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Abstract— Two broad classes of adaptive control algorithms
can be found in the literature: i) stability based, with minimal
assumptions on the plant; ii) performance based, with relatively
more stringent assumptions on the plant. This paper proposes
a solution, referred to as Stability Overlay (SO), to enable
stability guarantees in performance based algorithms. In our
methodology, the performance based adaptive control laws are
only responsible for designating the controller that should be
selected; the SO decides whether this controller should or not
be used, based upon its most recent history of utilization.
We argue that using two algorithms in parallel – the SO for
stability purposes and any other suitable for the performance
requirements – leads to higher levels of performance while
guaranteeing stability of the adaptive closed-loop for bounded
(but unknown) disturbances. The SO methodology is applicable
to both time-invariant and time-varying, nonlinear and linear
systems. However, due to space limitations, we only consider
linear time-invariant (LTI) plants in this paper. The theory is
illustrated with an example.

I. INTRODUCTION

Adaptive control laws are needed in many practical appli-

cations, where a single (non-adaptive) controller is not able

to achieve the stability and/or performance requirements.

However, many adaptive control laws can lead to unstable

closed-loop systems when connected to a plant with even the

slightest discrepancies from the family of admissible plant

models. This issue was first described in Ref. [1] in the so-

called Rohrs et al. counterexample. Very small disturbances

can be responsible for destabilizing the closed-loop because

of the unavoidable unmodeled high frequency dynamics,

present in every physical system.

This paper presents a solution to the stability problem

common to many closed-loop linear time-invariant (LTI)

systems with performance based adaptive control laws. The

strategy developed herein, referred to as Stability Overlay

(SO), takes into account both stability objectives – often

robust to a very wide class of disturbances and model un-

certainty – and performance requirements – that, in general,
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assume a stronger knowledge about the plant to be controlled.

The algorithm presented in the sequel is based upon [2], and

assesses the “rewards” received by each controller after its

most recent utilization, without any prior information on the

bounds of the exogenous disturbances and sensors noise. A

controller is then disqualified or not, based upon its rewards,

in a similar way to what is done in Refs. [3], [4], [5] and in

the references therein. However, in our approach, we suggest

that the SO should only be responsible for the stability of

the plant, and thus another algorithm should run in parallel

in order to accomplish the performance requirements. There-

fore, our methodology differs from Refs. [3], [4] in the sense

that the controllers rewards are not used to decide which

controller leads to the highest closed-loop performance, but

rather to guarantee that a controller which is not able to

stabilize the plant is not persistently selected. The Lyapunov-

based solution presented in [5] relies on the model of the

plant and hence requires stronger assumptions than the ones

presented in the sequel.

For the proposed SO methodology, it is not required to

know the plant model to be controlled nor the disturbance

properties. Still, it is clear that the performance of the closed-

loop can be severely affected if no knowledge is available

about the plant. Nonetheless, the model-free characteristic

of the present method ensures robustness to several types

of model uncertainty. In a sense, if the actual plant is close

to a plant model in the family used to design the adaptive

control law, then the adaptation runs as usual without (or with

minor) intervention of the SO. If, however, the actual plant

or disturbance properties do not match the ones used during

the design, the closed-loop system may become unstable.

Therefore, instead of blindly continuing to use the adaptation

law, we assess the norm of the inputs and outputs of the

system, and eventually switch to a controller that is able to

stabilize the plant, as long as such controller belongs to the

set of legal controllers that the SO is allowed to use.

Therefore, the SO can be seen as a safety device that can be

used with many adaptive algorithms, achieving high levels

of performance while providing robust stability guarantees

for several different types of modeling errors.

The applicability of the SO is illustrated by the so-called

Rohrs et al. counterexample [1]. The main result presented

in the sequel is able to provide stability guarantees for the

integration of this adaptive law with the SO, with a few

changes in the original algorithm.

This paper is organized as follows. We start by introducing

the notation and formally posing the problem in Section II.
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In Section III, some properties of LTI systems are derived.

The main result for LTI plants is presented in Section

IV. In Section V, simulation results of the Rohrs et al.

counterexample integrated with the SO are shown. Finally,

in Section VI some conclusions about the SO are presented.

II. PRELIMINARIES AND NOTATION

We define |x| as the euclidian norm of x ∈ R
n, and ‖A‖

as the induced norm of the matrix A, i.e.,

‖A‖ = sup
x6=0

|Ax|/|x|.

We further define, for any σ > 0,

∥

∥

∥
z|σ[t1,t2]

∥

∥

∥
= sup

τ∈[t1, t2]

e−σ(t2−τ)|z(τ)|,

and
∥

∥z|[t1,t2]

∥

∥ = sup
τ∈[t1, t2]

|z(τ)|.

Throughout this paper, we consider an LTI plant described

by

ẋ = Ax + Bu + Fξ, x(0) = x0 (1a)

y = Cx + Gθ (1b)

z =

(

y
u

)

=

(

Cx + Gθ
u

)

(1c)

u = Kα(t)y =
(

Kα(t) 0
)

z (1d)

Kα(t) ∈ S0 := {K1, K2, . . . ,KNc
} . (1e)

The output variables z(.) and y(.) can include performance

outputs such as the ones obtained by filtering the plant output

and the control input with the weights Wy(s) and Wu(s),
respectively – see [6] for more details on using performance

weights. Furthermore, x0 ∈ R
n is a fixed (but unknown)

initial condition, ξ (.) ∈ L∞ is a bounded (but unknown)

exogenous disturbance, θ (.) ∈ L∞ is the bounded (but

unknown) measurement noise and u (.) is the control input.

S0 is the set of eligible controllers which are considered to

be, without loss of generality, constant matrix gains. Nc is

the number of legal control laws (and thus the number of

elements in S0), and Ki, for i ∈ {1, 2, ..., Nc}, represents a

controller. We argue that the control laws of any adaptive or

nonadaptive system should be robust to model uncertainty.

Define a finitely switching control input as

ufs(t) =

{

Kα(t)(y(t)), 0 ≤ t < t0;
Ki(y(t)), t ≥ t0.

(2)

Figure 1 depicts the output feedback interconnection be-

tween the plant and the controllers Ki, selected through

signal α(t).

Plant with 

uncertain model

K (.)1

2

N

..
.

_(t)

u(t) y(t)
+

j(t) e(t)

K (.)

K  (.)

Plant Disturbance Measurement Noise

W (.)y

W (.)u
} z(t)

Fig. 1. Feedback interconnection between the plant (1) and the controllers
Ki, selected through signal α(t).

III. PROPERTIES OF LTI CLOSED-LOOP SYSTEMS

In this section, we derive some properties of LTI closed-

loop systems that are going to be useful in the proof of the

main result of this paper. Consider the LTI plant described

by (1). Without loss of generality, we assume that the Nc

controllers in S0 are static output feedback controllers, i.e.,

each Ki, for i ∈ {1, . . . , Nc}, is a constant matrix. Notice

that, as shown in [2] if the controllers are dynamic and

described by

ẋc = Acxc + Bcy

u = Ccxc + Dcy,

then, for each controller, one can rewrite the closed-loop

system as
(

ẋ
ẋc

)

=

(

A 0
0 0

) (

x
xc

)

+

(

B 0
0 I

)

uaug +

(

F
0

)

ξ

zaug =

(

C 0
0 I

) (

x
xc

)

+

(

G
0

)

θ

uaug =

(

Dc Cc

Bc Ac

)

zaug.

In this form, switching between dynamic controllers

means switching the “static output feedback” matrix
(

Dc Cc

Bc Ac

)

which only depends on controller matrices. The

only restriction is that all dynamic controllers in this setup

must be of the same order, which in practice does not

represent a shortcoming, since we can solve that issue by

having some controllers that use only a subset of the available

states, while forcing the remaining ones to go to zero.

We follow closely the steps in [2] to show that, under

natural assumptions, the linear system (1) has the following

properties:

Property 1: For any finitely switching input (2) and any

t0, ∆T > 0,
∥

∥

∥
z|σ[0,t0]

∥

∥

∥
< ∞ ⇒

∥

∥

∥
z|σ[0,t0+∆T ]

∥

∥

∥
< ∞,

i.e., the closed-loop does not have a finite escape time.
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Property 2: There exist a control law, Ki∗ , and positive

constants σ and l∗, such that for any 0 < γ < 1, there exists

a ∆T ∗ ≥ 0 that satisfies the following condition. For any

finitely switching control input (2) with Ki = K∗
i ,

∥

∥

∥
z|σ[0,t0+∆T ]

∥

∥

∥
≤ γ

∥

∥

∥
z|σ[0,t0]

∥

∥

∥
+ l∗,

for all ∆T ≥ ∆T ∗.

Property 1 ensures there are no controllers in the legal set

(referred to as eligible controllers) that take the output of

the plant to infinity in finite time. Finally, Property 2 states

that there is at least one eligible controller that satisfies a

desired stabilization condition. Parameter l∗ accounts for the

exogenous disturbances and the initial condition.

Assumption 1: The switched linear system (1) satisfies:

• ℜ{λj(A + BKiC)} < 0,∀j for some i ∈ {1, . . . , Nc}.

• The pair [A, C] is observable.

• The exogenous disturbances and the measurement noise

are bounded by some (possibly unknown) constants ξ0

and θ0, respectively, i.e., |ξ(.)| ≤ ξ0 and |θ(.)| ≤ θ0.

Proposition 1: Under Assumption 1, the linear system (1)

has the Properties 1–2.

The proof of Proposition 1 can be found on the extended

version of this paper, available on the Internet.

Remark 1 The discounted norm

∥

∥

∥
z|σ[0, t0+∆T ]

∥

∥

∥
can be

interpreted as a state-norm estimator (cf. [7], [8]). Although

in a different perspective, these norm estimators are first

order systems where the inputs are the discounted norms

of the inputs and outputs of the plant. Therefore, our deci-

sions of disqualifying or not a controller, according to this

interpretation, will be based upon the estimate of the norm

of the actual state of the closed-loop system. ⋄

IV. MAIN RESULT

The reward, r(n), after using controller K(n) during the

time interval tn−1 ≤ t < tn is defined as

r(n) =

{

1,
∥

∥

∥
z|σ[0, tn]

∥

∥

∥
≤ γ

∥

∥

∥
z|σ[0,tn−1]

∥

∥

∥
+ l(n)

0, otherwise,
(3)

where γ is a fixed scalar with 0 < γ < 1 and l(n) is going

to be specified next.

Remark 2 We recall that z(t) may be an augmented and/or

filtered output. For instance, if the nonadaptive controllers

were designed using some kind of dynamic weights, then

those same weights can be used to filter the output of the

plant and hence create a new vector to compute the rewards

of the controllers. ⋄
Figure 2 describes the Stability Overlay (SO) algorithm.

The notation S = S\K(n) means “the exclusion of element

K(n) from set S”. The initial set of eligible control laws is

denoted S0, while K0 is the first control law selected, ∆T (n)
is the period control law K(n) is used, l0 is the initial value

of l(n) in (3), and linc and ∆Tinc are the increments for l(n)
and ∆T (n), respectively, whenever all the control laws have

failed in their most recent utilization.

Initialize

S=S , K(1)=K , T(1)= T , l(1)=l , n=10 0 0 0� �

Use controller K(n)

during time-interval T(n)�

r(n)=0?

S=S\K(n)

T(n), l(n+1)=l(n)��T(n+1)=

S= ?�

S=S , T(n)+ T , l(n+1)=l(n)+l0 inc inc� ��T(n+1)=

K(n+1)=any controller in S
n=n+1

y

n

n

y

Fig. 2. Stability Overlay (SO) algorithm

In reference to the SO algorithm and Section III, we can

summarize the calculations suggested for LTI plants:

• choose arbitrary σ > 0;

• choose arbitrary positive γ < 1;

• use proof of Proposition 1 to derive values for ∆T0, l0.

Remark 3 It is important to stress that smaller values

of ∆T0 and l0 can actually lead to better transients, since

we only derived (very conservative) upper bounds for those

parameters. Nevertheless, these calculations should point out

reasonable magnitudes for the parameters whenever both

the plant and the controllers are linear and time-invariant.

Moreover, the stability guarantees are not affected by the

selection of the initial values for these parameters. ⋄
Theorem 1: If Assumption 1 is satisfied, the Stability

Overlay Algorithm results in

∥

∥

∥
z|σ[0,t]

∥

∥

∥
bounded.

Proof of Theorem 1

We first recall Claim 1 of Ref. [2]:

Claim 1: The parameters ∆T (n) and l(n) are uniformly

bounded, i.e.,

∆Tmax = lim
n→∞

∆T (n) < ∞

lmax = lim
n→∞

l(n) < ∞
(4)

Proof: The parameters ∆T (n) and l(n) are increased

whenever every control law, Ki, in its most recent utilization

resulted in a zero reward, i.e.,
∥

∥

∥
z|σ[0, tn]

∥

∥

∥
> γ

∥

∥

∥
z|σ[0,tn−1]

∥

∥

∥
+ l(n). (5)

However, by Property 2, there exists a ∆T ∗ ≥ 0, a positive

constant l∗, and at least one control law which satisfies the
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condition
∥

∥

∥
z|σ[0,t0+∆T ]

∥

∥

∥
≤ γ

∥

∥

∥
z|σ[0,t0]

∥

∥

∥
+ l∗, (6)

provided that ∆T (n) ≥ ∆T ∗. This implies that the condition

(5) cannot be satisfied infinitely often with ∆T (n) and l(n)
increasing without bound.

According to Claim 1, there is at least one control law

that is going to be used infinitely many times. For this

control law, r = 1. Thus, all other control laws are going

to be used at most a finite number of times. According to

Proposition 1, the output is going to remain bounded during

that (bounded) time interval where r = 0. For some t0, the

rewards obtained for t ≥ t0 are positive. Since the output

is bounded at t = t0, it will remain bounded for t > t0.

This means that the closed-loop system is stable, which

concludes the proof. �

It is important to stress that we do not describe how to

choose the controller to be put in the loop. In fact, we

allow any controller in set S to be selected. The choice

of the controller is responsible for the performance of the

closed-loop and should be taken care of by some adaptive

control law that (probably) takes into account the model of

the plant and the disturbances properties. One example of

the applicability of the SO with a model reference adaptive

control architecture is presented in the following section.

However, the applicability of the SO is much wider. Many

types of adaptive laws are eligible to be integrated with

the SO, such as the schemes based on the identification

of the plant parameters (see, for instance, [9], [10] and

references therein), or the estimator-based methodologies

in [11]. Preliminary results of the integration of the SO with

the Robust Multiple-Model Adaptive Control (RMMAC)

methodology, introduced in Refs. [12], [13], [14], [15] and

references therein, are also available but are not presented in

this paper.

Remark 4 It should be noticed that the choice of the

parameters for the algorithm may be very sensitive in some

cases, depending upon the plant dynamics and the distur-

bances intensity. In fact, if the norm of the output of the

closed-loop system grows very fast whenever a destabilizing

controller is picked, and if the time required to disqualify a

controller is very large, one may not get “practical stability”.

This means that, although a stabilizing controller is eventu-

ally selected, the transients may not be reasonable from a

practical point of view. ⋄
Remark 5 The reason for increasing ∆T can be explained

in a very intuitive manner, that relates it to the classical

performance/robustness tradeoffs. If ∆T is large enough, sta-

bilizing controllers are not going to be disqualified. However,

we may also be using destabilizing controllers for a long

time, since we only switch to another one after at least a

time interval ∆T . In case ∆T is very small, we may find the

right controller faster, but we may also disqualify stabilizing

controllers just because they were not used long enough.

Therefore, large values of ∆T guarantee stability at the cost

of large transients. ⋄
Remark 6 We stress that the observability (or detectabil-

ity) assumption does not have to be necessarily satisfied.

However, if indeed there are unobservable states, then the

fact of

∥

∥

∥
z|σ[0,t]

∥

∥

∥
being bounded does not imply that the

closed-loop system is stable, but only that it is input/output

stable. ⋄

V. ROHRS ET AL. COUNTEREXAMPLE

To illustrate the usefulness of the SO, we use the so-called

Rohrs et al. counterexample – see Ref. [1]. We use the

reference model adaptation law referred to as Continuous-

Time Algorithm 1 and the same terminology as in Ref. [1].

Figure 3 depicts the architecture of this methodology.

Reference
Closed-loop

Model

True
Plant

+ +

+

-
e(t)

d(t)

y(t)

1
P(s)

1
P(s)

r(t)

k (t)r

k (t)u
k (t)y

y (t)M

w (t)u w (t)y

u(t)

Fig. 3. Continuous-Time Algorithm 1

The reference input is denoted by r(t), the control input

by u(t), the disturbances by d(t), and the output by y(t).
Signal yM (t) is the output of the reference model and P (s)
represents a polynomial. The adaptive gains are denoted by

kr(t), ku(t) and ky(t). The adaptation law evolves according

to

k̇(t) = −Γw(t)e(t),

where Γ = ΓT > 0 and

e(t) = y(t) − yM (t)

We use the example in Ref. [1] where the plant model is

given by

Y (s) =

(

2

s + 1

)

229

s2 + 30s + 229
U(s), (7)

the reference model is described by

YM (s) =
3

s + 3
R(s), (8)

and

ky(0) = −0.65 and kr(0) = 1.14. (9)

Notice that, according to the design procedure,

P (s) = 1 and ku(t) = 0∀t.

Let the reference be given by

r(t) = 2
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and the output additive disturbance by

d(t) =
1

2
sin (8t) .

The first step in order to apply the SO is to discretize and

bound the gains ky and kr, so that we have a finite set of

controllers. Each pair (ky, kr) defines a controller. Therefore,

if ky is divided into ny bins and kr is divided into nr bins,

the set S0 will have nrny controllers.

Another design decision has to be made regarding what to

do when the adaptive control law choses a controller that was

previously disqualified, because it received a zero reward. A

simple approach is to use the controller closest to that one,

in a geometric sense, although it may not be very effective

in terms of performance. Another strategy is to decrease the

gain if it was increasing before a disqualified controller was

obtained, and vice-versa. We stress that a specific strategy

need not be used to guarantee stability. The boundedness of

the output y(t) is guaranteed a priori by the use of the SO, no

matter how we schedule the controllers in the SO algorithm,

so the only aspect the control engineer has to account for is

the performance.

A. Simulation of the Rohrs et al. Counterexample without

the Stability Overlay

In this subsection, we replicate the results in Ref. [1], just

for comparison purposes. Figures 4 and 5 illustrate that the

closed-loop system becomes unstable as time goes by, due

to the unmodeled dynamics, excited by the disturbances, that

were not accounted for during the design of the adaptive

control law. The infinite gain operators [1] from e(t) to u(t)
and from e(t) to k(t), inherently present in the Continuous-

Time Algorithm (CA) 1, are responsible for the instability

of the closed-loop.

0 50 100 150 200 250 300 350 400 450 500
−10

−8

−6

−4

−2

0

2

4

6

8

10

Time [s]

y
(t

)

Fig. 4. Output y(t) of the closed-loop system using the continuous-time
algorithm 1, without the stability overlay.

B. Simulation of the Rohrs et al. Counterexample with the

Stability Overlay

We now analyze the continuous-time algorithm supervised

by the SO. The continuous gains kr and ky are discretized

0 50 100 150 200 250 300 350 400 450 500
−50

−40

−30

−20

−10

0

10

20

30

40

50

Time [s]

k
(t

)

 

 
k

r

k
y

Fig. 5. Adaptive gains time evolution for continuous-time algorithm 1,
without the stability overlay.

and bounded, in order to have a finite set of eligible con-

trollers. For this simulation, we use bins of width 2 and

the limits are ±50. Figure 6 shows that the closed-loop is

now stable, although some transients are also experienced.

The time instants when a controller is disqualified are also

represented. If a disqualified controller is selected by the

adaptive algorithm, the values of the adaptive gains kr and

ky are updated to the legal ones closest to those obtained by

the adaptive law.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
ï2

ï1

0

1

2

3

4

5

Time [s]

y
(t

)

Fig. 6. Output y(t) of the closed-loop system using the continuous-time
algorithm 1, with the stability overlay. The red dashed lines indicate the
time instants when the currently scheduled controller fails.

Figure 7 depicts the time-evolution of the adaptive gains. It

should be noticed that, as soon as the instability is detected,

the SO disqualifies the currently used controller and switches

to another one. After only two switches, a controller is

selected that stabilizes the plant.

We stress that the adaptive gains in Fig. 7 are the ones

effectively used in the feedback loop, and that they can differ

from those obtained with the adaptive law. The later are only
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reset by the SO after a failure on the adaptive control law.

Remark 7 Figure 7 indicates that one could simply

saturate the adaptive gains and still get the stability result.

However, if we do that, and use very large limits for the

saturation, we can get an unstable system. On the other hand,

if the limits are very small, we can get poor performance.

The SO obtains those limits in a natural way, as shown in

the simulations. ⋄

0 200 400 600 800 1000 1200 1400 1600 1800 2000
ï20

ï15

ï10

ï5

0

5

10

15

20

Time [s]

k
(t

)

 

 
k

r

k
y

Fig. 7. Adaptive gains time evolution for continuous-time algorithm 1,
with the stability overlay. The red dashed lines indicate the time instants
when the currently scheduled controller fails.

VI. CONCLUSIONS

This paper proposed a solution, referred to as Stability

Overlay (SO), for the stability problem that appears in

many adaptive control laws for linear time-invariant (LTI)

systems. We take advantage of the on-line evaluation of the

selected controller to disqualify those that do not comply

with the stability requirements. Unlike other adaptive control

strategies, we take into account both stability objectives

– often robust to a very wide class of disturbances and

model uncertainty – and performance requirements – that,

in general, assume a stronger knowledge about the plant to

be controlled.

This approach only requires that at least one of the eligible

controllers is able to stabilize the plant, and can be extended

to nonlinear systems.

As a caveat, the choice of the parameters for the SO algo-

rithm may be very sensitive if the norm of the output of the

closed-loop system grows very fast whenever a destabilizing

controller is picked, and if the time required to disqualify a

controller is very large. In those cases, although a stabilizing

controller is eventually selected, the transients may not be

reasonable from a practical point of view.

The SO is responsible for disqualifying controllers that

are not able to stabilize the plant, while some other adaptive

control law, that (possibly) takes into account the plant model

and the disturbances properties, is responsible for selecting

the best controller, i.e., the controller in set S that leads to

the highest performance.

In reference to the Rohrs et al. counter examples, the

stability guarantees were obtained by first discretizing and

bounding the adaptive gains, and then by using the same

principles as in the previous example. Simulation results

were presented, illustrating the benefits of using the SO with

the Continuous-time Algorithm 1 of Ref. [1].

The proposed method can be applied to a much wider class

of adaptive controllers, with little effort, guaranteeing stabil-

ity properties otherwise not available. The integration with

adaptive architectures, such as the Robust Multiple-Model

Adaptive Control (RMMAC), introduced in Refs. [12], [13],

[14], [15] and references therein, is currently a topic of

research.
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