the high 
friction road case; vehicle motion easily becomes nonlinear 
with a large slip angle on a low friction road so that the slip 
angle estimation is not accurate. Nevertheless, the frictional 
coefficient on low friction roads is easily identified, because 
tire characteristic curves are more separated when frictional 

Fig. 2. Procedure of Hybrid Observer

Fig. 3.  Simulation result when frictional coefficient is 1.0. Adaptive means 
the Nonlinear Observer using adaptive gains, Robust means the Nonlinear 
Observer using robust gains, and Hybrid means the Hybrid Estimator. 
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coefficient is small, whereas the curves aggregate densely if 
the frictional coefficient is large, as shown in Fig. 6. In other 
words, tire characteristic curves become insensitive to slip 
angle change and become sensitive to frictional coefficient 
change as the frictional coefficient becomes smaller. As 
shown in Fig. 7, all the partial derivatives to frictional 
coefficient are zero when slip angle is zero, whereas, all the 
partial derivatives to slip angle have the largest values when 
slip angle is zero.  

VI. CONCLUSION 
This paper presents three estimators for the coefficient of 

friction between road and tire. Nonlinear observers based on 
stable observer design produced good results except that 
unstable estimation may occur when the slip angle or lateral 
acceleration is small. To utilize the advantages of nonlinear 
least square method described in [1] and to overcome the 
disadvantages of the nonlinear observers explained in this 
paper, we introduce a Hybrid Estimator which combines the 
two methods and demonstrates an overall stable and robust 
performance.  

Robustness analysis and systematic gain selection methods 
were not presented in this paper. We will conduct a study on 

the topics and present it in the future. 
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Fig. 4.  Simulation result when frictional coefficient is 0.5. 

Fig. 5.  Simulation result when frictional coefficient is 0.2. 

Fig. 7.  Partial derivatives of tire force and torque equations 
  

 
Fig. 6.  Effect of friction coefficient on tire characteristics 
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