
 
 

 

  

Abstract—We investigate numerically the influence of 
complex network topological structure on the traffic delivery, 
by incorporating local traffic information into the shortest path 
routing policy. As free traffic delivery on the communication 
networks is important to their efficient functioning, we find the 
network capacity that can be measured by the critical value of 
phase transition from free flow to congestion. Here, we present 
three kinds of traffic models based on the information 
processing capacity of individual nodes to study three kinds of 
networks, respectively.  

I. INTRODUCTION 
ODERN society increasingly depends on large commu 
-nication networks such as the Internet and WWW 

[1]-[2]. The need for information spreading pervades our 
lives and its efficient handling and delivery is becoming one 
of the most important practical problems. To ensure 
uncongested traffic flows on a complex network is naturally 
of great interest. Our particular interest is to understand under 
what conditions traffic congestion can occur on a complex 
network and to explore possible ways of control to alleviate 
the congestion. 

The past few years have witnessed a hectic activity devoted 
to the characterization and understanding of networked 
structures as diverse as ecological and biological systems or 
the Internet and the WWW. These networks generally exhibit 
complex topological properties such as the small-world 
phenomenon [3] and scale-free behavior [4]. It is thus of 
paramount interest to study the effect of network topology on 
traffic flow [5]-[9], which is the key feature that distinguishes 
our work from the existing ones. While our model is for 
communication networks, we expect it to be relevant to other 
practical networks in general, such as the postal service 
network or the airline transportation network. Our studies 
may be useful for designing communication protocols for 
complex networks. 

In this paper, we construct three kinds of traffic models to 
study the influence of network topological structure on the 
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traffic delivery by the traffic awareness routing strategy. In 
the first model, the capacity of packet delivery of each node is 
proportional to its degree; in the second model, it is 
proportional to the number of shortest paths passing through 
the nodes, while in the third model, it is proportional to the 
ratio of the nodes betweenness to the total number of the 
nodes in the network. The quantity of interest is the critical 
value cR  of information generations as measured by the 
number of packets created within the network in unit timed at 
which a phase transition occurs from free to congested traffic 
flow. Simulation results show that, in the case of identical 
average degree, small-world network with small connecting 
probability p  is significantly more susceptible to traffic cong 
-estion than random networks and scale-free networks in 
model I, while the capacities of all kinds of networks are 
enhanced greatly in model II, especially for WS small-world 
network. For protocol based on model III, the critical value 

cR  is roughly the same for all kinds of networks. 
The structure of the paper is as follows: The network 

model is described in Sec. II. In Sec. III, the traffic awareness 
routing strategy is introduced with the detailed dynamic 
process of packet transportation. Simulations and discussions 
are presented in Sec. IV. The conclusion is given in Sec. V. 

II. NETWORK MODEL 
It would be natural to regard the real network as a random 

graph at first sight. However, real networks show statistical 
properties that are far from being completely random. In this 
paper, we grow three different network topologies for 
comparison. 

The random graph is constructed according to the well 
known model proposed by Erdös and Rényi [10]. A network 
with N labeled vertices is connected by M  edges, which are 
connected each couple of nodes with a probability 0 1p< < . 
Also, we grow a small-world model introduced by Watts and 
Strogatz [3]. The model is based on a rewiring procedure of 
the edges implemented with probability p . The starting point 
is a N  nodes ring, in which each node is symmetrically 
connected to its 2m  nearest neighbors for a total of 2K m=  
edges. Then, for every node, each link connected to a 
clockwise neighbor is rewired to a randomly chosen node 
with probability p . Next, we grow a scale-free model with 
tunable clustering introduced by Holme and Kim [11]. The 
model modifies the Barabási-Albert (BA) algorithm [4] by 
adding an additional step: triangle formation with probability 
p . And the model also shows the power-law degree distri 
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-bution ( )P k k γ−∼ , with an exponent 3γ = . 

III. DYNAMICAL PROCESS AND ROUTING STRATEGY 
We assume that the capacities for processing information 

are distinctive for different nodes, depending on the numbers 
of links or the number of shortest paths passing through them 
or the ratio of the betweenness to the number of all nodes. Our 
traffic-flow model is described as follows. At each time step, 
there are R  packets generated in the network, with randomly 
chosen sources and destinations, and a node i  delivers at 
most iC  packets one step toward their destinations, where 

i iC k=  in model I, i iC B=  in model II and /i iC B N=  in 
model III, ik  is the degree of node i , and iB  is its 
betweenness. Once a packet is generated, it is placed at the 
end of the node queue, which contains the undelivered 
packets created at current time steps or transmitted from the 
other nodes. The queue length of each node is assumed to be 
unlimited [12]-[13]. For simplicity, we treat all nodes as both 
hosts and routers for generating and delivering packets [6]. 
To deliver packets, each node performs a local search among 
its neighbors. If the packet’s destination is found within the 
searched area, the packet is delivered directly to its target and 
then removed from the network. Otherwise, the next routing 
node is selected for the packet according to a traffic 
awareness routing strategy as follows.  

The shortest path routing is a widely used routing strategy. 
This strategy is simple but has its limitation in that it takes no 
account of the node state it delivers to. Even if the selected 
node is overloaded and packets will wait a long time to be 
processed at that node, this routing policy makes no change. 
In order to make the routing policy be aware of the traffic of 
the network, we introduce a traffic awareness routing strategy 
as follows [14]-[16]. Let us assume that node s  holds a 
packet that should be delivered to node t . We first compute 
the weight id  of a neighbor node i  of s . This weight, which 
can be viewed as the cost of each packet to pass through node 
i , is defined as  

(1 )         0 1i i id l fα α α= + − ≤ ≤ ,           (1) 

where il is the shortest path length from node i  to target t , 
α  is a tunable parameter that accounts for the degree of 
traffic awareness incorporated in the delivery algorithm, 

i i if q c=  is the estimated waiting time at node i . The 

queued packet information iq  is changed dynamically in 
each time step according to the local traffic dynamics. ic  is 
the capacity of packet delivery of each node. After computing 
the weight of each neighbor node of node s , we select the 
next router node with the minimum weight among the 
neighbors. If there is more than one node with the minimum 
weight, we select one of them randomly. At each time step, 
the weight id  will be calculated dynamically according to the 

current traffic information in the network and the minimum 
cost node is selected as the next router. By tuning the value of 
α , the weight of il  and if will vary and the effectiveness of 
this routing strategy will also change. It is worth noting that, 
when 1α = , the traffic awareness strategy reduces to the 
shortest path routing strategy.  

IV. SIMULATIONS AND DISCUSSIONS 
In order to characterize the phase transition, we introduce 

the order parameter:  

( ) ( )( ) lim ,
t

W t W tH R
R

τ
τ→∞

+ −
=                     (2) 

where ( )W t is the total number of packets in the network at 
time t , and τ  is the observation time. The order parameter 
represents the ratio between the outflow and the inflow of 
packets during a time window τ . For cR R< , the network is 
in the steady phase, where the newly created packets is less 
than the delivered packets. The number of packets ( )W t  in 
the network is balanced, leading to a steady free traffic flow. 
For cR R> , the number of packets ( )W t  in the network is 
increased with time and will lead to traffic congestion. 
Therefore a phase transition occurs at cR R=  and cR  is the 
maximal generating rate under which the system can maintain 
its normal and efficient functioning. In other words, the 
maximal handling and delivering capacity of the system is 
measured by cR .  

As an appropriate measure of the efficiency of the process, 
we monitor the aggregation of packets in the network, given 
by the number of packets ( )W t  that have not reached their 
destinations at each time step t . Fig. 1 shows the results 
obtained for different values of R  for the BA model with 

100N = , 0 3m m= = . In Fig. 1, the continuous line stands 

for values of cR R<  ( 150R = ) and the dotted line 

corresponds to cR R>  ( 210R = , 250R = ). As it can be 
seen, when the external driving is applied at low rates (i.e., 
small R ), the protocol allow for a stationary state. In this 
state, the system is able to balance the in-flow of packets with 
the flow of packets that reach their destinations. The 
stationary state, where no macroscopic sign of congestion is 
observed, corresponds to a free flow phase. The situation 
changes when the rate at which new packets are introduced 
increases. As we can see from Fig.1, there is a critical value 

cR  beyond which a congested phase shows up. Let us now 
note that for the traffic awareness algorithm ( 0.8α = ) (Fig. 1 
dotted black line), when cR R> ( 250R = ), ( )W t  grows 
linearly with time t . On the other hand, when R  is close to 
the critical point cR  ( 210R = ), we observe that ( )W t  
grows at short times and then becomes constant as time goes 
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on (Fig. 1, dash dotted red line). The state also represents 
steady phase. However, with the increasing of R  above the 
critical value, the curve of ( )W t  becomes steeper as time 
goes on. In this state, the system comes into congestion phase. 
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Fig. 1.  Total number of active packets as a function of time steps with 
different packet creation rate.  
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Fig. 2.  The order parameter H versus R  for the ER network in model I and 
model II with 0.8α = . 

The primary goal of our simulation is to understand the 
behavior of the phase transition, which leads to traffic 
congestion, with respect to the network topology. As we can 
see from Fig. 2 to 4, the order parameter H  versus R  
correspond to the traffic awareness routing with 0.8α =  for  
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Fig. 3.  The order parameter H versus R  for the WS network in model I and 
model II with 0.8α = . 
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Fig. 4.  The order parameter H versus R for the BA network in model I and 
model II with 0.8α = . 
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three network structures in model I and II. We find, in the 
case of model I, which is the delivery capacity of each node is 
proportional to its degree, random and scale-free networks 
are more tolerant to congestion than WS small world 
networks. This is because, WS small world networks with 

0.1p = , the most congested nodes have large betweenness, 
but very small number of links, that is to say, the ratio 

max max/L Lk B  is much smaller than those in random and 
scale-free networks. In model II, the capacity of delivery of 
each node is proportional to its betweenness. We can see that 
for small probability p , the values of cR  are greatly 
enhanced for all kinds of networks considered. These 
simulation results thus show that the protocol based on our 
model II are more tolerant to congestion for all kinds of 
networks with small probability p , especially for WS small 
world network. One the other hand, for large probability p , 
compared to the model II, the network capacity by adopting 
model I is enhanced greatly in ER random network and WS 
small-world network, as we can see from Fig.2(b) and 
Fig.3(b). However, the critical value is maximal in model II, 
no matter what the tunable probability p is in scale-free 
network in Fig.4. 

Now, we present simulation results with model III. Here, 
the delivery capacity of each node is proportional to the ratio 
of its betweenness to the total number of nodes, /i iC B N=  in 
Eq. (1). Fig. 5 shows the order parameter H  versus R  for 
the capacity parameters in ER random network model, WS 
small world network model, and BA scale-free network 
model, respectively. We can see that values of cR  based on 
model III are roughly the same for all kinds of networks 
considered.  
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Fig. 5.  For model III, the order parameter H  versus the packet-generating 
value R  in three network models. 

V. CONCLUSIONS 
We study the effects of network topological structure on 

the traffic delivery on complex networks. Here, we present 
three traffic models to study random, small-world and 
scale-free networks, respectively. The simulation results 

show that the network capacity depends on the information 
generation rate, and the underlying network structure. 
Broadly speaking, the phase transition can occur in the sense 
that free traffic flow can be guaranteed for low rates of 
information generation but large rates above a critical value 
can result in traffic congestions. Considering the feasibility 
and the cost of changing the real network topology to enhance 
the network performance, it is comparatively easy to adjust 
the routing protocols in real communication systems. 
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