
Low-Order System Identification and Optimal Control

of Intersample Behavior in ILC

Tom Oomen, Jeroen van de Wijdeven, and Okko Bosgra

Abstract— Iterative Learning Control (ILC) enables high
tracking performance of batch repetitive processes. Common
ILC approaches resort to discrete time system representations
and hence are not able to guarantee good intersample behavior
in case the underlying system evolves in continuous time. The
aim of this paper is to explicitly deal with the intersample
behavior in ILC. A multirate, parametric, and low-order
approach to both identification for ILC and subsequent optimal
ILC is presented that results in a low computational burden.
The approach appropriately deals with the time-varying nature
of multirate systems. The proposed multirate identification
and ILC algorithms are shown to outperform common ILC
approaches in a simulation example.

I. INTRODUCTION

Iterative Learning Control (ILC) is a control design strat-

egy that enables high tracking performance of batch repet-

itive processes. Basically, ILC determines an optimal com-

mand signal based on measured signals from previous trials

and limited plant knowledge. The resulting command signal

can compensate for all trial-invariant signal components in

the measured signals.

Commonly, ILC controllers for continuous time systems

are implemented in a digital computer environment, as a

result a sampled-data system is obtained. In this case, the

ILC algorithm learns from discretized error signals and thus

high discrete time performance is obtained. However, since

the plant evolves in continuous time, it is more natural to

evaluate performance in the continuous time domain.

In fact, pursuing high at-sample performance in sampled-

data systems can go at the expense of a poor intersample

behavior, see, e.g., [1], [2], [3] for sampled-data feedback

control. In [4], [5], it is shown that ILC can also result in poor

intersample behavior and ad hoc solutions are suggested.

In [6], an optimal multirate ILC algorithm is presented that

systematically deals with the intersample behavior.

Although the approach in [6] systematically deals with the

intersample behavior, it resorts to plant models of different

sampling frequencies that are not straightforward to obtain

via LTI system identification techniques such as [7], [8]. In

addition, similar to [9], [10], the optimal ILC algorithm in [6]

involves Toeplitz matrices with dimensions depending on the

trial length, sampling frequency ratio, and number of inputs

and outputs. In this case, implementation of the algorithm

is limited to short trial lengths, small sampling frequency

ratios, and a small amount of inputs and outputs.
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In this paper, a parametric approach to ILC is con-

sidered that explicitly addresses the intersample behavior.

Specifically, a parametric system identification approach for

multirate ILC is presented that appropriately deals with the

time varying nature of the multirate system. Subsequently,

the identified model is used in optimal ILC, thereby explicitly

accounting for the intersample behavior.

The presented optimal ILC algorithm exploits the low

order of the parametric model. In contrast to [9] and [6],

which resort to a linear least squares problem, the dimensions

of the involved matrices in the proposed approach do not

increase if the trial length, the sampling frequency ratio, or

the number of inputs and outputs is increased. Specifically, a

low-order solution is presented that requires solving one dis-

crete time Riccati difference equation with dimensions equal

to the state dimension of the parametric model. The proposed

approach extends previous work, including [11], [12], by

considering a more general criterion and by explicitly dealing

with the intersample behavior. Thus, the presented approach

enables an explicit treatment of the intersample behavior in

ILC for multivariable systems with large trial lengths. As a

special case, the procedure enables the design of low-order

multivariable discrete time ILC controllers.

The paper is organized as follows. In Section II, the

sampled-data ILC problem is formulated. In Section III,

an approach is presented that enables system identification

and optimal ILC for multirate systems, thereby appropri-

ately dealing with the time-varying nature. Subsequently,

Section IV and Section V deal with multirate identification

and optimal ILC, respectively. In Section VI, an example

is provided, which shows that the proposed multirate ILC

algorithm outperforms common discrete time algorithms.

Finally, conclusions are given in Section VII.

Notation. Throughout, t ⊆ Z and tc ⊆ R denote discrete

time and continuous time, respectively. To facilitate the

notation, arguments are omitted if clear from the context.

In block diagrams, solid lines represent continuous time

signals, dashed lines represent slow sampled discrete time

signals, and dotted lines represent fast sampled signals. It is

assumed that sampling is non-pathological [6]. The forward

shift operator is denoted by q. The delay operator Dτ is

defined by (Dτf)(t) = f(t − τ), where τ ∈ t. Systems are

linear time invariant (LTI) if they commute with Dτ ∀τ ∈ t.
The truncation operator is defined by (Pτf)(t) = f(t) for

t ≤ τ and (Pτf)(t) = 0 for t > τ . A system G is causal

if PτGPτ = PτG, ∀τ ∈ t. The discrete Fourier transform

of a signal x is given by XN (ω) = 1√
N

∑N

t=1
x(t)ejωt. The

notation ‖x‖W denotes xT Wx, whereas ‖x‖2 denotes the

standard 2-norm.
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II. PROBLEM FORMULATION

A. Sampled-data setup

In this section, the ILC problem for closed-loop sampled-

data systems is defined. The considered setup is depicted in

Figure 1. Here, y = Pu, where P denotes the LTI continuous

time plant with ny outputs and nu inputs. The plant input is

given by

u = HhHu(wl + Cd,lSdS
he) (1)

e = r − y, (2)

where r is the reference signal and Cd,l is a discrete

time internally stabilizing feedback controller operating at

a sampling frequency f l. In (1), the ideal sampler and zero-

order-hold are defined by

Sh :e(tc) 7→ eh(t), eh(ti) = e(tih
h) (3)

Hh :uh(t) 7→ u(tc), u(tih
h + τ) = uh(ti), τ = [0, hh), (4)

respectively, where ti ∈ t, sampling frequency fh = 1

hh , and

hh denotes the sampling time. In addition, the downsampling

operator Sd is defined by

Sd : eh(t) 7→ el(t), el(ti) = eh(Fti), ti ∈ t, (5)

where F ∈ N denotes the sampling frequency ratio, i.e.,

fh = Ff l, where f l is the sampling frequency at which

Cd,l operates. In addition, the multirate zero-order-hold Hu

is defined as [2]

Hu = IF (z)Su, (6)

where the upsampler Su and zero-order-hold interpolator

IF (z) are given by

Su : ul(t) 7→ xh(t), xh(ti) :=

{
ul( ti

F
) for ti

F
∈ Z

0 for ti

F
/∈ Z.

(7)

IF (z) =
∑F−1

f=0
z−f . (8)

Note that the sampling at a high sampling frequency

followed by downsampling can be replaced by sampling at a

lower frequency, e.g., [6]. For the multirate ILC approach in

Section II-B, however, the present formulation is convenient.

The main problem considered in this paper is given by the

optimal sampled-data problem.

Definition 1 (Optimal sampled-data ILC): Given the cri-

terion JSD(wl, e), determine

wl
SD⋆ = arg min

wl
JSD(wl, e). (9)

In the optimal sampled-data ILC problem, an optimal dis-

crete time command signal wl is determined that achieves

good continuous time performance e, see Figure 1. This

implies that the problem involves both continuous time and

discrete time signals. In contrast, standard ILC algorithms

[13], [14], [15] employ discrete time measurements of the

error e. In particular, the optimal discrete time ILC problem

is given by the following definition.

Definition 2 (Optimal discrete time ILC): Given the cri-

terion JDT(wl, el), determine

wl
DT⋆ = arg min

wl
JDT(wl, el). (10)

Sh Sd Cd,l Hu Hh P
r yu

wl

e eh el ul uh

−

Fig. 1. Closed-loop multirate ILC setup.

In the discrete time ILC criterion JDT(wl, el), only the at-

sample response el is minimized, whereas the sampled-data

criterion JSD(wl, e) includes the intersample response. This

implies that discrete time ILC approaches may result in poor

intersample behavior, which is quantified by

JSD(wl
DT⋆ , e) ≥ JSD(wl

SD⋆ , e). (11)

In Section VI, it is illustrated that the gap in (11) can become

arbitrarily large.

B. Towards a multirate approach

Since the continuous time error signal e can not be

processed on a digital computer, a multirate approximation to

the sampled-data ILC problem in Definition 1 is investigated

to enable a digital computer implementation. The key idea

is that in many applications, it is possible to measure error

signals at a higher sampling frequency fh than the frequency

f l at which Cd,l operates. Indeed, the bound on f l is often

caused by the fact that in feedback control the new control

input has to be computed in real-time. In contrast, although

ILC is implemented in real-time, it can exploit the time in

between trials for the actual computation of the command

signal. This motivates the following multirate ILC problem.
Definition 3 (Optimal multirate ILC): Given the criterion

JMR(wl, eh), determine

wl
MR⋆ = arg min

wl
JMR(wl, eh). (12)

In [6], it is discussed that wl
MR⋆ → wl

SD⋆ for hh → 0. As in

[6], the following criterion is considered, which is a multirate

generalization of the criterion in [9], [10], etc.
Definition 4: The criterion for determining the optimal

command input in trial k + 1, i.e., wl
<k+1>, is defined as

JMR<k+1> = 1

2

Nh
−1∑

t=0

[
‖eh

<k+1>(t)‖We

]
(13)

+ 1

2

Nl
−1∑

t=0

[
‖wl

<k+1>(t)‖Ww + ‖wl
<k+1>(t) − w

l
<k>(t)‖W∆

]
,

where Nh−1 and N l−1 are the trial lengths at the high and

low sampling frequencies, respectively. Generally, optimal

ILC solutions require some model knowledge of the mapping

from the command signal to the error signal. In the multirate

case, a model mapping wl to eh is required, i.e., assuming

r = 0, then in

eh = −JMRwl (14)

a model of JMR is required. In [6], it is shown that JMR is

time-varying even if P in Figure 1 is time-invariant. Time-

variance of JMR can easily be understood if it is observed

that eh operates at a higher sampling frequency than wl.

In the next section, it is shown how to deal with the time

varying nature of JMR in view of system identification and

subsequent multirate ILC control design.
Remark 5: The discrete time ILC case is recovered if F =

1, in which case the intersample behavior is discarded.
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III. A TIME-INVARIANT AND NORM-EQUIVALENT

REPRESENTATION OF A TIME-VARYING SYSTEM

In this section, a technical step is presented that enables

system identification for multirate ILC and subsequent low-

order optimal ILC. Throughout this section, the lifting oper-

ator has a central role in the derivations.

Definition 6: [16], [1] The lifting operator L, ẽh = Leh,

is defined by

ẽ(ti) =




eh(Fti)
eh(Fti + 1)

...

eh(Fti + F − 1)


 . (15)

In Definition 6, eh is an ny dimensional signal with

sampling frequency fh, whereas ẽh is an Fny dimensional

signal with sampling frequency f l. The following proposition

reveals that L preserves the 2-norm, which is useful in case

a certain norm-based criterion is minimized.

Proposition 7: Consider the lifting operator L in Defini-

tion 6. Then, ‖ẽ‖2 = ‖eh‖2.
Proof: Results from evaluating the vector 2-norm.

Next, causality of the lifting operator L is investigated.

Proposition 8: Consider the lifting operator L in Defini-

tion 6 and let F > 1. Then, L is not a causal operator.

Proof: Follows by considering the definition of causal-

ity for τ = 0.

Proposition 8 reveals that the lifting operator L is not causal.

Hence ẽ is not available for feedback control, since in this

case the controller has to operate in real-time based on past

measurement data. In contrast, in Section IV and Section V

it will be shown how the lifting operator can be exploited in

system identification and optimal ILC, respectively.

Next, consider the setup in Figure 1. Here, Hh and Sh

are absorbed in P to obtain P d,h, which is an LTI system

operating at sampling frequency hh [6]. In this case, the

time-varying mapping in (14) is given by

JMR = P d,hHu(I + Cd,lP d,l)−1. (16)

The following proposition reveals that JMR can be recast as

an LTI mapping.
Proposition 9: Let (Ah

p , Bh
p , Ch

p , Dh
p ) be a minimal state-

space realization of P d,h, let (Al
c, B

l
c, C

l
c, D

l
c) be a minimal

state-space realization for Cd,l, and assume that Dh
pDl

c =
0, Dl

cD
h
p = 0. Then, a minimal state-space realization

for LP d,hHu(I + Cd,lP d,l)−1 is given by the state-space

realization (Ã, B̃, C̃, D̃), i.e.,



(Ah
p )F

− BDl
cCh

p BCl
c B

−Bl
cCh

p Al
c − Bl

cDh
p Cl

c −Bl
cDh

p

Ch
p Dh

p Cl
c Dh

p

Ch
p Ah

p − Ch
p Bh

p Dl
cCh

p Dh
p Cl

c + Ch
p Bh

p Cl
c Dh

p + Ch
p Bh

p

.

.

.
.
.
.

.

.

.

Ch
p (Ah

p )F−1
− DDl

cCh
p DCl

c D




B =

F−1∑

f=0

(Ah
p )f Bh

p , D = Dh
p +

F−2∑

f=0

Ch
p (Ah

p )f Bh
p .

The proof follows from extensive computations based

on successive substitution and is omitted because of space

limitations. The interpretation of C̃, D̃ is that the multirate

system is in ‘open-loop’ in between the controller sampling

instants. Proposition 9 leads to the following result that is

required to enable application of system identification tools

for finite dimensional LTI systems.

Proposition 10: The system LP d,hHu(I + Cd,lP d,l)−1:

a) is LTI,

b) has McMillan degree upper bounded by the sum of the

McMillan degrees of P and Cd,l

c) ∈ RHFny×nu

∞ .

Proof: To show (a), observe that Dτ (LP d,hHu(I +
Cd,lP d,l)−1) = LP d,hHu(I+Cd,lP d,l)−1Dτ ∀τ ∈ t, hence

the system is LTI. To show (b), note that the McMillan degree

of a proper system equals the state dimension of a minimal

state-space realization. Next, the state-space realization of the

system in Proposition 9 has a McMillan which is equal to

the sum of the McMillan degrees of Cd,l and P , where the

McMillan degree of P is invariant under (down)sampling,

see [6]. Finally, inequality is obtained by possible nonmin-

imality of (Ã, B̃, C̃, D̃), which can be caused by pole/zero

cancellations between Cd,l and P d,l. Part (c) directly follows

from the fact that Cd,l is internally stabilizing, hence Ã is

strictly Hurwitz and as a result LP d,hHu(I +Cd,lP d,l)−1 ∈
RHFny×nu

∞ .

IV. SYSTEM IDENTIFICATION FOR MULTIRATE ILC

ILC requires a model of the true system. Especially in

case of optimal ILC, as is considered in Section V, a higher

model accuracy is required compared to less complex ILC

approaches such as Arimoto-type of ILC controllers. A fast

and inexpensive method to obtain such an accurate model

for ILC is to employ system identification.

The multirate ILC problem, as discussed in Section II-B,

requires a model JMR that maps wl to −eh. The mapping

JMR is time-varying due to the different sampling frequen-

cies of wl and eh, which obstructs a direct application

system identification tools for LTI systems. Building on

the developments in Section III, the system identification

for multirate ILC problem is investigated in this section

and a solution that enables use of standard LTI system

identification approaches is presented.

To deal with the identification of JMR : wl 7→ −eh,

the lifting approach in Section III is exploited. Specifically,

Proposition 9 and Proposition 10 imply that the operator JMR

can be appended with the lifting operator to obtain the LTI

MIMO system J̃MR = LJMR = LP d,hHu(I +Cd,lP d,l)−1.

Thus, standard identification methods for multivariable LTI

systems can be applied, e.g., [7], [8].

In case prediction error identification is pursued, then in

virtue of the system relation, the model

ỹh(t) = −ẽ(t) = J̃MR(q)wl(t) + H̃(q)v(t), (17)

is postulated, where H̃(q) is a bistable LTI system and the

reference r(t) = 0. Note that (17) involves a closed-loop

setup. However, closed-loop operators are being estimated

and hence essentially an open-loop system identification

problem is obtained. Although H̃ depends on Cd,l, e.g.,

[17], knowledge of Cd,l is not required in the identification

procedure. In this respect, the suggested approach closely

resembles the indirect identification approach.
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In case of a model of the form (17), the goal of prediction

error identification is to minimize ‖ε̃(t)‖2
2, where

ε̃(t) = H̃−1(q)
(
−ẽ(t) − J̃MR(q)wl(t)

)
, (18)

see [7] for details. Note that in virtue of Proposition 7,

arg min ‖ε(t)‖2
2 = arg min ‖L−1ε̃(t)‖2

2, hence the suggested

approach minimizes the prediction error ε(t) in the original,

time varying setting.

Summarizing, the suggested identification procedure is as

follows:

1) set r = 0 and apply a suitable input signal wl,

2) measure eh(t) = −yh(t),
3) lift the measured error signal, i.e., ẽ = Leh(t),

4) identify the MIMO LTI system J̃MR that minimizes the

prediction error ε̃ in (18).

The parametric identification approach presented in this

section has advantages over identification of a nonparametric

FIR model, as is required for ILC algorithms such as [9].

In particular, since parametric models result in a smaller

number of parameters, the parameter variance is typically

reduced and the resulting model can be used more efficiently

compared to nonparametric models, as is shown in Section V.

However, the model order should be chosen sufficiently high

to avoid bias errors [7].

In the next section, it is shown how the identified LTI

model can be used to solve the multirate ILC problem.

V. OPTIMAL MULTIRATE ILC

In this section, a solution to the multirate optimal ILC

problem, see Definition 3, is presented by exploiting the

lifting operator, see Section III. Firstly, it is shown how lifted

signals can be used to obtain a criterion equivalent to (13).

Proposition 11: Consider the lifting operator in Defini-

tion (6) and criterion (13) in Definition 4. Then,

JMR<k+1> = 1

2

N l−1∑

t=0

[
‖ẽ<k+1>‖W̃e

+ ‖wl
<k+1>‖Ww

+ ‖wl
<k+1> − wl

<k>‖W∆

]
, (19)

where W̃e := IF ⊗We and ⊗ denotes the Kronecker product.

Proposition 11 enables the use of the results of Section III

and Section IV in optimal multirate ILC. Specifically, it

enables the direct usage of the identified LTI model in

Section IV to solve the multirate ILC problem, thereby

explicitly addressing the intersample behavior. The solution

to the multirate ILC problem via the lifting operator is the

main result of this section and is given in the following

proposition.

Proposition 12: Consider the criterion (19) and model

J̃ = (Ã, B̃, C̃, D̃). Then,

wl
<k+1>(t) = CILC




ẽ<k>(t)
wl

<k>(t)
g<k>(t + 1)


 , (20)

where CILC is given by the state-space realization

CILC =

[
Ã − B̃L(t) B̃Le(t) −B̃Lw(t) B̃Lg(t)

−L(t) Le(t) I − Lw(t) Lg(t)

]

L(t) = Γ−1
2 (B̃T P (t + 1)A + D̃WeC̃)

Le(t) = Γ−1
2 D̃T We, Lw(t) = Γ−1

2 Ww, Lg(t) = Γ−1
2 B̃T

Γ1 = Ww + W∆ + D̃T WeD̃, Γ2 = Γ1 + B̃T P (t + 1)B̃,

and P and g<k> are given by the backward recursions

P (t) = H21 + H22P (t + 1)(I −H12P (t + 1))−1H11 (21)

g<k>(t) = (22)

(H22 + H22P (t + 1)(I − H12P (t + 1))−1H12)g<k>(t + 1)

− (E21 + H22P (t + 1)(I − H12P (t + 1))−1E11ẽ<k>(t)

− (E22 + H22P (t + 1)(I − H12P (t + 1))−1E12wl
<k>(t),

where P (N l) = 0, g<k>(N l) = 0, and

H =

[
Ã − B̃Γ−1

1
D̃T W̃eC̃ −B̃Γ−1

1
B̃T

C̃T W̃eC̃ − C̃T W̃eD̃Γ−1
1

D̃T W̃eC̃ ÃT
− C̃T W̃eD̃Γ−1

1
B̃T

]

E =

[
B̃Γ−1

1
D̃T W̃e −B̃Γ−1

1
Ww

−C̃T W̃e + C̃T WeD̃Γ−1
1

D̃T W̃e −C̃T W̃eD̃Γ−1
1

Ww

]

A proof of Proposition is omitted due to space limitations.

The proof is closely related to the solution of the linear

quadratic tracking problem, e.g., [18, Chapter 4]. The deriva-

tion is significantly more involved due to the more complex

criterion (19) and the presence of a direct feedthrough D̃ in

the multirate case.

Remarks:

• The solution to the linear quadratic tracking problem is

known to be not causal, since the future reference signal is

required in the optimization. In the ILC problem, the error

ẽ<k> and command signal wl
<k> from the previous trial

constitute the reference signal, resulting in a causal control

law in the trial domain, yet a non-causal control law in the

physical time domain.

• In analogy to the solution to the finite time linear

quadratic optimal control problem [18], the controller CILC

is time-varying. This results from the solution method to

the two-point boundary-value problem. Alternatively, a time-

invariant result can be derived, followed by an appropriate

selection of boundary conditions, as is suggested in [19] for

the finite time LQ problem.

• In contrast to the implementation of the linear quadratic

optimal controller, the ILC controller does not require full

state measurement or a state observer [18]. Instead, the

optimal command signal wl
<k+1> is computed based on the

computed optimal state trajectory, before trial k+1 is started.

Inclusion of a state measurement or an observer during trial

k + 1 would lead to current-iteration ILC [14].

• The main computational burden in the implementation

of the results of Proposition 12 are solution of a discrete

time Riccati equation (21) and backward recursion (22), as

well as the filtering by the time varying controller CILC, both

involving matrices of size equal to the state dimension of the

(low-order) model J̃MR. In this respect, increasing the trial

length N l, sampling ratio factor F , or the number of inputs

and outputs of P only affects the length of the signals to be

filtered. This does not seriously obstruct numerical imple-

mentation. In contrast, the approach in [6], [9], [10] resorts

to a linear least squares problem that involves matrices whose

dimensions scale with N l. In this case, solutions will only

be feasible for limited values of N l, F , nu, and ny .
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m1 m2

x1 x2

u
k

d

Fig. 2. Mechanical system.

VI. EXAMPLE

A. Description

The mechanical system in Figure 2 is considered. Consid-

ering input u and output y = d
dt

x1, a state-space realization

of the true system is given by

Po =




− d
m1

d
m1

k
m1

1

m1

d
m2

− d
m1

− k
m2

0

−1 1 0 0
1 0 0 0


 , (23)

the corresponding state vector is given by x =[
d
dt

x1
d
dt

x2 x2 − x1

]
. In addition, m1 = m2 =

4.8 · 10−6, k = 0.22, and d = 1·10−4. A stabilizing feedback

controller is given by the state-space realization

Cd,l =

[
0.6859 0.0132
0.0132 10−4

]
, (24)

which is implemented with a sampling frequency f l =
500 Hz, i.e., hl = 2 · 10−2. In addition, it is possible to

measure the error signal with a sampling frequency fh =
1500 Hz, hence F = 3.

B. Example 1: System identification

In this section, the system identification results of Sec-

tion IV are illustrated. The setup in Figure 1 is considered,

where r = 0. Multivariable prediction error identification is

performed, see, e.g., [7], [20].

The input wl is a normally distributed zero-mean white

noise signal with variance 1. The output eh is measured and

is contaminated by noise, i.e.,

eh = −P d,hHu(I + Cd,lP d,l)−1wl + v, (25)

where v is a normally distributed zero-mean white noise

signal with variance 2.5 · 103. A total measurement time of

0.2 s is used for identification purposes. Note that wl is

sampled with sampling frequency f l, whereas eh is sampled

with sampling frequency fh.

To enable usage of standard identification approaches, the

signal eh is lifted such that the mapping wl 7→ ẽh is a finite

dimensional LTI SIMO system. An output-error model is

identified that minimizes the quadratic prediction error ‖ε̃‖2
2.

The reason for considering an output-error model structure

is twofold. Firstly, a consistency result for independently

parameterized disturbance models, including output-error

models, is available in the situation of an incorrectly identi-

fied disturbance model. Secondly, (25) exactly corresponds

to the output-error model structure.

To illustrate the results of Proposition 10, models of

various orders are identified and subsequently validated using

independent validation data. In Figure 3, the corresponding

trace of the covariance matrix of the prediction error tr(Cε),

1 2 3 4 5 6 7 8 9
10

10

10
11

10
12

10
13

10
14

lo
g
tr

(C
ε
)

Model order

Fig. 3. Example 1: validation results.

which is a commonly used criterion [7], [20], is depicted

for various model errors. For model order 1 up to 3, there

is a large error due to undermodelling. Model order 4,

which is the theoretically correct value, see Proposition 10,

results in the smallest value. For model orders 5 and higher,

the prediction error increases due to the fact that noise is

modeled as input-output data due to an overparametrization

and independent validation data is used, see also [7].

C. Example 2: Iterative learning control

Using the identified fourth order model, the multirate ILC

approach of Section V is applied. To illustrate superiority

of the proposed multirate techniques over present discrete

ILC algorithms, the approach is applied for both F = 3 and

F = 1, the former corresponds to the multirate case, whereas

in the latter case the discrete time case is recovered. The ILC

trial length N l = 8, hence Nh = 24. A short trial length is

chosen since this enables a clear exposition of the results, the

approach is also feasible for longer trial lengths. Throughout

this section, We = 1, Ww = 0, W∆ = 10−6.

The initial sampled tracking error e<0> is depicted in

Figure 4 (a) and Figure 5 (a). In Figure 4, the tracking error

in the time domain is shown at both sampling frequencies f l

and fh. In Figure 5, the cumulative normalized periodogram

is depicted. The normalized periodogram of a discrete time

signal x(t), t ∈ [0, N − 1], is defined as

Ψ(ω) =
1

N
|XN (ω)|2. (26)

The periodogram is a useful measure for investigating the

distribution of power of a signal over frequency. The normal-

ization in (26) is useful for comparing signals of different

sampling frequencies.

Analysis of the initial tracking error e<0> at sampling

frequency fh reveals that the error contains two dominant

frequency components at 125 Hz and 437.5 Hz. At the

sampling frequency f l, the 437.5 Hz component appears as

an aliased component at 62.5 Hz.

Firstly, the error signal el
<0>(t) is used in the discrete

time ILC control law, i.e., F = 1 and hence the intersample

behavior is discarded. The error after 20 iterations eDT<20>

at both sampling frequency f l and fh is depicted in Fig-

ure 4 (b) and Figure 5 (b). It can be observed that at the

sampling frequency f l, the ILC controller performs a perfect

task, since el
DT<20> = 0. However, when investigating the

intersample response, it can be observed that the converged

error eh
DT<20> has deteriorated compared to eh

DT<0>, i.e.,

the ILC controller results in performance deterioration of

the sampled-data system. Analysis of Figure 5 (b) reveals

that the ILC controller has effectively attenuated the 125 Hz
frequency component. At sampling frequency fh, a 62.5 Hz
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Fig. 5. Example 2: Comparison of error signals at sampling frequencies
fh (solid) and f l (dash-dotted).

component has appeared, which in conjunction with the

437.5 Hz component results in poor intersample behavior.

Next, the error signal eh
<0>(t) is used in the multirate

ILC control law of Section V, where F = 3. The error

after 20 iterations eMR<20> at both sampling frequency f l

and fh is depicted in Figure 4 (c) and Figure 5 (c). It

is concluded that the multirate ILC controller effectively

attenuates the 125 Hz frequency component. However, it

does not attempt to attenuate the 437.5 Hz component. As

a result, this component is still present after convergence

at sampling frequency fh and at sampling frequency f l as

an aliased component. Clearly, this component cannot be

attenuated using wl.

The results in Figure 4 and Figure 5 are confirmed

by the value of the criterion JMR. Specifically, in the

initial situation, JMR(wl
<0>, eh

<0>) = 624. After conver-

gence of the discrete time and multirate ILC algorithms,

the results become JMR(wl
DT<20>, eh

DT<20>) = 804 and

JMR(wl
MR<20>, eh

MR<20>) = 413, respectively.

Concluding, although discrete time ILC results in a perfect

tracking error at sampling frequency f l, it results in poor

intersample behavior. In contrast, multirate ILC improves the

true performance of the system by appropriately balancing

the at-sample error and intersample responses.

VII. CONCLUSIONS

In this paper, a low-order optimal ILC approach has

been presented that explicitly accounts for the intersample

behavior in sampled-data systems. The approach is multirate

and hence time-varying.

System identification for ILC has been discussed and

the time-varying nature of the multirate system has been

appropriately dealt with. It has also been established that

system identification techniques for LTI systems can be used

for multirate systems and low-order parameterizations have

been presented.
A low-order optimal ILC controller is presented that

resorts to the identified model and explicitly addresses the in-

tersample response. Compared to impulse-response based op-

timal ILC controllers, which are computationally intractable

for large trial lengths N l, large sampling frequency ratios

F , and multivariable systems with many inputs and outputs,

the low-order ILC approach enables application of ILC to

large-scale systems.
Simulation results confirm that system identification can

deliver low-order parametric models that are suitable for op-

timal ILC. Comparing the proposed approach with standard

approaches reveals that discrete time ILC can result in a poor

intersample behavior, whereas the proposed multirate ILC

controller significantly outperforms by appropriately balanc-

ing the at-sample response and the intersample behavior.
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