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Abstract— The automotive industry is experiencing tight-
ening emission legislations together with high demands on
performance and driveability. As a counteraction, controller
software tends to become more and more complex. Intricate
controller software has several downsides, the large number
of controller parameters yields an exhaustive calibration task,
often performed through costly experiments. In addition, to
guarantee reliability, validation and verification analysis is
performed on the controller in combination with the engine.
This task would also greatly benefit from a less complex
controller structure.

Here a novel model reduction method of nonlinear discrete-
time systems is introduced and applied to an engine controller
used in current production cars. The result is a nonlinear piece-
wise affine system with improved simulation speed.

I. INTRODUCTION

The current control design development process in auto-

motive industry involves many expensive experiments and

hand-tuning by experienced personnel. This process is time-

consuming and even if only small changes have been done

between two car models, many tuning tasks have to be

repeated. Model-based development is a promising approach

to reduce costs, development time and dependency of the

undocumented knowledge possessed by experienced person-

nel. The key idea is to replace expensive experiments with

simulation of mathematical models.

Modeling is a mayor undertaking when introducing a

model-based development process. Models for various pur-

poses yield different requirements on e.g. precision and

simulation speed. A systematic method to reduce model

complexity would be very useful tool to aid this process.

II. MODEL REDUCTION OF NONLINEAR SYSTEMS

Model reduction of nonlinear systems is a research area

under heavy development. The currently available methods

can be divided into the following categories.

A. Heuristic methods

Probably the most common way to simplify nonlinear

models is through heuristic methods. For example, indirect

model reduction is performed in all modeling-work when
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complexity is chosen to match the intended model purpose.

There are three common ways to reduce complexity:

• To discard effects that by intuition or experience have

a relatively weak impact on the dynamics of interest.

• Separation of time-scales and replacing relatively fast

dynamics with static gains.

• Averaging several effects into one pseudo-effect.

All three approaches require great knowledge and intuition

of the modeled object. However, attempts to perform these

simplification steps in a systematic automatized manner has

been investigated, see for example [4]. The second mentioned

method can be applied in a more formal manner, it is

commonly called the singular perturbation method, see [5].

B. Linear methods

Here, a linearization, around an equilibrium or trajectory,

is made followed by the application of some linear model

reduction method. The obvious downside of this procedure

is that the end result will be a linear model that can only be

expected to perform well in a region close to the mentioned

equilibrium or trajectory. Further, the size of this region

depends on how nonlinear the original system is.

C. Balancing of nonlinear systems

Balanced truncation is a popular method for model reduc-

tion of linear systems introduced in [1]. Recent research has

extended this method to also cover the nonlinear case, see [2]

and its discrete-time counterpart [3]. Here, a balancing non-

linear coordinate-change is applied followed by truncation

of states. The method has strong mathematical support but

due to the required numerical effort only models with very

moderate size have so far been considered.

D. Pseudo-linear methods

These methods try to extend ideas of reduction of linear

systems to the nonlinear case. Similar to the method men-

tioned in Section II-C they apply a coordinate-change fol-

lowed by truncation, however here the coordinate change is

linear. This restriction to linear subspaces makes applicability

to large systems possible. The main difference between the

following methods is how the coordinate-change is found.

A very commonly used method for nonlinear model re-

duction is the so called Proper Orthogonal Decomposition
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method, introduced in [6], [7]. Here principal component

analysis is performed on state data and the subspace that

captures the majority of the variance is chosen. A com-

mon application is discretized partial differential equations,

see [8]. The standard version of this method does not take

any output-signal into consideration and can therefore be

disadvantageous for control purposes.

A recent contribution is found in [9], the so called empiri-

cal Gramian approach extends ideas from balanced truncation

of linear systems to the nonlinear case. Here state-space

data are collected while impulse input-signals in different

directions are applied. The data is then used to estimate a

constant controllability Gramian matrix. Similarly, a constant

observability Gramian matrix is constructed from simulation

data generated by different initial values distributed on the

unit sphere.

In [10] the so called Trajectory Piecewise-Linear Approach

is presented. The method applies linear methods on lineariza-

tions distributed over one or several trajectories. Here the

main focus is not only on reducing the number of states but

also improving simulation speed.

The method introduced in this paper also belongs to this

class of reduction methods where a linear coordinate change

is used. Further, as in [9] it applies the notion of Gramians

and in similarity with [10], linearizations along trajectories

are used.

III. PRELIMINARIES

The method presented below is based on theory concern-

ing linear time-varying systems. Consider the linear discrete-

time time-varying system

xk+1 = Akxk + Bkuk

yk = Ckxk + Dkuk

k ∈ [1, N ],

where xk is the state-vector, uk the input-signal and yk the

output-signal at time k. Further, Ak, Bk, Ck and Dk are time-

varying matrices of appropriate dimensions. In [2] the notion

of so called energy functions is used. The controllability

energy function is the amount of energy required in the input-

signal to reach a specific state. In the linear-time varying case

this can be stated as the optimal control problem

Lc(x
∗, t) = min

u∈L2(0,t)
x1=0
xt=x∗

1

2

t
∑

k=1

||uk||
2. (1)

That is, Lc(x
∗, t) is the minimal amount of energy in u

required to reach a certain state x∗ at time t, starting from

the zero initial state.

Further, the observability energy function determines the

energy induced in the output given a certain initial state and

a zero input-signal. In this case it can be stated as

Lo(x
∗, t) =

1

2

N
∑

k=t

||yk||
2, xt = x∗, u ≡ 0. (2)

That is, the amount of energy an initial state x∗ at time t

induces in the output-signal over the time-interval [t,N ]. The

concept of these energy function is illustrated in Fig. 1. The

usefulness of these functions for model reduction is clear. If

a large amount of energy is required to reach a certain state

and if the same state yields a small output energy, this state

is unimportant for the input-output behaviour of the system.

x

x∗

t N

u y

xt = x∗

1
0

Fig. 1. Visualization of the energy functions. The left part illustrates the
minimal input energy required to reach x∗ at time t. In the right part the
control signal is zero and the initial state x∗ yields the mentioned output
energy.

The energy functions can be determined trough the fol-

lowing Lyapunov equations

Pk+1 = AkPkAT
k + BkBT

k , k ∈ [1, N ]

Qk = AT
k Qk+1Ak + CT

k Ck, k ∈ [1, N ]

with the boundary conditions P1 = 0 and QN+1 = 0. The

matrices Pk and Qk are commonly called the controllability

Gramian and observability Gramian, respectively. Further,

the solutions to (1) and (2) can be written as the quadratic

forms

Lc(x
∗, t) =

1

2
x∗T P−1

t x∗ Lo(x
∗, t) =

1

2
x∗T Qtx

∗.

The Gramians Pk and Qk, and their analogues for other

system classes, are central to many model reduction methods.

They show how strongly states are connected to the input and

output and thereby supplies essential information of which

state-subspace is of most significance.

IV. METHOD DESCRIPTION

The method presented here is the discrete-time counterpart

of the average Gramian method first presented in [11]. The

system class is the general nonlinear discrete-time system

xk+1 = f(xk, uk)

yk = g(xk, uk)
(3)

where uk ∈ R
l, xk ∈ R

n and yk ∈ R
m. The following

sections explain the main steps involved in the method.
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A. Linearization along trajectory

The first step is to choose a so called training input-

signal. This is an important step of the method of which the

performance is highly dependent. As a general rule the input

should be chosen to obey physical restrictions on the signal

and to excite all relevant dynamics. To find such a signal

might be a challenging task. However, one could also see

this as an advantage of the method. If the reduced model is

only going to be used for some restricted purposes, the model

could probably be reduced to a greater extent. Through the

choice of training input the user can show what behaviour

is relevant for the reduced system to reproduce. Hence, the

signal should be chosen corresponding to realistic usage of

the model.

The system is then linearized along the state-trajectory the

training input gave rise to. The result is a time-varying linear

system

∆xk+1 = Ak∆xk + Bk∆uk

∆yk = Ck∆xk + Dk∆uk

k ∈ [1, N ]

where ∆u, ∆x and ∆y denote deviations from the nominal

trajectories. Further, Ak, Bk, Ck and Dk are time-varying

matrices of appropriate size.

B. Compute the time-varying Gramians

Similar to balanced truncation the method uses the notion

of Gramians. As mentioned, for time-varying systems the

controllability Gramian can be computed according to the

difference equation

Pk+1 = AkPkAT
k + BkBT

k , k ∈ [1, N ] (4)

with P1 = 0. Similarly, the observability Gramian is deter-

mined by

Qk = AT
k Qk+1Ak + CT

k Ck, k ∈ [1, N ] (5)

with the boundary condition QN+1 = 0.

C. Determine the average Gramians

The Gramians Pk and Qk contain local information along

the trajectory of how strongly states are connected to the

input and output, respectively. In order to extract more

overall information about which the important states are, one

could use the average Gramians

P̄ =
1

N

N
∑

k=1

Pk Q̄ =
1

N

N
∑

k=1

Qk. (6)

These time-invariant matrices contain information of how

strongly the states are connected to the input and output on

average over the training trajectory. For example, if a certain

linear state combination is unobservable from the output in

all points of the trajectory, it will be revealed in Q̄. Further, a

rank deficiency of the matrix P̄ Q̄ indicates that some states

are obsolete and can be truncated from the model without

changing the input-output relationship.

D. Find balancing coordinate-change

This step is performed to extract the relevant state sub-

space using the information gathered in the average Grami-

ans. The chosen approach treats P̄ and Q̄ as if they be-

longed to a linear time-invariant system. By following the

standard balanced truncation procedure for linear systems,

a coordinate change z = Tx can be found, see [12], such

that the average Gramians become equal and diagonal with

decreasing diagonal elements.

T P̄TT = T−T Q̄T−1 = Σ̄ =







σ1

. . .

σn






(7)

The diagonal elements σ1 ≥ σ2 ≥ ... ≥ σn corresponds

to the Hankel singular values in balanced truncation of

linear systems, where they show how important states are

for the input-output relationship. Although no error-bound

is available, in contrast to the linear case, these values will

be used to determine which model order to choose for the

reduced system.

E. Truncate states

Truncating states corresponding to relatively small singu-

lar values and keeping n̂ states is equivalent to removing

rows and columns in T and T−1, respectively.

T ∈ R
nxn ⇒ Tl ∈ R

n̂xn

T−1 ∈ R
nxn ⇒ Tr ∈ R

nxn̂
(8)

Applying the truncated coordinate change to the original

system formulation in (3) gives rise to the reduced order

system
ẑk+1 = Tlf(Tr ẑk, uk)

yk = g(Tr ẑk, uk)
(9)

where ẑ ∈ R
n̂. Deriving the reduced system through sym-

bolical substitution in (9) is generally not an attractive option.

Commonly, the original set of equations is sparse, i.e. all state

equations do not involve all states. The sparsity is lost with a

dense coordinate change and truncation of states. Therefore,

the total computation time is not necessarily reduced for the

right-hand-side functions, which can e.g. be seen in [15].

How to derive analytical expressions for the reduced system

in (9) is highly dependent on the format the original model

is implemented in. This matter will be further discussed in

Section VI.

V. MODEL DESCRIPTION

The model considered in this work consists of software

used for online air-path dynamics estimation in current

production cars. In particular, the model estimates the air

charge in a spark ignition engine, i.e., the amount of air

the cylinder is loaded with when the inlet valve closes. The

amount of fuel to inject is then determined from this value in

order to achieve a certain air-fuel ratio. The exhaust treatment

system requires a precise air-fuel ratio, therefore high fidelity

of the estimation is crucial since a mismatch would yield

suboptimal performance. For further information see [13].
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The model is implemented in MATLAB R©/Simulink R©

and can be compiled through Real-Time Workshop R©. The

resulting binary runs in real-time in the Engine Control

Unit(ECU), shown in Fig. 2.

Fig. 2. Engine Control Unit with the embedded controller software.

The model is devised for real-time purposes with limited

hardware resources. For example, only discrete-time com-

ponents are present and fixed-point arithmetic is used. The

most common arrangement, used in automotive industry,

to achieve high performance for a wide area of operating

conditions is to divide the problem into regions and perform

local tuning of variables. The model therefore contains a

large amount of logical branches and look-up tables.

The model is a so called mean-value model, see [14],

but details concerning model implementation are proprietary

information and are therefore not disclosed.

The model estimates several variables using various mea-

surements. As a proof of concept, only one input-output pair

is treated here. The chosen input-signal is the throttle angle

measured in degrees and the output-signal is the air charge

given in percentage, as illustrated in Fig. 3.

Model reduction of the Simulink control algorithm imple-

mentation would ideally yield a binary file that runs faster

and uses less memory. Hence, smaller hardware resources

would be required yielding a lower controller hardware cost.

In addition, formal validation and verification of the con-

troller in combination with the engine would be facilitated.

Moreover, the original model structure is hard to overview

and it might be easier to understand the reduced model’s

behaviour and visualize its components.

Throttle angle(deg)
Model

Air charge(%)

Fig. 3. Chosen input-output pair for model reduction.

VI. MODEL REDUCTION APPLIED TO THE CONTROLLER

MODEL

With some slight modification the controller software fits

within the model class of (3). The state-vector x represents

the ECU memory used to store data between samples. The

controller turned out to contain six states. The input-signal

u is the throttle angle and the output y is the air charge.

Simulink provides tools for extraction of simulation data

and linearizations. With this data available the model can

be reduced following the procedure described in Section IV.

As stated in Section IV-A, the first step was to choose a

training trajectory. Here, a simple ramp-like throttle opening

profile was chosen, see Fig. 4, starting from closed throttle

and then linearly increasing until fully open. Of course,

different choices are possible depending of the purpose of

the reduced model. Notice the nonlinear effect in Fig. 4,

the output has almost settled after half a second while the

input continue to increase half a second more. This is due

to that the flow over the throttle is much more sensitive to

an increase in throttle angle when it is almost closed, see

e.g. [13].
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Fig. 4. The ramp-like training input-signal(Throttle angle) and the
corresponding output-signal(Air charge).

With the training input-signal chosen, the model was

linearized around the corresponding state-space trajectory.

Doing so gives rise to the linearizations (Ak,Bk,Ck,Dk),

for this model the Dk matrix is zero for all k. Following

the procedure, the time-varying Gramians Pk and Qk were

computed through (4) and (5). The average Gramians P̄ and

Q̄ were then obtained by (6). The singular values in (7) are

shown in Fig. 5, three of the six values turned out to be

exactly zero and are not plotted. The relative size of these

values indicate the importance of the states. Here, there is a

factor 104 difference between the largest and second largest

value. In model reduction of linear systems one could easily

reduce to one state. Despite the absence of a formal error-

bound this will be done for the nonlinear system as well.

Calculating the balancing coordinate-change and truncating

to one state according to (8) yield the two matrices Tl and

Tr.

The next and final step of the method consists of applying

the coordinate-change to the original nonlinear system. In

this case, the functions f and g were not explicitly available

but embedded in the Simulink program. Hence, symbolical

manipulation of the functions is not a straight forward

process. One could consider using the piece-wise affine

approach described in [10], where f and g are reconstructed

through a weighted sum of linearization points along a

training trajectory. However, using linearizations as basis
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Fig. 5. The three largest Hankel singular values, notice the 104 drop
between the first and second value.

functions is not tractable in this case. Due to the logical

branches and non-smooth look-up tables the function f

becomes “noisy”. Therefore, a local linearization provides

inadequate information about the neighbouring state space

and an unreasonably large number of linearizations would

be required.

By reducing to one state, the right-hand-side function

in (9)

ẑk+1 = f̂(ẑk, uk) = Tlf(Tr ẑk, uk)

becomes a two-dimensional map f̂ : R2 → R. An alternative

approach, used below, is to let the map f̂ be generated

from simulation data. State-trajectories induced by some

input-signal could be projected with Tr and provide values

for ẑk. Value triplets of ẑk+1, ẑk and uk supply point-

wise information of the map. A drawback is that an input-

signal rich enough to make sufficient state-space coverage

in (ẑk, uk) is needed and the choice can be nontrivial. The

difficulties relate to the choice of training input in the first

step of the model reduction procedure and although the

purpose is different the same input-signal could be used. A

chirp signal with maximal amplitude, shown in Fig. 6, was

chosen as the exciting input-signal.

For simulation of the reduced model, point-wise informa-

tion of the map is not sufficient, an analytical expression

of f̂ is needed. Trough local averaging followed by linear

interpolation and extrapolation, a piece-wise affine surface

was generated to approximate the data-cloud, see Fig. 7.

To clarify the structure of the map the incremental form

f̂(ẑ, u)− ẑ instead of f̂(ẑ, u) was used. As the map is piece-

wise affine, so is the reduced system. One can notice the

rough areas in the upper part of the map, their origin is most

probably the non-smooth look-up tables present in the model.

In general the same procedure would be applied to the

output function g. Here, the output function g(Tr ẑk, uk) =
ĝ(ẑ) turned out to be nearly affine and a least-square fit

showed to be an adequate approximation.

With analytical expressions for f̂ and ĝ at hand, simulation

of the reduced system is possible. Fig. 8 shows a validation

result where the original and reduced model were simulated

with a ramp-like opening and closing of the throttle. The

initial value of ẑ was arbitrarily set, hence the initial mis-
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Fig. 6. The chirp input-signal used for map generation and the correspond-
ing output-signal.
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Fig. 7. The data-points and generated surface representing the right-hand-

side function f̂(ẑ, u), here visualized in incremental form.

match between the two output-signals. In contrast, after 0.5

seconds the worst case error was less than 1.2% air charge.

In Fig. 9 the validation trajectory together with the data-

points used for map generation are shown. The smaller

dots are from the chirp-signal simulation in Fig. 6 and the

connected dots from the validation simulation in Fig. 8. As

can be seen, the validation trajectory is covered by the look-

up table. For a different validation scenario this might not

necessarily be the case. However, if necessary, a richer input-

signal could be designed to overspread a larger area and

a more general map could be generated. Due to the low

dimensionality of this case, the coverage could be graphically

examined. However, in a more general setting with higher

dimensionality it may be hard to verify.

A compact Simulink R© implementation of the reduced

model is depicted in Fig. 10. The model runs more than 100

times faster than the full original model. However, to carry

out a fair comparison, the reduced model should also be

equipped with the same amount of input and output-signals.

VII. CONCLUSIONS

A novel model reduction method of nonlinear discrete-

time systems has been presented together with its appli-

cability to an engine controller used in current production

cars. The number of states was reduced from six to one
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Fig. 8. Validation result of the reduced model. The lower plot shows the
output-signal of the original model together with the reduced one. The initial
output error is due to an unmatched initial condition.
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Fig. 9. The validation trajectory(the connected dots) is covered by the span

of data-points(the smaller dots) used for the look-up table f̂(ẑk, uk).

and the resulting nonlinear piece-wise affine system showed

a 100-fold improved simulation speed, with little loss of

accuracy. Despite the initial model’s complexity in terms of

look-up tables and logical switches the method demonstrated

its applicability. The method also provided information for

analysis of overall controller behaviour, such as the software

visualisation in Fig. 7.

Further research is required regarding the extension to

models with several inputs and outputs. In particular, deriva-

tion of the map in state-input space in a robust manner.

u

z y

1

f(z,u)
Unit Delay

z

1

g(z)u

1

Fig. 10. Simulink implementation of the reduced model.

REFERENCES

[1] B. Moore, “Principal component analysis in linear systems: control-
lability, observability, and model reduction,” IEEE Transactions on

Automatic Control, vol. 26, pp. 17–32, February 1981.
[2] J. Scherpen and K. Fujimoto, “Nonlinear balanced realization based

on singular value analysis of Hankel operators,” in Proceedings of

the 42nd IEEE Conference on Decision & Control, (Maui, USA),
pp. 6072–6077, IEEE, December 2003.

[3] J. Scherpen and K. Fujimoto, “Balancing and model reduction for
discrete-time nonlinear systems based on Hankel singular value anal-
ysis,” in Proceedings of the 16th International Symposium on Math-

ematical Theory of Networks and Systems, (Leuven, Belgium), July
2004.

[4] J. Broz, C. Clauss, T. Halfmann, P. Lang, R. Martin, and P. Schwarz,
“Automated symbolic model reduction for mechatronical systems,”
in Proc. of 2006 IEEE International Symposium on Computer-Aided

Control Systems Design, (Munich, Germany), pp. 408–415, IEEE, Oct.
2006.

[5] H. K. Khalil, Nonlinear systems. Upper Saddle River, New Jersey:
Prentice Hall, third ed., 2002.
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