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Abstract— Production split and merge are widely used in
many manufacturing systems to increase production capacity
and variety, improve product quality, and carry out scheduling
and control activities. In this paper, we present analytical
methods to analyze such systems with exponential machine
reliability models, operating under circulate, strictly circulate,
priority and percentage split/merge policies.

I. INTRODUCTION

Performance analysis of production systems has received

tremendous amount of research focus in last five decades

(see reviews [1], [2] and monographs [3]-[5]). In modern

manufacturing systems, to improve productivity, quality and

flexibility, split and merge structures are often used to

increase production capacity, improve product quality, and

carry out scheduling and control policies. In addition, routing

policies at the split or merge stations play an important

role in such systems since they directly control the parts

flow. Therefore, to design and manage such systems more

efficiently, modeling and analysis of split and merge systems

with different production control policies are of significant

importance.

In practice, two types of split or merge are encountered.

One is known as assembly merge (or disassembly split). In

this case, the assembly machine needs to take parts from

all its upstream buffers and assemble them into a single

product (respectively, disassemble a single part into many

ones to all downstream buffers). Another type is referred to

as production merge (or production split), where the merge

station will only take one part from one of its upstream

buffers each time (or send one part to one of its downstream

buffers). In this paper, the latter case is considered. Specifi-

cally, we consider split and merge systems with exponential

reliability machines. Four frequently used split and merge

policies are addressed: circulate, strictly circulate, priority

and percentage. In circulate policy, the split machine sends

the part to downstream branches in circulation when it is not

blocked by any branch. However, if a branch blocks the split

machine, it will be ignored and part will flow to subsequent

branch. Similar scenario occurs in merge operations, where

the merge station takes part from all upstream branches

circularly if it is not starved, and the empty buffer branch

will be ignored. In strictly circulate policy, routing is similar
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to circulate policy except that blocked or starved branches

cannot be ignored, parts need to wait until the branch is

available. In priority policy, parts will be dispatched to the

branch with higher priority unless it is blocked. Only when

the split machine is blocked by the higher priority branch, it

will send parts to the lower priority one. Similarly, the merge

machine always takes parts from higher priority upstream

branch if it is available. In percentage policy, parts are

dispatched to downstream branches or loaded from upstream

one following a given percentage.

In recent years, several performance analysis methods

have been developed to study split and merge systems. For

example, paper [6] introduces a geometric machine reliability

model for a transfer line with split operations based on per-

centage routing policy. Merge systems with a shared buffer

are discussed in [7] and [8]. Priority merge policy is assumed

in these papers when the shared buffer is transit to full state.

Multiple product systems have been studied in [9], where

different products are processed separately at the dedicated

machines or buffers. Another direction of study focuses on

rework loops ([10], [11]). In such systems, repaired parts are

typically assumed to have higher priority at merge station

to avoid deadlock. Parallel systems are investigated in [12]

where parallel lanes are split from a common buffer and

then merge into another shared buffer. Paper [13] presents

a general method to model complex production systems,

referred to as overlapping decomposition.

In spite of these, the production split and merge systems

with different policies have not been studied thoroughly.

In particular, the systems under different split and merge

policies need to be analyzed in details. Such a study can

enable us to understand the impact of different policies and

provide guidance to control the part flow in operations. A

preliminary study on Bernoulli split and merge systems with

several routing policies has been carried out in [14]. This

paper is intended to extend this work to more general cases,

exponential machine reliability models with more routing

policies. The main contribution of this paper is in develop-

ment of analytical models to study split and merge systems

with different routing policies. Recursive procedures are

proposed to analyze system performance. The convergence of

the procedures and uniqueness of the solutions are justified,

and accuracy are validated with acceptable precision.

The remaining of the paper is structured as follows: the

problem to be addressed is formulated in Section II. The

modeling and analysis methods for split and merge systems

with different routing policies are introduced in Section III.

Conclusions are given in Section IV. Due to space limitation,

all proofs are omitted and can be found in [15].
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II. SYSTEM DESCRIPTION AND PROBLEM

FORMULATION

In this paper, we consider a typical four-machine split

(or merge) system, whose layout is shown in Figure 1(a)

(respectively, Figure 1(b)). Here the circles represent the

machines and the rectangles are the buffers. The following

assumptions address the machines, the buffers, and their

interactions.
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Fig. 1. Split and merge systems

1) Each machine mi, i = 1, . . . ,4, has two states: up and

down. When it is up, it is capable of processing parts

with capacity ci parts/unit of time. When the machine

is down, no production takes place.

2) The up- and downtimes of machine mi are random

variables exponentially distributed with parameters λi

and µi, respectively. In other words, λi and µi are

failure and repair rates, respectively.

3) Each buffer bk, k = 1,2,3, has capacity Nk, 0 < Nk < ∞.

4) A machine is blocked at time t if it is up, its down-

stream buffer is full, and downstream machine fails to

take any work from the buffer at time t. Machines m3

and m4 are never blocked in a split system, while m4

is never blocked in a merge system.

5) A machine is starved at time t if it is up, its upstream

buffer is empty, and upstream machine fails to put

any work into the buffer at time t. In a split system,

machine m1 is never starved, and in a merge system,

machines m1 and m2 are never starved.

6) Machine m2 in split system (or m3 in merge system)

will send part to downstream buffers b2 and b3 (re-

spectively, take material from upstream buffers b1 and

b2) based on the following policies:

• Priority policy. Buffer b2 has higher priority, i.e.,

m2 will keep sending parts to b2 whenever it has

space (respectively, buffer b1 has higher priority,

and m3 takes part from b1 if it has available parts).

m2 sends parts to b3 only when it is blocked by b2

(respectively, m3 takes parts from b2 only when it

is starved by b1).

• Circulate policy. Machine m2 will send part to

buffers b2 and b3 circularly if it is not blocked by

both buffers (respectively, m3 takes part from b1

and b2 circularly when it is not starved by both). If

it is blocked by one buffer, m2 will send the part

to another buffer (respectively, m3 will take part

from another buffer if it is starved by one).

• Strictly circulate policy. Machine m2 will send part

to buffers b2 and b3 (respectively, m3 takes part

from b1 and b2) circularly. If it is blocked by one

buffer, m2 will wait until the buffer is available

(respectively, m3 will wait until the buffer has

available part if it is starved).

• Percentage policy (split only). Machine m2 will

send a part to buffers b1 and b2 based on pre-

designed percentage, α ·100% to b1 and (1−α) ·
100% to b2.

Let TP be the throughput of the split (or merge) system,

i.e., the average number of parts produced by the last

machines m3 and m4 (respectively, m4 in merge case) per unit

of time. The problem addressed in this paper is as follows:

Given production system 1)-6), develop a method to evaluate

the system throughput as a function of the system parameters.

III. PERFORMANCE ANALYSIS

A. Overlapping Decomposition

Since the split (or merge) machine has to allocate its

capacity to different downstream (respectively, upstream)

branches and all machines and buffers in the system interfere

with each other and impact such allocation, the exact anal-

ysis seems impossible. Therefore, approximation method is

pursued here. The idea of the approximation is based on

overlapping decomposition ([13]), and is illustrated below

(Figure 2(a) for split system and (b) for merge system):
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Fig. 2. Overlapping decomposition of split and merge systems

Consider the split system illustrated in Figure 2(a), decom-

pose the system into three overlapped serial lines, where m2

is the overlapping machine. Specifically, modify machine m2

as m′
2 to take into account the effects that m2 is blocked by

b2 and b3, we obtain the first overlapped serial line, denoted

as Line 1 (m1, b1 and m′
2). Then the probability that m2

is starved by b1 can be calculated using a two-machine

throughput analysis formula ([5]). Using this probability,

consider machine m2 with capacity allocated to buffer b2 and

m3 only, modify m2 to include this starvation and capacity

allocation, we obtain m′′
2 and the second overlapped serial

line, referred to as Line 2 (m′′
2 , b2 and m3). Again, the

probability that m2 is blocked by b2 can be calculated.

Analogously, taking into account the starvation probability

from b1 and the capacity allocated only to b3 and m4, we

modify m2 to m′′′
2 and obtain Line 3 (m′′′

2 , b3 and m4). The

probability that m2 is blocked by b3 can be computed. Next,

using these blockage probabilities, we carry out the analysis

for Line 1 again, and the procedure is repeated anew. When

the procedure is convergent, the production rates of Lines

1-3 are obtained.
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For the merge system in Figure 2(b), a similar idea can be

applied but with m3 as the overlapping machine. Here Line

1 consists of m1, b1 and a modified machine m′
3, which takes

into account the effect of blockage of buffer b3 and capacity

allocation to branch b1 and m1 only. Line 2 is composed of

m2, b2 and pseudo machine m′′
3 , which considers the blockage

of b3 and capacity allocated to b2 and m2. Finally, including

starvation probabilities from b1 and b2, we modify m3 into

m′′′
3 and obtain Line 3 (m′′′

3 , b3, and m4). The recursive

procedure is again introduced to update the blockage and

starvation probabilities of machine m3 until it is convergent.

B. Operator T P

To implement the approximation procedure introduced
above, an operator TP to calculate the throughput of two-
machine line is needed. We denote such an operator as
T P(c1,λ1,µ1,c2,λ2,µ2,N1). Then the line throughput can be
calculated as (see [5] for details).

• c1 < c2

T P =
c2e2Aek1N1 +c1e1Bek2N1 +c1e1Ce−k2N1

Aek1N1+Bek2N1 +C1e−k2 N1
, (1)

where

ei =
µi

λi + µi
, i = 1,2

k1 =
1

2c1c2(µ1 + µ2)(c1 −c2)
[µ1c2

1(µ1 + µ2 +λ2)

−c1c2[(µ1 + µ2)
2 +(µ1λ2 + µ2λ1)

+(µ1 + µ2)(λ1 +λ2)]+ µ2c2
2(µ1 + µ2 +λ1)],

k2 =
(c1µ1 +c2µ2)R

2c1c2(µ1 + µ2)(c2 −c1)
,

A = µ1R2 + µ1R[c1(µ1 + µ2 +λ2) (2)

−c2(µ1 + µ2 +λ1)],

B = µ2λ1c2[(c1 −c2)(µ1 −µ2)− (c2λ1 +c1λ2)−R],

R = {[c1(µ1 + µ2 +λ2)−c2(µ1 + µ2 +λ1)]
2

+4c1c2λ1λ2}
1/2,

C1 =
e2(c2 −c1e1)A+c1e1(1−e2)B

c1e1(e2 −1)
.

• c1 = c2

T P = c2e2[1−Q(λ1,µ1,λ2,µ2,N1)]

= c1e1[1−Q(λ2,µ2,λ1,µ1,N1)], (3)

where

Q(λ1,µ1,λ2,µ2,N1)

=






(1−e1)(1−φ)

1−φe−β N1
, if λ1

µ1
6= λ2

µ2
,

λ1(λ1+λ2)(µ1+µ2)
(λ1+µ1)[)λ1+λ2)(µ1+µ2)+λ2µ1(λ1+λ2+µ1+µ2)N1]

,

if λ1

µ1
= λ2

µ2
,

(4)

ei =
µi

λi + µi
, i = 1,2,

φ =
e1(1−e2)

e2(1−e1)
, (5)

β =
(λ1 +λ2 + µ1 + µ2)(λ1µ2 −λ2µ1)

(λ1 +λ2)(µ1 + µ2)
.

• c1 > c2. By reversibility.

Using this operator, recursive procedures are developed

to analyze split and merge systems with different routing

policies. The specific policy will be taken into account when

modifications of m2 in split system or m3 in merge system

are carried out. Below, details of these modifications are

introduced.

C. Priority Policy

1) Recursive procedures:
a) Split system: Consider the split system in Figure

2(a). The modification of m2 for priority policy is carried
out as follows: Assume buffer b2 has higher priority than
b3. Then, in Line 2, m2 is always available to b2 when it is
not starved, thus c2 is multiplied by the probability that b1 is
not empty. However, m2 is available to b3 only when it is not
starved by b1, but blocked by b2. Therefore, c2 is modified
by these two probabilities. Then the recursive procedure is
introduced as:

Procedure 1:

Line 1

c′2(s+1) = c2(1− X̂2N2
(s)X̂3N3

(s)),

T̂ Ps,p,1(s+1) = T P(c1,λ1,µ1,c
′
2(s+1),λ2,µ2,N1), (6)

X̂10(s+1) = 1−
T̂ Ps,p,1(s+1)

c′2(s+1)e2
,

Line 2

c′′2(s+1) = c2(1− X̂10(s+1)),

T̂ Ps,p,2(s+1) = T P(c′′2(s+1),λ2,µ2,c3,λ3,µ3,N2), (7)

X̂2N2
(s+1) = 1−

T̂ Ps,p,2(s+1)

c′′2(s+1)e2
,

Line 3

c′′′2 (s+1) = c2X̂2N2
(s+1)(1− X̂10(s+1)),

T̂ Ps,p,3(s+1) = T P(c′′′2 (s+1),λ2,µ2,c4,λ4,µ4,N3), (8)

X̂3N3
(s+1) = 1−

T̂ Ps,p,3(s+1)

c′′′2 (s+1)e2
,

s = 0,1,2, . . . ,

X̂2N2
(0) = X̂3N3

(0) = 0,

where X̂10(s), X̂2N2
(s), X̂3N3

(s) denote the estimates of the

probabilities that b1 is empty, b2 and b3 are full at iteration

s, respectively, and T̂ Ps,p,i(s) is the throughput of line i in

split system with priority policy at the s-th iteration. Similar

notations are used in subsequent procedures.
b) Merge system: Assuming buffer b1 has higher pri-

ority than b2. Analogously to Procedure 1, we have
Procedure 2:

Line 1

c′3(s+1) = c3(1− X̂3N3
(s)),

T̂ Pm,p,1(s+1) = T P(c1,λ1,µ1,c
′
3(s+1),λ3,µ3,N1), (9)

X̂10(s+1) = 1−
T̂ Pm,p,1(s+1)

c′3(s+1)e3
,

Line 2

c′′3(s+1) = c3X̂10(s+1)(1− X̂3N3
(s)),

T̂ Pm,p,2(s+1) = T P(c2,λ2,µ2,c
′′
3(s+1),λ3,µ3,N2), (10)

X̂20(s+1) = 1−
T̂ Pm,p,2(s+1)

c′′3(s+1)e3
,

Line 3

2192



c′′′3 (s+1) = c3(1− X̂10(s+1)X̂20(s+1)),

T̂ Pm,p,3(s+1) = T P(c′′′3 (s+1),λ3,µ3,c4,λ4,µ4,N3), (11)

X̂3N3
(s+1) = 1−

T̂ Pm,p,3(s+1)

c′′′3 (s+1)e3
,

s = 0,1,2, . . . ,

X̂3N3
(0) = 0.

2) Convergence: Let T̂ Ps,p,i, T̂ Pm,p,i, i = 1,2,3, denote

the throughputs obtained for Line i if Procedures 1 and 2

are convergent, respectively. It is shown below that these

procedures lead to convergent results.
Theorem 1: Under assumptions 1)-6), Procedures 1 and

2 are convergent, therefore, the following limits exist:

lim
s→∞

T̂ Ps,p,i(s) = T̂ Ps,p,i, lim
s→∞

T̂ Pm,p,i(s) = T̂ Pm,p,i, i = 1,2,3. (12)

In addition, the steady state equations of Procedures 1 and

2 have unique solutions.
Therefore, we obtain the estimates of the throughput,

T̂ Ps,p and T̂ Pm,p, for split and merge systems with priority
policy, respectively, where

T̂ Ps,p = T̂ Ps,p,2 + T̂ Ps,p,3, T̂ Pm,p = T̂ Pm,p,3. (13)

3) Accuracy: The accuracy of the estimation is investi-
gated numerically. Specifically, we randomly and equiproba-
bly select machine and buffer parameters from the following
sets, and construct 60 split and 60 merge systems by revers-
ing the lines.

ei ∈ [0.75,0.95], i = 1, . . . ,4, where ei =
µi

λi + µi
,

Tdown,i ∈ [2,10], i = 1, . . . ,4, where µi = 1/Tdown,i,

ci ∈ [1,1.2], i = 1,2 for split, i = 3,4 for merge, (14)

ci ∈ [0.6,0.8], i = 3,4 for split, i = 1,2 for merge,

Ni ∈ [1,3] ·Tdown,i, i = 1, . . . ,4.

Both analytical method using Procedures 1 and 2 and
simulation approach using Simul8 ([16]) are pursued to
evaluate the throughput of each line. 10,000 time units of
warmup period are assumed, and the next 100,000 units
are used to collect steady state statistics. 20 replications
are carried out to obtain the average production rate, with
95% confidence intervals typically ranging around ±0.001.
The differences between analytical and simulation results are
evaluated as

εs,p =
T̂ Ps,p −T Ps,p

T Ps,p
·100%, εm,p =

T̂ Pm,p −T Pm,p

T Pm,p
·100%, (15)

where T Ps,p and T PRm,p are throughputs obtained by

simulation for priority policy in split and merge systems,

respectively (similar notations are used for subsequent pro-

cedures as well).

The results of this investigation are illustrated in Figure

3 for Procedures 1 and 2. It is shown that in most cases

we studied, the error is within 3-5%, with a few exceptions

up to 9%. Therefore, Procedures 1 and 2 provide a relative

accurate approximation for system throughputs.

D. Circulate Policy

a) Split system: The rationale behind the modification
of m2 is that, in Line 1, m2 is available to b1 if it is not
blocked by b2 and b3. In Line 2, when m2 is not starved, it
is available to b2 50% of time if b3 is not full, and 100%
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Fig. 3. Accuracy of Procedures 1 and 2

of time otherwise. Similar argument applies to Line 3. Thus,
the recursive procedure is introduced as follows:

Procedure 3:

Line 1

c′2(s+1) = c2(1− X̂2N2
(s)X̂3N3

(s)),

T̂ Ps,c,1(s+1) = T P(c1,λ1,µ1,c
′
2(s+1),λ2,µ2,N1), (16)

X̂10(s+1) = 1−
T̂ Ps,c,1(s+1)

c′2(s+1)e2
,

Line 2

c′′2(s+1) = 0.5c2(1+ X̂3N3
(s))(1− X̂10(s+1)),

T̂ Ps,c,2(s+1) = T P(c′′2(s+1),λ2,µ2,c3,λ3,µ3,N2), (17)

X̂2N2
(s+1) = 1−

T̂ Ps,c,2(s+1)

c′′2(s+1)e2
,

Line 3

c′′′2 (s+1) = 0.5c2(1+ X̂2N2
(s+1))(1− X̂10(s+1)),

T̂ Ps,c,3(s+1) = T P(c′′′2 (s+1),λ2,µ2,c4,λ4,µ4,N3), (18)

X̂3N3
(s+1) = 1−

T̂ Ps,c,3(s+1)

c′′′2 (s+1)e2
,

s = 0,1,2, . . . ,

X̂2N2
(0) = X̂3N3

(0) = 0.
b) Merge system: Similar procedure is developed.
Procedure 4:

Line 1

c′3(s+1) = 0.5c3(1+ X̂20(s))(1− X̂3N3
(s)),

T̂ Pm,c,1(s+1) = T P(c1,λ1,µ1,c
′
3(s+1),λ3,µ3,N1), (19)

X̂10(s+1) = 1−
T̂ Pm,p,1(s+1)

c′3(s+1)e3
,

Line 2

c′′3(s+1) = 0.5c3(1+ X̂10(s+1))(1− X̂3N3
(s)),

T̂ Pm,c,2(s+1) = T P(c2,λ2,µ2,c
′′
3(s+1),λ3,µ3,N2), (20)

X̂20(s+1) = 1−
T̂ Pm,p,2(s+1)

c′′3(s+1)e3
,

Line 3

c′′′3 (s+1) = c3(1− X̂10(s+1)X̂20(s+1)),

T̂ Pm,c,3(s+1) = T P(c′′′3 (s+1),λ3,µ3,c4,λ4,µ4,N3), (21)

X̂3N3
(s+1) = 1−

T̂ Pm,p,3(s+1)

c′′′3 (s+1)e3
,

s = 0,1,2, . . . ,

X̂20(0) = 0, X̂3N3
(0) = 1.

Theorem 2: Under assumptions 1)-6), Procedures 3 and
4 are convergent, therefore, the following limits exist:

lim
s→∞

T̂ Ps,c,i(s) = T̂ Ps,c,i, lim
s→∞

T̂ Pm,c,i(s) = T̂ Pm,c,i, i = 1,2,3. (22)
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In addition, the steady state equations of Procedures 3 and

4 have unique solutions.

Therefore, throughput estimates, T̂ Ps,c, T̂ Pm,c for split and
merge systems with circulate policy, respectively, can be
calculated:

T̂ Ps,c = T̂ Ps,c,2 + T̂ Ps,c,3, T̂ Pm,c = T̂ Pm,c,3. (23)

Again the accuracy of estimates (23) is investigated nu-
merically. Same split and merge systems as in Subsection
III-C are used for accuracy analysis. The differences between
analytical and simulation results are introduced as

εs,c =
T̂ Ps,c −T Ps,c

T Ps,c
·100%, εm,c =

T̂ Pm,c −T Pm,c

T Pm,c
·100%. (24)

As one can see that in most cases we studied, the errors

are less than 2%, with a few cases up to 8%. Therefore,

Procedures 1 and 2 again provide relative precise estimates.
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E. Percentage Policy

Percentage policy has been studied in the literature. How-

ever, it is less popular due to implementation difficulty. In

addition, since percentage merge is less encountered, only

the percentage split policy is discussed in this work. A

percentage policy implies that in a split system (Figure 1)(a),

the parts flow into different downstream branches based on

given percentage. However, due to possible blockages, the

split station may need to wait until the downstream buffer

has available space. Therefore, the final percentage of parts

flow into different branches may not be the same as the

capacity allocation on the split machine. To ensure that the

final products consisting of parts 100 ·α% produced by m3

and 100 ·(1−α)% by m4, which agrees with the expectation

of percentage policy, a new percentage of capacity allocation

needs to be determined. Assume that β · 100% of parts are

intended to be sent to buffer b2 and (1− β ) · 100% to b3

by machine m2. Then after possible blockages, the actual

probability sending parts to b2 and b3 will be α and 1−α ,

respectively. Therefore, we need

β = α(1−β X̂2N2
− (1−β )X̂3N3

),

which leads to

β =
(1− X̂3N3

)α

1+ X̂2N2
α − X̂3N3

α
. (25)

Thus, the recursive procedure for percentage split is intro-
duced as follows:

Procedure 5:

β (s+1) =
(1− X̂3N3

(s))α

1+ X̂2N2
(s)α − X̂3N3

(s)α
,

Line 1

c′2(s+1) = c2(1−β (s+1)X̂2N2
(s)−

(1−β (s+1))X̂3N3
(s)),

T̂ Ps,%,1(s+1) = T P(c1,λ1,µ1,c
′
2(s+1),λ2,µ2,N1), (26)

X̂10(s+1) = 1−
T̂ Ps,%,1(s+1)

c′2(s+1)e2
,

Line 2

c′′2(s+1) = β (s+1)c2(1− X̂10(s+1)),

T̂ Ps,%,2(s+1) = T P(c′′2(s+1),λ2,µ2,c3,λ3,µ3,N2), (27)

X̂2N2
(s+1) = 1−

T̂ Ps,%,2(s+1)

c′′2(s+1)e2
,

Line 3

c′′′2 (s+1) = (1−β (s+1))c2(1− X̂10(s+1)),

T̂ Ps,%,3(s+1) = T P(c′′′2 (s+1),λ2,µ2,c4,λ4,µ4,N3), (28)

X̂3N3
(s+1) = 1−

T̂ Ps,%,3(s+1)

c′′′2 (s+1)e2
,

s = 0,1,2, . . . ,

X̂2N2
(0) = X̂3N3

(0) = 0.

However, unlike the priority and circulate cases, the ana-

lytical proof of the convergence of Procedure 5 is not avail-

able now. Therefore, we justify the convergence numerically.

It turns out that in all the examples we tested, the procedure

converges. Therefore, we formulate it as a numerical fact.
Numerical Fact 1: Under assumptions i)-vi), Procedure

5 is convergent and the following limits exist:

lim
s→∞

T̂ Ps,%,i(s) = T̂ Ps,%,i, i = 1,2,3. (29)

Then, under this Numerical Fact, the steady state equa-
tions of Procedure 5 have unique solutions. The estimate
of throughput for the split system with percentage policy,

T̂ Ps,%, in steady state is obtained.

T̂ Ps,% = T̂ Ps,%,1 = T̂ Ps,%,2 + T̂ Ps,%,3. (30)

Similarly, the accuracy is defined as

εs,% =
T̂ Ps,% −T Ps,%

T Ps,%
·100%. (31)

By selecting α as 10%, 30% and 50%, numerical experi-

ments are carried out to investigate the accuracy of Procedure

5. Sixty lines defined in previous subsections are used for

tests. The results are shown in Figure 5. As before, most

cases result in errors less than 5%, but there exist a few

cases where errors go up to 15%. Considering that the data

collected on the factory floor may be subject to 5-10% error,

in general, Procedure 5 presents an acceptable accuracy.
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F. Strictly Circulate Policy

c) Split system: The strict circulate policy indicates that

the split machine sends parts to downstream branches in

circular mode without ignoring the blocked branches, which

implies the machine waits until the downstream buffer is

available. Such policy is similar to a percentage policy in

the sense that α = 0.5. Although in percentage policy, one

may have the possibility that two consecutive parts will be

sent to the same branch, while in strict circulate policy, it

will never happen, the final results of parts flow distribution

will be identical. Therefore, we use the same procedure to

estimate the throughput of split system by assuming α = 0.5,

and denote T̂Ps,sc,i(s) as the throughput of Line i with strictly

circulate policy at iteration i.
d) Merge system: Although percentage policy is sel-

dom used for production merge, strictly circulate policy is
popular in many merge systems. For example, if a desired
production sequence needs to be followed, strictly circulate
policy can be adopted. Similar to split system, a new allo-
cation of capacity (rather than 0.5) needs to be computed in
order to ensure the strictly circulation.

Procedure 6:

β (s+1) =
0.5(1− X̂20(s))

1+0.5X̂10(s)−0.5X̂20(s)
,

Line 1

c′3(s+1) = β (s+1)c3(1− X̂3N3
(s+1)),

T̂ Pm,sc,1(s+1) = T P(c1,λ1,µ1,c
′
3(s+1),λ3,µ3,N1), (32)

X̂10(s+1) = 1−
T̂ Pm,sc,1(s+1)

c′3(s+1)e3
,

Line 2

c′′3(s+1) = (1−β (s+1))c3(1− X̂3N3
(s+1)),

T̂ Pm,c,2(s+1) = T P(c2,λ2,µ2,c
′′
3(s+1),λ3,µ3,N2), (33)

X̂20(s+1) = 1−
T̂ Pm,sc,2(s+1)

c′′3(s+1)e3
,

Line 3

c′′′3 (s+1) = c3(1−β (s+1)X̂10(s)

−(1−β (s+1))X̂20(s)),

T̂ Pm,sc,3(s+1) = T P([c′′′3 (s+1),λ3,µ3,c4,λ4,µ4,N3),(34)

X̂3N3
(s+1) = 1−

T̂ Pm,sc,3(s+1)

c′′′3 (s+1)e3
,

s = 0,1,2, . . . ,

X̂10(0) = X̂20(0) = 0.
Again the convergence of Procedures 5 and 6 are justified

through Numerical Fact 1 and the uniqueness of the solution
follows immediately. Then

lim
s→∞

T̂ Ps,sc,i(s) = T̂ Ps,sc,i, lim
s→∞

T̂ Pm,sc,i(s) = T̂ Pm,sc,i, i = 1,2,3.

(35)
The estimates of system throughput will be

T̂ Ps,sc = T̂ Ps,sc,2 + T̂ Ps,sc,3, T̂ Pm,sc = T̂ Pm,sc,1 + T̂ Pm,sc,2. (36)

Define the accuracy of the estimates

εs,sc =
T̂ Ps,sc −T Ps,sc

T Ps,sc
·100%, εm,sc =

T̂ Pm,sc −T Pm,sc

T Pm,sc
·100%.

(37)

The same 60 lines are used for accuracy justification. Figure

6 illustrates the results. Again in most cases, the accuracy is

within 4%, with a few exceptions up to 15%. Therefore, we

conclude that both procedures can be used for performance

estimation of split and merge system with strict circulate

policies.
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IV. CONCLUSIONS

This paper presents analytical methods to approximate

the throughput of split and merge systems with exponential

reliability machines. Priority, circulate, strictly circulate and

percentage policies are discussed. It is shown that these

methods provide acceptable accuracy (in most cases less than

5%) for throughput estimation.
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