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Abstract— The robust D stabilization problem is considered
for singular systems with polytopic uncertainties in this paper.
Both the derivative matrix E and the state matrix A are with
uncertainties, under the assumption that the rank of matrix E

is constant. Firstly, with the introduction of some free matrices,
a new dilated LMI condition for the singular system to be D
stable is proposed, based on which, the robust D stable problem
is solved, and a sufficient condition for the closed system to be
robust D stabilizable is obtained. The desired state feedback
controller is given in an explicit expression. Numerical examples
show the efficiency of the obtained approach.

I. INTRODUCTION

Singular system model is a natural mathematical represen-

tation for many practical systems. It provides a description of

the dynamic as well as the algebraic relationships between

the chosen descriptor variables simultaneously [1]. Due to

its direct and general description, singular system has been

employed in different areas, e.g., circuit systems, power

systems, aerospace engineering and chemical processing [2].

Many basic theories developed for state space models have

been generalized to its counterparts for singular systems, for

example, controllability and observability [2], H∞ control

[6] etc.

As to the problem of controller design for singular sys-

tems, there are usually two ways: one is the regularization

problem, about which proportional plus derivative controller

is used to make the closed systems nonsingular and stable,

see [3], [4] and the references therein. Another is the

stabilization problem, and a pure proportional controller is

designed such that the closed systems are regular, impulse-

free(causal) and stable, see [5], [6], [7], [8], [9]. However,

when the problem of D stabilization is considered, which

encompass the stabilization as a special case, few results is

available in the literature. D stabilization is important in the

control theory, not only because it can deal the continuous

system and the discrete-time system in a unit framework, but

also because it can guarantee the performance of the closed

system by placing the poles of the system in a certain region

D . A mostly studied region is the LMI region which is

proposed in [10] and generalized in [11]. For the singular

system, the robust D stability analysis was considered in

[14], in which only the state matrix A is with uncertainties.

In this paper, the robust D stabilization problem is consid-

ered. The systems we considered have uncertainties with both

the derivative matrix E and state matrix A. Firstly, with the
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introduction of some free matrices[12], [13], a new necessary

and sufficient condition for the singular system to be D stable

is proposed based on the result in [14], and then the result is

extended to the system with polytopic uncertainties. Finally,

the robust D stabilization problem is solved and a sufficient

condition for the controller design is obtained. The controller

is given in an explicit form. Some numerical examples show

the applicability of the obtained approach.

Notation: Throughout this paper, Rn denotes the n dimen-

sional real Euclidean space, C denotes the complex plane,

Ik is the k × k identity matrix, the superscripts ‘ T ’ and

‘ −1 ’ stand for the matrix transpose and inverse respectively,

z̄ denotes the conjugate of z, ‘*’ denotes the symmetric

element in a matrix, C− denotes the the left-hand side

of complex plane and Dint(0, 1) denotes the unitary disk

centered at the origin. W > 0 (W ≥ 0) means that W is

real, symmetric and positive definite (positive semidefinite),

⊗ denotes the Kronecker product, δ[·] denotes the differential

operator for continuous systems ( i.e. δ[x(t)] = ẋ(t) ) and

the shift operator for discrete-time systems ( i.e. δ[x(t)] =
x(t+1) ), λ(E, A) denotes the set of finite eigenvalues of the

(E, A) pair, i.e. λ(E, A) = {s|det(sE − A) = 0}, Sym(·)
denotes the matrix plus its transpose, i.e. Sym(A) = A+AT .

If not explicitly stated, the matrices are assumed to have

compatible dimensions.

II. PROBLEM STATEMENT AND PRELIMINARIES

Consider the singular system without uncertainties

Eδ[x(t)] = Ax(t) (1)

The following definitions and lemma are essential for the

development of our main results

Definition 1 (Dai [2]):

1. The system (1) is said to be regular if det(sE − A) is

not identically zero.

2. The system (1) is said to be impulse-free(causal) if

deg(det(sE − A)) = rank(E).
3. The system (1) is said to be stable if λ(E, A) ⊂ C−

for continuous singular systems or λ(E, A) ⊂ Dint(0, 1) for

discrete-time singular systems.

If the singular system is regular, then there exist two

nonsingular matrices M1 and N1, such that

Ê = M1EN1 =

[

Ir 0
0 J

]

, Â = M1AN1 =

[

Ar 0
0 In−r

]

The pair (Ê, Â) is called the Weierstrass form of (E, A). J

is a nilpotent matrix and r is the number of finite eigenvalues
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Fig. 2: D region for discrete
time system

of (E, A). It is obvious that the system is impulse-free if and

only if J = 0.

Definition 2 (Kuo [14]):

The system (1) is called D stable if it is regular, impulse-

free (causal), and λ(E, A) ∈ D.

In this paper, the region we considered is proposed in [11]:

D =
{

z ∈ C : R1 + R2z + RT

2 z̄ + R3zz̄ < 0
}

where R1 = RT
1 ∈ Rd×d and 0 ≤ R3 = RT

3 ∈ Rd×d, for

simplicity, written as

R =

[

R1 R2

RT
2 R3

]

and d is called the order of the region.

Two typical regions are shown in Fig.1 and Fig.2, which

could be formulated by the following choices of R, respec-

tively.

RC =

[

2a 1
1 0

]

, RD =

[

a2 − r2 −a
−a 1

]

In Fig.1, when a = 0, it becomes the left-hand side of

complex plane C−. In Fig.2, when a = 0 and r = 1, it

becomes the unitary disk centered at the origin Dint(0, 1).

A necessary and sufficient condition for the D stability of

the singular systems was proposed in [14], and here we use

the dual form to obtain our main result.

Lemma 1: The system (1) is D stable if and only if there

exist matrix P > 0 and symmetric matrix Q satisfying

M(P, Q, E, A) < 0 (2a)

EQET ≥ 0 (2b)

with

M(P, Q, E, A) = R1 ⊗ (EPET ) + R2 ⊗ (EPAT )

+ RT

2 ⊗ (APET ) + R3 ⊗ (APAT ) + Id ⊗ (AQAT )

III. MAIN RESULTS

Consider the singular system with polytopic uncertainties

E(α)δ[x(t)] = A(α)x(t) + B(α)u(t) (3)

matrices E(α), A(α), B(α) are in the following convex sets

E =

{

E(α) : E(α) =
N

∑

i=1

αiEi;

}

(4a)

A =

{

A(α) : A(α) =
N

∑

i=1

αiAi;

}

(4b)

B =

{

B(α) : B(α) =
N

∑

i=1

αiBi;

}

(4c)

with

N
∑

i=1

αi = 1; αi ≥ 0, i = 1, 2, · · · , N

where N is the number of the vertices and rank(E(α)) =
rank(Ei), i = 1, · · · , N .

Firstly, a new necessary and sufficient condition with some

free matrices is given for the system (1) to be D stable, which

plays a key role in this paper.

Theorem 1: The system (1) is D stable if and only if there

exist matrices P > 0, Q, U1, U2, S1, S2, G, F , W and V

such that

Ξ =





Ξ11 Ξ12 Ξ13

∗ Ξ22 Ξ23

∗ ∗ Ξ33



 < 0 (5a)

Γ =

[

EW + WT ET −WT + EV

∗ −V − V T + Q

]

≥ 0 (5b)

with

Ξ11 = UT
1 (Id⊗AT )+(Id⊗A)U1 +UT

2 (Id⊗ET )+(Id⊗
E)U2

Ξ12 = (Id ⊗ E)F − (Id ⊗ A)S2 − UT
2

Ξ13 = (Id ⊗ A)G − (Id ⊗ E)S1 − UT
1

Ξ22 = R1 ⊗ P − F − FT

Ξ23 = R2 ⊗ P + S1 + ST
2

Ξ33 = R3 ⊗ P + Id ⊗ Q − G − GT

From theorem 1, it is obvious that

Corollary 1: The continuous singular system is D stable

if and only if (5b) holds and there exist matrices P > 0, Q,

U1, U2, S1, S2, G and F such that




Ψ1 EF − AS2 − UT
2 AG − ES1 − UT

1

∗ −F − FT P + S1 + ST
2

∗ ∗ Q − G − GT



 < 0

with Ψ1 = AU1 + UT
1 AT + EU2 + UT

2 ET

Corollary 2: The discrete-time singular system is D stable

if and only if (5b) holds and there exist matrices P > 0, Q,

U1, U2, S1, S2, G and F such that




Ψ2 EF − AS2 − UT
2 AG − ES1 − UT

1

∗ −P − F − FT S1 + ST
2

∗ ∗ P + Q − G − GT



 < 0

with Ψ2 = AU1 + UT
1 AT + EU2 + UT

2 ET

Now consider the uncertain system (3). The following

theorem gives a sufficient condition for the uncertain system

to be D stable.
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Theorem 2: The unforced system (3) is robust D stable if

there exist matrices P (α) > 0, Q(α), U1, U2, S1, S2, G, F ,

W and V such that

Ξ(α) =





Ξ11 Ξ12 Ξ13

∗ Ξ22 Ξ23

∗ ∗ Ξ33



 < 0 (6a)

Γ(α) =

[

E(α)W + WT ET (α) −WT + E(α)V
∗ −V − V T + Q(α)

]

≥ 0

(6b)

with

Ξ11 = UT
1 (Id ⊗ AT (α)) + (Id ⊗ A(α))U1 + UT

2 (Id ⊗
ET (α)) + (Id ⊗ E(α))U2

Ξ12 = (Id ⊗ E(α))F − (Id ⊗ A(α))S2 − UT
2

Ξ13 = (Id ⊗ A(α))G − (Id ⊗ E(α))S1 − UT
1

Ξ22 = R1 ⊗ P (α) − F − FT

Ξ23 = R2 ⊗ P (α) + S1 + ST
2

Ξ33 = R3 ⊗ P (α) + Id ⊗ Q(α) − G − GT

The result is obvious from theorem 1. As is known to all,

the result above is untractable. Considering the convexity of

the LMI region, the following theorem gives a sufficient but

tractable condition for the D stability test.

Theorem 3: The unforced system (3) is robust D stable if

there exist matrices Pi > 0, Qi, i = 1, . . . , N and U1, U2,

S1, S2, G, F , W , V such that

Πi =





Πi11 Πi12 Πi13

∗ Πi22 Πi23

∗ ∗ Πi33



 < 0 (7a)

Γi =

[

EiW + WT ET
i

−WT + EiV

∗ −V − V T + Qi

]

≥ 0 (7b)

i =1, 2, . . . , N

with

Πi11 = UT
1 (Id ⊗ AT

i
) + (Id ⊗ Ai)U1 + UT

2 (Id ⊗ ET
i

) +
(Id ⊗ Ei)U2

Πi12 = (Id ⊗ Ei)F − (Id ⊗ Ai)S2 − UT
2

Πi13 = (Id ⊗ Ai)G − (Id ⊗ Ei)S1 − UT
1

Πi22 = R1 ⊗ Pi − F − FT

Πi23 = R2 ⊗ Pi + S1 + ST
2

Πi33 = R3 ⊗ Pi + Id ⊗ Qi − G − GT

Remark 1: The result in theorem 3 is a non-strict LMIs

for (7b). Since rank(E) = rank(Ei), i = 1, . . . , N , we

can always find matrices Q1 > 0, Y < 0 satisfying Q =
Q1 + UY UT , where U ∈ Rn×(n−r) is of full column rank

and satisfies E(α)U = 0. Then the non-strict LMI (7b) is

satisfied naturally and the condition becomes a strict LMI

condition.

The following theorem gives an approach to design a state

feedback controller to guarantee the closed system to be D
stable.

Theorem 4: The system (3) is robust D stabilizable by

state feedback if (7b) holds and there exist matrices Pi > 0,

Qi, i = 1, . . . , N and matrices F , U2, S1, H , V such that

Φi =





Φi11 Φi12 Φi13

∗ Φi22 Φi23

∗ ∗ Φi33



 < 0 i = 1.2. . . . , N (8)

where

Φi11 = Sym (α1Id ⊗ (AiH + BiV ) + (Id ⊗ Ei)U2)
Φi12 = −α2Id ⊗ (AiH + BiV ) + (Id ⊗ Ei)F − UT

2

Φi13 = α3Id ⊗ (AiH +BiV )− (Id ⊗Ei)S1−α1Id ⊗HT

Φi22 = R1 ⊗ Pi − F − FT

Φi23 = R2 ⊗ Pi + S1 + α2Id ⊗ HT

Φi33 = R3 ⊗ Pi + Id ⊗ Qi − α3Id ⊗ (H + HT )
and α1, α2, α3 are tuning parameters and a desired controller

is given by

K = V H−1 (9)

Remark 2: The tuning parameters βi, i = 1, 2, 3 should

be determined before our simulation. In this paper, they are

chosen by the searching method. Another way is using the

optimal function, such as fminsearch, see [16], [17] for

details.

IV. NUMERICAL EXAMPLES

In this section, some examples are presented to demon-

strate the applicability of the proposed approach. The system

model is as follows

E(α)δ[x(t)] = A(β)x(t) + B(γ)u(t) (10)

Example 1. Consider the continuous singular system with

the following parameters, which both E and A are with

uncertainties

E1 =





1 0 0
0 1 0
0 0 0



 , E2 =





1 1 0
0 1 0
0 0 0



 , A1 =





1 3 5
2 3 1
0 0 0



 ,

A2 =





2 3 2
8 3 5
1 1 1



 , B = B1 = B2 =





1
1
1





Obviously, this singular system is irregular. Our objective

is to design a controller such that the resultant closed system

is regular, casual, and all the finite eigenvalues lying in the

left of the line x=-0.5, i.e., R1 = 1, R2 = 0, R3 = 1.

To reformulate it in the form of (3), we define the vertices

of the system as (E1, A1, B), (E1, A2, B), (E2, A1, B),
(E2, A2, B). Using the algorithm in theorem 4, and choosing

the tuning parameters as α1 = 2, α2 = −2, α3 = 1, a

feasible solution is given as

H =





54.4832 −13.8122 7.7140
−7.1472 10.0240 8.0223
−81.3291 0.4959 −0.5077



 ,

V =
[

27.3944 −22.4215 −87.8714
]

and the corresponding state feedback control law is given as

u(t) =
[

−3.8346 −7.4089 −2.2546
]

x(t)

Using the gridding method, the finite eigenvalues of the

closed singular system is shown as in Fig.3, which shows

the effectiveness of the proposed algorithm.
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Example 2. Consider the uncertain discrete-time singular

system with the following parameters

E = E1 = E2 =





1 0 0
0 1 0
0 0 0



 , A1 =





1 2 1
2 1 2
1 1 1



 ,

A2 =





2 2 1
4 1 5
0 1 0



 , B1 =





1
1
1



 , B2 =





0
1
1





The region considered is shown as Fig.2 with a = 0 and

r = 0.9. To reformulate it in accordance with (3), choose

the vertices as (E, A1, B1), (E, A2, B1), (E, A1, B2),
(E, A2, B1). Using the algorithm in theorem 4, and choosing

the tuning parameters as α1 = 2, α2 = 1.2, α3 = 1, a

feasible solution is given as

H =





71.2846 −36.3543 −2.1594
−18.4597 23.1537 2.7100
−60.2565 28.0543 2.1979



 ,

V =
[

10.6018 −15.7355 −6.1984
]

and the corresponding state feedback controller is given by

u(t) =
[

−4.8681 −1.8002 −5.3835
]

x(t).

The finite eigenvalues of the closed singular system are

shown as in Fig.4, which shows that all the finite eigenvalues

are in the region D(0, 0.9).

V. CONCLUSION

In this paper, a sufficient condition for the robust D
stabilization of the singular system is proposed using the free

matrices technique. Both the derivative matrix E and state

matrix A are with polytopic uncertainties, and an algorithm

for the controller design is given in terms of LMI. Numerical

examples show the efficiency of the proposed approach.
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