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Abstract— In this paper, the problem of designing adaptive
fault-tolerant H∞ compensation controllers for linear time-
invariant continuous-time systems is presented. Linear matrix
inequalities (LMIs) are developed with multiple Lyapunov func-
tions to find a stabilizing controller gain such that the distur-
bance attenuation performance is optimized. Direct adaptive-
state feedback control schemes are proposed to estimate the
unknown controller parameters on-line for actuator fault and
perturbation compensations. Then a class of adaptive robust
state feedback controllers is constructed relying on the LMI
result and the updated values of these estimations. Base on the
Lyapunov stability theory, it shows that the resulting closed-
loop system can guarantee to be ε-stable and suboptimal
H∞ performances in the presence of faults on actuators and
external perturbations. A numerical example of rocket fairing
structural-acoustic model and its simulation results are given.

I. INTRODUCTION

In most practical control systems, component failures

including sensors, actuators and even the plant itself, may

occur in uncertain time and the size of faults is also unknown.

The faults may lead to performance deterioration or even

instability of the system. Therefore, the study of fault-tolerant

control (FTC) system design has received considerable at-

tention over the past two decades (see e.g., [1] − [20]),
which keeps the systems safe to achieve proper performances

whenever components are healthy or faulted. The existing

faut-tolerant design approaches can be broadly classified into

two groups, namely passive approach [1]− [7] and active

approach [8]− [20]. Since the active FTC system offers the

flexibility to select different controllers, the most suitable

controller can be chosen for the situation and the better

performance can be obtained than the passive FTC system.

There are primary two typical approaches for fault compen-

sations in active fault-tolerant, such as adaptive approach

[8]− [17] and fault detection and isolation (FDI) [18]− [20].
In recent years, many researchers have focused on the

development of adaptive fault-tolerant control methods. In

[9], the perfect performance tracking results are obtained

when considering the fault model of loss actuator effec-

tiveness. In [13]− [16], the results in adaptive fault-tolerant
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control are based on model reference adaptive control, where

the outputs of closed-loop systems can track the prescribed

referent outputs. However, as we know that perturbations

play an important role in the system, some of above works,

such as [9]− [13], have not consider the perturbations within

the system, and the proposed methods may not suitable

for the FTC system if there exist perturbations. Moreover,

[15]− [16] consider the perturbations under some special

conditions, such as limt→∞ z(t) = 0 (z(t) is perturbation) [15]
and constant perturbation [16]. Therefore, the capability of

perturbation rejection for the above FTC systems is very

weak. On the other hand, direct adaptive method proposed

in [10] can compensate the time-varying parameterizable

actuator failures, but for the unparameterizable failures, an

approximations of the actuator failures must be employed

and the closed-loop system can be guarantee stability rather

than asymptotically stable [12]. Furthermore, [13] considers

the unparameterizable failures in the system, but the require-

ment of knowledge of upper bounds of failures is needed

and asymptotic tracking cannot also be ensured. In this

paper, the new proposed robust adaptive schemes can solve

the problem of FTC with a general actuator failure model,

which make sure the system can be uniformly ultimately

bounded under the influence of actuator unparameterizable

time-varying failures and perturbations.

Although there existed many results for fault-tolerant H∞

control in reliable control area [1], [2], [4]− [6], and also

fault compensations in active FTC area [9], [12], [13]− [16],
few efforts are made to consider the problem of address-

ing perturbation attenuation performances of systems with

LMI method and compensating actuator fault effects with

adaptive method simultaneously. Recently, the adaptive H∞

performance of FTC system have been addressed in [8], but

the fault model of stuck is not considered and the method

is fail when the fault effect factor is a time-varying scalar.

Besides, there is conservative design for use of a common

Lyapunov matrix for different system modes (fault modes).

[5] considers the performance of system with stuck faults

via an LMI method, but the design is also conservative

with using a common Lyapunov matrix for different fault

modes. In order to reduces the conservatism of the design,

multiple Lyapunov functions will be introduced to develop

a stabilizing controller gain such that the H∞ performance is

optimized.

In this paper, the fault-tolerant H∞ compensation control

problem for linear time-invariant continuous-time systems

against actuator faults is studied. The adaptive H∞ compen-

sation design approach will be used for a general failure of
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actuator fault model, which covers the cases of normal oper-

ation, loss of effectiveness, outage, and stuck. Each control

effectiveness is assumed to be unknown. A notion of H∞

performance index is obtained by LMI approach, and com-

pensation controller gain will be updated via adaptive laws.

The adaptive approach and LMI approach to robust control

are combined successfully to give adaptive fault-tolerant H∞

compensation controller design methods for state feedback

case. Then, the controllers are constructed relying on the LMI

result and the updated values of these estimations. Based

on the Lyapunov stability theory, the adaptive closed-loop

system can be guaranteed to be uniformly ultimately bounded

and to obtain suboptimal H∞ performance in the presence of

failures on actuators and external perturbations.

The rest of the paper is organized as follows. The FTC

problem formulation is described in Section 2. In Section 3

the direct adaptive state feedback controller is developed.

Section 4 gives a numerical example of rocket fairing

structural-acoustic model and its simulation results. Finally,

conclusion is given in Section 5.

II. PRELIMINARIES AND PROBLEM STATEMENT

We first introduce our notation and gather some ele-

mentary facts. R stands for the set of real numbers and

for a real matrix E, ‖E‖ represents the induced norm.

With Tr[E] we denote the trace of E, i.e. the sum of the

diagonal entries. Given matrices Mk,k = 1, . . . ,n, the notation

diagn
k=1[Mk] denotes the block-diagonal matrix with Mk along

the diagonal and denoted diagk[Mk] for brevity. For the sake

of easing the notation of partitioned symmetric matrices, the

symbol (∗) denotes generically each of its symmetric blocks.

In this paper, we consider a linear time-invariant

continuous-time model captured the following state-space

equation:

ẋ(t) = Ax(t)+B1w(t)+B2u(t)+B3d(t)
z(t) = Cx(t)+Du(t)

(1)

where x(t) ∈ Rn is the state, u(t) ∈ Rm is the control input,

z(t) ∈ Rs is the regulated output, w(t) ∈ L
q
2[0,∞] is the

exogenous disturbance, and d(t) ∈ Rp is a bounded contin-

uous vector function which represents the perturbations for

the system, and we assume there exist two known positive

constants d, d̄ such that d ≤ ‖d(t)‖ ≤ d̄. A, B1, B2, B3, C

and D are known real constant matrices with appropriate

dimensions.

In this paper, we consider actuator faults including loss

of effectiveness, outage and stuck. Let uF
i j(t) represent the

signal from the ith actuator that has failed in the jth faulty

mode. Then we denote a general actuator fault model as:

uF
i j(t) = ρ j

i (t)ui(t)+σ j
i usi(t), i = 1 . . .m, j = 1 . . .L

(2)

where ρ j
i (t) is the actuator efficiency factor, the index j

denotes the jth faulty mode and L is the total faulty modes,

and ρ j

i
and ρ̄ j

i represent the known lower and upper bounds

of ρ j
i (t), respectively. usi(t) is an unparametrizable bounded

time-varying stuck-actuator fault in the ith actuator [13], and

TABLE I

FAULT MODEL

fault model ρ j
i

ρ̄ j
i σ j

i

normal 1 1 0

outage 0 0 0

loss of effectiveness >0 <1 0

stuck 0 0 1

we assume there exist two known positive constants us, ūs

such that us ≤ ‖us(t)‖ ≤ ūs. Note the practical case, we have

0 ≤ ρ j

i
≤ ρ j

i (t) ≤ ρ̄ j
i , and σ j

i is unknown constant defined

as:

σ j
i =

{

0, ρ j
i > 0

0 or 1, ρ j
i = 0.

Then, Table 1 can be given to illustrate the fault model.

Denote

uF
j (t) = [uF

1 j(t),u
F
2 j(t), · · · ,u

F
m j(t)]

T = ρ j(t)u(t)+σ jus(t)

where ρ j(t) = diag[ρ j
1(t),ρ j

2(t), · · · ,ρ j
m(t)], ρ j

i (t) ∈ [ρ j

i
, ρ̄ j

i ],

σ j = diag[σ j
1 ,σ j

2 , · · · ,σ j
m], j = 1,2, . . . ,L.

Then, the set of operators with above structure is denoted

by

∆ρ j = {ρ j(t) : ρ j(t) =

diag[ρ j
1(t),ρ j

2(t), . . . ,ρ j
m(t)], ρ j

i (t) ∈ [ρ j

i
, ρ̄ j

i ]},
(3)

and we also denote the following set

Nρ j = {ρ j(t) : ρ j(t) =

diag[ρ j
i (t),ρ j

2(t), . . . ,ρ j
m(t)], ρ j

i (t) = ρ j

i
or ρ j

i (t) = ρ̄ j
i }

(4)

where i = 1,2, . . . ,m, j = 1,2, . . . ,L. Thus, the set Nρ j

contains a maximum of 2m elements.

For the sake of convenience description, for all possible

faulty modes L, the following uniform actuator fault model

is exploited:

uF(t) = ρ(t)u(t)+σus(t) (5)

where ρ(t) = diagi[ρi(t)] ∈ {ρ1(t), . . . ,ρL(t)}.

Hence, the dynamics with actuator faults (1) is described

by

ẋ(t) = Ax(t)+B2ρ(t)u(t)+B2σus(t)+B1w(t)+B3d(t)
z(t) = Cx(t)+Dρ(t)u(t).

(6)

Remark 1: Here, z(t) is defined as the regulated output.

But the inputs being stuck are uncontrollable. So we do not

consider the stuck inputs in z(t).
The following notions are needed in formulating the

considered problem.

Definition 1: Consider the system (6). The system is said

to be ε-stable if for any x(0) ∈ Rn, the corresponding state

satisfies

lim
t→∞

‖x(t)‖ = ε,

where ε is a small positive scalar, and we define ‖xmin‖ := ε .
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Definition 2:[8] Consider the following closed-loop sys-

tem under state-feedback design

ẋ(t) = Aax(t)+Baw(t)
z(t) = Cax(t).

(7)

Let γ > 0 be a given constant, then the system (7) is said

to be stable with γ-disturbance attenuation, if for any τ > 0,

the output z(t) of the system (7) under x(0) = 0 satisfies
∫ ∞

0
zT (t)z(t)dt ≤ γ2

∫ ∞

0
wT (t)w(t)dt + τ. (8)

Remark 2: By the above definition, let τ = η2, for
∫ ∞

0 wT (t)w(t)dt > η , then we have
∫ ∞

0
zT (t)z(t)dt ≤ (γ2 +η)

∫ ∞

0
wT (t)w(t)dt.

For
∫ ∞

0 wT (t)w(t)dt ≤ η , it follows
∫ ∞

0
zT (t)z(t)dt ≤ γ2η +η2

,

which shows that the adaptive H∞ performance index is close

to the standard H∞ performance index when η is sufficiently

small.

The following well-known bounded real lemma can be

stated for the close-loop system (7).

Lemma 1: [26] Consider the closed-loop system (7), let

G(s) =Ca(sI−Aa)Ba, if there exist a real matrix P = PT > 0

and a positive scalar γ such that




AaP+PAT
a ∗ ∗

BT
a −γ2I ∗

CaP 0 −I



 < 0, (9)

then the system is stable and G(s) satisfies ‖G(s)‖∞ ≤ γ .

Then, the main objective of this paper is to construct

an adaptive state feed-back controller u(t) such that the

system ε-stable, where the states converge in a tube of

ray ε asymptotically or in finite time, with suboptimal H∞

performances even in the cases of failures on actuators and

perturbations.

III. ADAPTIVE FAULT-TOLERANT H∞ COMPENSATION

CONTROL SYSTEM DESIGN

In this section, we develop an LMI-based method for

design of a suboptimal H∞ controller gain, and also present

adaptive laws to updating the controller parameters for com-

pensating actuator faults and perturbations. Then, a method

for designing adaptive fault-tolerant H∞ compensation con-

trollers via state feedback is presented in Theorem 1.

We assume all the states of system are available at every

instant. Thus, consider a linear time-invariant FTC model

described by (6) and controller model

u(t) = K1x(t)+K2(t)x(t). (10)

Then the closed-loop FTC system model can be written

by

ẋ(t) = (A+B2ρK1)x(t)
+B2ρK2(t)x(t)+B2σus(t)+B1w(t)+B3d(t)

z(t) = (C +DρK1 +DρK2(t))x(t).
(11)

To ensure the achievement of fault-tolerant control objec-

tive, a basic requirement is that the system (A,B2ρ(t)) is

uniformly completely controllable for any actuator failure

mode ρ(t) ∈ {ρ1(t) . . .ρL(t)} under consideration. Besides,

the following assumptions in adaptive H∞ FTC design are

also assumed to be valid.

Assumption 1: rank[B2ρ(t)] = rank[B2] for any actuator

failure mode ρ(t) ∈ {ρ1(t) . . .ρL(t)}.

Remark 3: Assumption 1 introduces a condition of

actuator redundancy in the system, and it seems neces-

sary to completely compensate the stuck-actuator faults.

The reason can be explained as follows. We first as-

sume the perturbation d(t) does not exist in system. Then,

according to (11), in order to compensating the stuck-

actuator faults us(t), we should design a control law K2(t)
to make the equation B2ρ(t)K2(t)x(t) = −B2σus(t) holds

true. Following the knowledge of linear algebra theory,

K2(t) has a solution under the condition of rank(B2ρ(t)) =
rank(B2ρ(t),−B2σus(t)) holds true. On the other hand, if

without Assumption 1, it is easy to see that rank(B2ρ(t)) ≤
rank(B2). Therefore, due to the special relationship of

ρ(t) and σ (see Table 1), we can obtain rank(B2ρ(t)) ≤
rank(B2ρ(t),−B2σus(t)). Obviously, there exist some very

special constant us which can guarantee the equation holds,

and it is almost impossible to make the equation hold for

time-varying stuck. Thus, the Assumption 1 seems necessary

to compensate the stuck fault us(t). There are also many

mechanical systems belonging to this class of systems and

some works [10]− [11] had also been proposed based on the

redundancy condition. Although it is still under the condition,

a novel FTC will be proposed.

Assumption 2: For FTC system (11), there exists a matrix

function F of appropriate dimensions such that

B3 = B2F. (12)

Remark 4: With the same reason of compensating the

stuck-actuator faults, Assumption 2 seems also necessary to

compensating the perturbation. Actually, letting us = 0, we

should let B2ρ(t)K2(t)x(t) = B3d(t) for compensating the

perturbation, and there must exists an appropriate dimensions

matrix F such that B3 = B2F for guaranteeing the equation

holds true. Many systems also satisfy this marching condition

for robust control problem, such as [24].

Now, we denote a set for any time-varying matrix K(t):

∆K = {K(t) : Tr[KT (t)K(t)]
∈ {min

t
{Tr[KT (t)K(t)]},max

t
{Tr[KT (t)K(t)]}}},

(13)

for t ≥ 0.

Following the terms AaP+PAT
a and CaP in (9), it is well

recognized that there are closely interrelation between the

Lyapunov matrix P and the controller gain matrix, such as

the existence of product terms. The following Lemma, which

alleviate the interrelation between the Lyapunov matrix and

controller gain matrix using multiple Lyapunov functions,

can help us to reduce the conservatism of the design.
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Lemma 2: ([22], [23]) Consider the closed-loop system

(7), if there exist symmetric positive definite matrices P and

matrices F ∈ Rn×n and G ∈ Rn×n such that








FAa +AT
a FT P−F +AT

a G FBa CT
a

∗ −(G+GT ) GT Ba 0

∗ ∗ −γ2I 0

∗ ∗ ∗ −I









< 0 (14)

then (9) holds.

Hence, consider the closed-loop FTC system described

by (11), the following Lemma is stated for suboptimal H∞

performance index γ with multiple Lyapunov functions.

Lemma 3: Consider the closed-loop FTC system (11). For

given positive scalars ξ , λ and γ , If there exist symmetric

positive definite matrices X j for any K̄2 ∈ ∆K , ρ ∈ ∆ρ j , j =
1,2, . . . ,L and any appropriately dimensioned matrices S and

L such that












Ξ
j
11 Ξ

j
12 B1 Ξ

j
14 Ξ

j
15

∗ −λ (S +ST ) λB1 0 0

∗ ∗ −γ2I 0 0

∗ ∗ ∗ −I 0

∗ ∗ ∗ ∗ −ξ−1I













< 0 (15)

where

Ξ
j
11 = AS +ST AT +B2ρ jL+LT ρ jBT

2

Ξ
j
12 = X j −S +λ (LT ρ jBT

2 +ST AT )

Ξ
j
14 = LT ρ jDT +STCT +ST K̄T

2 ρ jDT

Ξ
j
15 = ST K̄T

2 ρ jDT

(16)

are feasible, then there exist a controller gain K1 = LS−1 such

that it is an FTC H∞ controller.

Proof: Following (11) and (14), we let Aa = A +
B2ρ jK1, Ba = B1 and Ca = C + Dρ jK1 + Dρ jK2(t), and set

G = λFT . Since (14) implies that G + GT > 0 then G is

nonsingular matrix. Adding [K̄T
2 ρ jDT ,0,0,0,−ξ−1I]T and

it’s transpose as the fifth column and the fifth low of the LMI

(14), respectively. Then, Pre- and postmultiplying (14) by

diag[F−1,F−T , I, I, I] and diag[F−T ,F−1, I, I, I], respectively,

and letting S = F−T , X j = F−1P jF−T , we have (15).

Remark 5: The advantage of LMIs (15) lies in the fact

that by introducing additional free weighting matrices to

express the relationship between the terms of the system

equation [23]. But the term Ξ
j
15 in (15) brings conservatism

of optimizing the H∞ performance and we just can obtain

suboptimal H∞ performance. However, we can choose small

ξ to reduce the conservatism.

Now, consider the controller model (10), K2(t) is given by

the following function:

K2(t) =
−BT

2 Pmaxb ‖ xT PminB2 ‖ k̂3(t)

‖ xT PminB2 ‖2 a+ζ
(17)

where Pmax = max j(P
j), Pmin = min j(P

j), and P j > 0, j =
1,2, . . . ,L, ζ is an arbitrary small positive constant, and a, b

are suitable positive constants which satisfied:

‖ xT PminB2 ‖
2 a+ζ ≤‖ xT PminB2

√

ρ j ‖2 b (18)

for any ρ j = diagi[ρ
j

i
] ∈ ∆ρ j , i = 1,2, . . . ,m, j = 1,2, . . . ,L

when the system states can converge to a small set as

time goes to infinity; k̂3(t) ∈ R is updated by the following

adaptive law:

dk̂3(t)
dt

= Proj[k3,k̄3]{k̂3}

{

k̄3, k̂3 = ck̄3

r ‖ xT ‖, otherwise
(19)

where constant c > 1 is a weighting of k̂3, and

k3 = min
j

(‖σ j‖us +‖F‖d), j = 1,2, . . . ,L (20)

k̄3 = max
j

(‖σ j‖ūs +‖F‖d̄), j = 1,2, . . . ,L (21)

r > 0 is the adaptive law gain to be designed according to

practical application, k̂3(t0) is finite, and from (19), we can

see k̂3(t) ≥ 0 if k̂3(t0) ≥ 0; Proj{·} denotes the projection

operator [25], whose role is to project the estimates k3(t) to

the interval [k3, k̄3].
On the other hand, letting

k̃3(t) = k̂3(t)− k3. (22)

Since k3 is a unknown constant, we can write the following

error system

dk̃3(t)
dt

= r ‖ xT PminB2 ‖ . (23)

In the following, by (x, k̃3)(t) we denote a solution of

the closed-loop system and the error system. Then, the

following theorem can be obtained which shows the globally

boundedness of the solutions of the adaptive closed-loop

system described by (11) and (23).

Theorem 1. Consider the adaptive closed-loop system

described by (11) and (23) under Assumptions 1-2. If there

exist matrices X j > 0, j = 1,2, . . . ,L and any appropriately

dimensioned matrices S and L such that LMI (15) hold.

Then the state feedback controller u(t) described in (10) with

controller parameters K1 = LS−1 and K2(t) given by (17) and

adaptive law k̂3 determined according to (19), can guarantee

that the closed-loop fault-tolerant system is uniformly ulti-

mately bounded and have suboptimal H∞ performance for

any ρ(t) ∈ ∆ρ j satisfies, in normal case, i.e., ρ(t) = 1,

∫ ∞

0
zT (t)z(t)dt ≤ γ2

n

∫ ∞

0
wT (t)w(t)dt +

1

r
k̃2

3(0), for x(0) = 0

(24)

and in actuator faults cases, i.e., ρ ∈ {ρ1, . . . ,ρL}, satisfies
∫ ∞

0
zT (t)z(t)dt ≤ γ2

f

∫ ∞

0
wT (t)w(t)dt +

1

r
k̃2

3(0), for x(0) = 0.

(25)

Proof: Due to the space limitations, we omit the proof.

Corollary 1: Assume that LMIs (15) hold for γ f > γn > 0,

adaptive update laws and control gain functions K2(t) are

given by (19), (17), respectively. Then the closed-loop system

(11) is stable and with H∞ performance indexes no large than

γn and γ f for normal and actuator failure cases, respectively.

Proof: Let F(0) = r−1k̃2
3(0). Then, following (19), it

shows that k3 ∈ [k3, k̄3], and we can also see that k̂3(t) is
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also bounded from (19). Thus, k̃3(0) is bounded, such that

k̃3(0) ∈ [0, k̄3 − k3]. Therefore, we can choose r sufficiently

large so that F(0) is sufficiently small. Thus, the conclusion

follows from (24), (25) and Definition 1.

From Theorem 1 and Corollary 1, we have the following

algorithm to optimize the adaptive H∞ performance in normal

and fault cases.

Algorithm 1: Let γn and γ f denote the adaptive H∞

performance bounds for the normal case and fault cases of

the closed-loop system (11), respectively. Then γn and γ f are

minimized if the following optimization problem is solvable

minαηn +βη f s.t.(15) (26)

where ηn = γ2
n , η f = γ2

f , and α and β are weighting

coefficients. Since systems are operating under the normal

condition most of time, we can choose α > β in (26).

From Lemma 3, we need the knowledge of bound of K2 for

obtain the H∞ performances γn and γ f . Thus, assume at initial

condition x(0) = 0, the low bound of K2(t) is equal to 0 from

(17). On the other hand, the upper bound of K2(t) depends on

‖xmin‖, k̄3, and P j, j = 1,2, . . . ,L. The following algorithm

is introduced to choose a P j for obtaining the upper bound

of K2(t), so that we can optimize the H∞ performances.

Algorithm 2:

Step 1: Assume at iteration k = 0, give any initial solution

P0 and K1,0 is available, obtain k3,0 from (19). Then get upper

bound of K2,0 from (17).

Step 2: Solve problem (15) to get P
j

k and K1,k, then obtain

k
j
3,k from (19), let k̄3,k = max j(k

j
3,k), j = 1,2, . . . ,L, and then

get K̄2k.

Step 3: Set δk:=trace[K̄T
2,kK̄2,k]. If k̄3,k > k̄3,k−1 or δk >

δk−1, then go back to Step 2. Otherwise, stop and obtain P j,

K1, γn and γ f .

Remark 6: Using the fact with spectral norm inequality,

the proposed method has solved the actuator faults such as

unparametrizable time-varying bounded stuck faults success-

fully. Obviously, it is a more effective method than existing

direct adaptive methods for actuator failure compensation

problem introduced in [10] and [11], where the schemes must

be improved for the unparametrizable failures. Moveover,

under the proposed method, the FTC system also has the

capability of perturbation rejection, while other FTC systems

[8]− [13] have not the capability.

IV. NUMERICAL EXAMPLE

We consider a rocket fairing structural-acoustic model with

perturbation input and regulated output added [10]:

A =









0 1 0.0802 1.0415

−0.1980 −0.115 −0.0318 0.3

−3.0500 1.1880 −0.4650 0.9

0 0.0805 1 0









,
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Fig. 1. Responses curves of the system states x(t).

0 5 10 15 20
0

10

20

30

40

50

60

time(s)

The estimate of k
3

Fig. 2. Responses curves of the estimate of controller parameter k3.

B2 =









1 1.55 0.75

0.975 0.8 0.85

0 0 0

0 0 0









,B3 =









2 −2

1 −0.5

0 0

0 0









,

C =





1 0 −1 0

0 0 0 0

0 0 0 0



 ,D =





0 0 0

0.3 0 0.5

0 0 −0.9



 .

Considering the following four possible faulty modes:

Normal mode 1: All of the actuators are normal, that is,

ρ1
1 = ρ1

2 = ρ1
3 = 1.

Fault mode 2: The first actuator is outage or stuck, the

second and the third actuators may be normal or loss of

effectiveness, described by ρ2
1 = 0,a2 ≤ ρ2

2 ≤ 1,a3 ≤ ρ2
3 ≤

1,a2 = 0.5,a3 = 0.3, which denotes the maximum loss of

effectiveness for the second and the third actuators.

Fault mode 3: The second actuator is outage or stuck,

the first and the third actuators may be normal or loss

of effectiveness, that is, ρ3
2 = 0,b1 ≤ ρ3

1 ≤ 1,b3 ≤ ρ3
3 ≤

1,b1 = 0.6,b3 = 0.5, which denotes the maximum loss of

effectiveness for the first actuator and the third actuator.

Fault mode 4: The third actuator is outage or stuck, the

first actuators and the second actuators may be normal or

loss of effectiveness, that is, ρ4
3 = 0,c1 ≤ ρ4

1 ≤ 1,c2 ≤ ρ4
2 ≤

1,c1 = 0.4,c2 = 0.3, which denotes the maximum loss of
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effectiveness for the first and second actuators.

By using Algorithm 1 and Algorithm 2 with α = 10, β = 1,

we obtain the H∞ performances of closed-loop system are

(normal) 1.3405 and 2.7706 (fault) with λ = 0.01. Then,

to verify the effectiveness of the proposed adaptive method,

the simulations are given with the following parameters and

initial conditions:

r = 25, x(0) = [−1,1,−0.5,0.5], k̂3(0) = 0, ξ = 0.2,

ε = 0.05, ζ = 0.0001, a = 1, b = 10, c = 20.

The following faulty case is considered in the simulations,

that is, before 8 second, the systems operate in normal case,

and the perturbations d(t) = [−0.5, 0.5sin(0.2t)]T enter into

the system at the beginning (t ≥ 0). At 8 second, some

faults in actuators have occurs, the third actuator has stuck at

us3(t) = 1+0.5sin(0.1t)+0.5cos(0.5t) and the first actuator

loss of effectiveness described by ρ3 = 1− 0.03t until loss

effectiveness of 40%.

Fig.1 is the responses curves of the system’s states with

adaptive state feedback controller in above-mentioned faulty

case. Fig.2 is the estimated curve of controller parameter k̂3.

And the curve will reach ck̄3 as time goes to some sufficiently

large number. It is easy to see the estimates can converge and

the closed-loop FTC system uniformly bounded even in the

presence of faults of actuators and perturbations.

V. CONCLUSIONS

This paper has presented a new method for fault-tolerant

H∞ control problem of actuator failure compensation in

continuous-time systems. A general actuator failure model

is adopted, which covers the cases of normal operation, loss

of effectiveness, outage and stuck. The LMIs developed with

multiple Lyapunov functions have been proposed to obtain

a suboptimal fault-tolerant H∞ control gain K1, and the H∞

performances of resultant closed-loop systems in both normal

case and actuator failure cases are optimized. Based on the

on-line update adaptation laws to estimate the controller

parameters, the direct adaptive control schemes are designed

to automatically compensate the effects of faults on actuators

and perturbations. The state feedback controllers constructed

by LMI-based method and adaptive method can guarantee

the system ε-stable in the presence of faults on actuators and

perturbations with suboptimal H∞ performances. A numerical

example has shown the effectiveness of the proposed method.
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