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Abstract— We address the issue of stability and convergence
of perturbed switched linear time-delay systems. By introduc-
ing the Variation-of-constants formula, the conditions of the
stability and convergence of perturbed switched linear systems
with time-delay are established, and the difficulties caused by
the interaction between the switchings and time-delay are con-
quered. Based on the general result of perturbed switched linear
time-delay systems, under two different switching schemes, new
delay dependent and independent stability criteria for switched
linear systems with time-delay are developed. The numerical
examples show feasibility and validity of the results.

Notations

R
n n dimensional Euclidean space.

AT Transpose of matrix A.

N Set {1, 2, · · ·n}.
‖ · ‖ The usual 2-norm.

L2[0,∞) The space of square integrable

functionson [0,∞).
L loc

1 ([̺,∞), Rn) The space of locally Lebesgue

integrable functions on [̺,∞).
λmax(P ) (λmin) Maximum (minimum) eigenvalue of

P.

P > 0 (< 0) Positive (negative) definite matrix P.

xt(θ) x(t + θ), θ ∈ [−τ, 0].
C([−τ, 0], Rn) Banach space of continuous mapping

from([−τ, 0], Rn) to R
n with topology

of uniform convergence.

σ(t) : [0,∞)→N The right continuous function denotes

the switching signal which can be

characterized by the switching

sequence Σ = {x0; (i0, t0), (i1, t1), · · ·,
(ij , tj), · · · |ij ∈ N, j = 0, 1, · · · }.

σ , σ(t) = i Mean that the ith subsystem is active.

‖xt‖cl sup−τ≤θ≤0{‖x(t + θ)‖, ‖ẋ(t + θ)‖}
or sup−τ≤θ≤0{‖x(t + θ)‖}.
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I. INTRODUCTION

For a perturbed switched linear system

ẋ(t) = Aσ(t)x(t) + fσ(t), x(t0) = x0, (1)

where fσ(t)(t) : R+ → R
n is piecewise continuous vector

function representing system perturbations, paper [7] had

derived that under certain conditions, the state of system

(1) has the same convergence properties as the perturbations

fi(t), i ∈ N , i.e.,

(i) the state of the perturbed system (1) is bounded if the

perturbations are bounded;

(ii) the state of the perturbed system (1) is practically

convergent if the perturbations are convergent.

On the other hand, with the Variation-of-constants formula

[2], for (̺, φ) ∈ R × C, one can easily show that under

certain conditions, the state convergence properties of the

linear perturbed time-delay system

ẋ(t) = L(t, xt) + f(t), t ≥ ̺, (2)

x̺ = φ,

are consistent with the perturbation f(t).
Inspired by above works, it is natural to consider the sta-

bility and convergence of perturbed switched linear systems

with time-delay. The importance of the study of the issue

arises from the hot topics, switched systems with time-delay

which have been attracting considerable attention due to

the significance both in theory development and practical

applications (see e.g., [4],[5],[6],[9],[10],[12]). It is well

known that perturbations and uncertainties are inevitably

encountered in many control systems, including switched

time-delay systems and time-delay systems using switching

techniques. However, the stability and convergence of the

perturbed switched systems with time-delay is not easy

to handle and challenging due to the interactions between

the switchings and time-delay, a simple combination of the

existing results of switched systems and time-delay systems

can not give the solution of the problem addressed. Some

efforts are undertaken to dispose of the perturbations for

switched systems (see, e.g., [13]) or time-delay systems (see,

e.g., [11]), it is often assumed that the perturbations to satisfy

the linear growth condition, i.e., ‖fi(t)‖ ≤ ηi‖x(t)‖, i ∈ N ,

generally speaking, such disposal is neither practical nor

reasonable.

In this paper, we address the issue of stability and con-

vergence of perturbed switched linear time-delay systems.

The novelties of this paper are as follows. In the first place,
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by introducing the Variation-of-constants formula, the condi-

tions of the stability and convergence of perturbed switched

linear systems with time-delay are established. In the next

place, under average dwell time switching scheme, delay

dependent stability and convergence criteria for perturbed

switched linear time-delay systems are developed based on

the general results, alternatively, under multiple Lyapunov

functional switching scheme, delay independent stability and

convergence criteria are given. As for deriving the delay

dependent criteria, by introducing Jensen integral inequality

and choosing a special Lyapunov functional which does not

include the time varying term, the computation complexities

and analysis difficulties are decreased, whereas the conserva-

tiveness is not increased compare to existing results (see, e.g.,

[3]). On the other hand, as for delay independent criteria,

some subsystems are allowed to be unstable. It is highly

desirable that a non-switched time-delay system can not earn

such property.

II. PRELIMINARIES

Before developing the conditions for the stability and

convergence of switched linear time-delay systems, a pre-

liminary result is presented. The following state constitutes

a generalization of Hale’s results (see in [2]).

Consider the perturbed linear time-delay system

ẋ(t) = L(t, xt) + f(t), t ≥ ̺, (3)

x̺ = φ,

and its homogeneous system

ẋt = L(t, xt), t ≥ ̺. (4)

Hypothesis 1. The operator L(t, φ) in (3) is linear in φ and,

there are n×n matrix functions η(t, θ) measurable in (t, θ) ∈
R × R, normalized so that

η(t, θ) = 0 for θ > 0, η(t, θ) = η(t,−τ) for θ < −τ,

η(t, θ) is continuous from the left in θ on (−τ, 0), η(t, θ)
has bounded variation in θ on [−τ, 0] for each t, and there

are m(t) ∈ L loc
1 ((−∞,∞), R) such that

L(t, φ) =

∫ 0

−τ

[dθη(t, θ)]φ(θ),

|L(t, φ)| ≤ m(t)|φ|

(5)

for all t ∈ (−∞,∞), φ ∈ C.

Remark 1. According to Hale’s Theory, if above hypotheses

on L are satisfied, a unique function x(̺, φ) defined and

continuous on [̺−τ,∞) which satisfies system (3) on [̺,∞)
can be guaranteed (c.f. [2]). Hypothesis 1 is basic assumption

for linear time-delay system and is easily checked to be held.

Example 1. Consider a LTI time-delay system

ẋ(t) = Ax(t) + Dx(t − τ).

We can let L(t, φ) = Aφ(0) + Dφ(−τ), in which φ(θ) =
x(t + θ), θ ∈ (−τ, 0), and there has

L(t, φ) =

∫ 0

−τ

[dθη(t, θ)]φ(θ)

where

η(t, θ) =







0, θ = 0,

−A, −τ < θ < 0,

−A − D, θ = −τ.

Lemma 1 (Variation-of-constants [2]). If L satisfies the hy-

potheses 1, x(̺, φ, f) denotes the solution of system (3), and

x(̺, φ, 0) is the solution of the corresponding homogeneous

system (4), then

x(̺, φ, f)(t) = x(̺, φ, 0)(t) +

∫ t

̺

U(t, s)f(s)ds,

x̺ = φ, t ≥ ̺, (6)

where U(t, s) is the solution of the equation

U(t, s) =

{
∫ t

s
L(u,Uu(·, s))du + I a.e. in s, t ≥ s

0. s − r ≤ t < s

in which Ut(·, s)(θ) = U(t + θ, s),−τ ≤ θ ≤ 0.

For the convenience of using the variation-of-constants

formula, some notations are introduced to rewrite the for-

mula.

Denote x(̺, φ, 0)(t+θ) as xt(̺, φ, 0), and if x(̺, φ, 0) ,

T (t, ̺)φ, then the T (t, ̺) is a continuous linear operator.

Therefore

Ut(·, s) =T (t, s)X0, X0(θ) =

{

0, −τ ≤ θ < 0,

I, θ = 0.

With the above notations, the variation-of-constants for-

mula becomes

xt(t, ̺, φ, f) = T (t, ̺)φ +

∫ t

̺

T (t, s)X0f(s)ds, t ≥ ̺.

Before concluding this section, we recall another lemma.

Lemma 2 (Jensen integral inequality [1]). For any constant

matrix M ∈ R
m×m, M = MT > 0, scalar γ > 0, vector

function ω : [0, γ] → R
m such that the integrations in the

following are well defined, then

γ

∫ γ

0

ωT (β)Mω(β)dβ ≥

(
∫ γ

0

ω(β)dβ

)T

M

(
∫ γ

0

ω(β)dβ

)

.

III. MAIN RESULTS

For (̺, φσ) ∈ R×C, consider the switched linear system

with time-delay






ẋ(t) = Lσ(t, xt) + fσ(t), t ≥ t0,

φi(θ) = x(t + θ), θ ∈ [tj − τ, tj ],
x(0) = φ0(0) = 0, j = 0, 1, · · · .

(7)

where x(t) ∈ R
n is the state, fi(t) ∈ L loc

1 ([t0,∞), Rn), i ∈
N the perturbations; φi(t) the continuous vector valued

function specifying the initial state of each subsystem.

Remark 2. If Li(t, xt) in each subsystem of (7) satisfies

the Hypothesis 1, with the stepping method in finite interval

[tj , tj+1) for each subsystem of (7) and well-defined switch-

ing law, the existence and uniqueness of the solution with

initial condition for switched linear time-delay system (7)

can be guaranteed.
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Definition 1[8]. Let M = sup
t≥̺, k∈N

{‖fi(t)‖}. The perturba-

tions fi(t), i ∈ N are said to be

(i) bounded, if M < ∞;

(ii) convergent (to the origin), if ‖fi(t)‖ → 0 as t → ∞ for

all i ∈ N ;

(iii) exponentially convergent (to the origin), if ‖fi(t)‖ ≤
κe−λ(t−t0), ∀t ≥ t0, for some constants κ ≥ 0 and

λ > 0.

A. General result on perturbed switched linear time-delay

systems

We have the following general result on perturbed

switched linear time-delay systems.

Theorem 1. For the perturbed switched linear time-delay

system (7), suppose that Hypothesis 1 hold. If under certain

switching law, the solution x = 0 of nominal system of (7),

i.e., the homogeneous system

ẋ(t) = Lσ(t, xt), (8)

is exponentially stable, then the system state of (7) is

(i) bounded if the perturbation fσ(t) is bounded;

(ii) asymptotically convergent (to the origin) if the pertur-

bation fσ(t) is bounded and asymptotically convergent

(to the origin);

(iii) exponentially convergent (to the origin) if the perturba-

tion fσ(t) is exponentially convergent (to the origin).

Proof. According to variation-of-constants formula, since

fσ(t) ∈ L loc
1 ([t0,∞), Rn), when t ∈ [tj , tj+1), the solu-

tion of the ij th subsystem through (tj , φij
) of (7) can be

expressed as follows

xt(t, tj , φij
, fij

) = Tij
(t, tj)φij

+

∫ t

tj

Tij
(t, s)X0(θ)fij

(s)ds,

t ≥ t0,

where Tij
(t, t0), i ∈ N are continuous linear operators

with relations x(tj , φij
, 0) , Tij

(t, tj)φij
. By the stepping

method in finite interval [tj , tj+1) for each subsystem of (7)

and well-defined switching law, the existence and uniqueness

of the solution with initial condition for system (7) can be

obtained, and there has

xt(t, t0, φ0, fσ) = T (t, t0)φ0 +

∫ t

t0

T (t, s)X0(θ)fσ(s)ds,

t ≥ t0, (9)

where T (t, t0) = Tij
(t, tj) · Tij−1

(tj , tj−1) · · ·Ti0(t1, t0)

is a continuous operator with relation x(t0, φ0, 0) ,

T (t, t0)φ0 (φ0 = φi0).
Since the solution x = 0 of nominal system of (7), i.e.,

ẋ(t) = Lσ(t, xt) is exponentially stable, this implies that

there exist constants α > 0, κ > 0, such that the solution

operator T (t0, t) satisfy

‖T (t, t0)‖ ≤ κe−α(t−t0), ‖T (t, t0)X0‖ ≤ κe−α(t−t0).

Firstly, suppose that fσ(t) is bounded, that is, there exists

M > 0, such that ‖fσ(t)‖ ≤ M , (9) gives that

‖xt(t, t0, φ0, fσ)‖ ≤κe−α(t−t0)‖φ0‖ + κM ·

∫ t

t0

e−α(t−s)ds

≤κ‖φ0‖ +
κM

α
.

Hence, the state is bounded.

Secondly, suppose that the perturbation fσ(t) is bounded

and asymptotically convergent, that is, for any given number

ǫ > 0, ∃T1 > 0, when t > T1, there holds ‖fi(t)‖ < ǫ. The

boundedness of fi(t) gives ‖fi(t)‖ ≤ B0 (i ∈ N). When

t ∈ [tj , tj+1) ⊂ [T1,∞), (9) gives rise to

‖xt(t, t0, φ0, fσ)‖

≤ κe−α(t−t0)‖φ0‖ +

∫ t

t0

κe−α(t−s)‖fσ(t)(s)‖ds

≤ κe−α(t−t0)‖φ0‖ + κB0

∫ T1

t0

e−α(t−s)ds

+κ

∫ t

T1

e−α(t−s)ds · ǫ

≤

(

κ‖φ0‖ +
κB0

α

)

e−α(t−T1) +
κ

α
ǫ. (10)

For any given ε > 0, choose T = T1 + ln ε−1

α
and ǫ = ε.

When t ∈ [tj , tj+1) ⊂ [T ,∞), it follows from (10) that

‖xt(t, t0, φ0, fσ)‖ ≤

(

κ‖φ0‖ +
κB0

α
+

κ

α

)

ε.

From the arbitrariness of ε, the asymptotic convergence of

the state follows.

Thirdly, suppose that for t > t0, ‖fσ(t)‖ ≤ ̺ e−γ(t−t0).

Then, we have

‖xt(t, t0, φ0, fσ)‖

≤ κe−α(t−t0)‖φ0‖ +

∫ t

t0

κe−α(t−s) · ̺ e−γ(s−t0)ds

≤



















(

κ‖φ0‖ + κ̺
γ−α

)

e−α(t−t0), if γ > α
(

κ‖φ0‖ + κ̺
γ−α

)

e−γ(t−t0), if γ < α
(

κ‖φ0‖ + κ̺
γ−α

)

e−(α−ε)(t−t0), if γ = α

(11)

where ε is any sufficient small positive number. Thus, the

state is exponentially convergent. The proof is complete. ¤

In the following subsections, we will give delay dependent

exponential stability criteria based on time-dependent switch-

ing law and delay independent exponential stability criteria

based on state-dependent switching law, respectively.

B. Delay dependent convergence criteria: time-dependent

switching law

In the perturbed switched linear time-delay systems (7), if

Lσ(t, φ) = Aσφ(0) + Dσφ(−dσ(t)), where di(t), i ∈ N is

time-varying term satisfies 0 < di(t) ≤ τ , and φ(θ) = x(t+
θ), θ ∈ (−τ, 0), note that the initial state of each subsystem is

related with the switching instant, we denote φσ(θ) , φ(θ).
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We have the familiar switched time-delay system with the

form






ẋ(t) = Aσx(t) + Dσx(t − dσ(t)) + fσ(t),
φσ(θ) = x(t + θ), θ ∈ [tj − τ, tj ],
x(0) = φσ(0) = 0, j = 0, 1, · · · .

(12)

We are in a position to present the delay dependent

stability and convergence criteria.

Theorem 2. For system (12), suppose that the time-varying

delay di(t) satisfies 0 < di(t) ≤ τ (τ > 0, i ∈ N). For given

positive constant η, if there exist positive definite matrices

Pi, Si, with appropriate dimensions, such that the following

linear matrices inequalities

Θi :=

[

ϕi
11 ϕi

12

∗ ϕi
22

]

< 0, i ∈ N (13)

hold, then, for any switching signal with average dwell time

satisfying

Tη > T ∗
η =

lnµ

η
, (14)

where µ ≥ 1 satisfies

Pi ≤ µPj , Si ≤ µSj , ∀i, j ∈ N, (15)

ϕi
11=AT

i Pi + PiAi + ηPi + τAT
i SiAi − τ−1e−ητSi,

ϕi
12=PiDi + τAT

i SiDi + τ−1e−ητSi,

ϕi
22=τDT

i SiDi − τ−1e−ητSi.

Then the system state of (12) is

(i) bounded if the perturbation fσ(t) is bounded;

(ii) asymptotically convergent (to the origin) if the pertur-

bation fσ(t) is bounded and asymptotically convergent

(to the origin);

(iii) exponentially convergent (to the origin) if the perturba-

tion fσ(t) is exponentially convergent (to the origin).

Proof. According to Theorem 1, we need only to prove that

under the average dwell time switching law (14), the nominal

system of (12), i.e., the switched linear time-delay system

ẋ(t) = Aσx(t) + Dσx(t − dσ(t)) (16)

is exponentially stable.

Define the piecewise Lyapunov functional candidate

V (x(t)) =Vσ(t)(xt) = xT (t)Pσ(t)x(t)

+

∫ 0

−τ

∫ t

t+θ

ẋT (s)e−η(t−s)Sσ(t)ẋ(s)dsdθ,
(17)

which is positive definite since Pi and Si (i ∈ N) are

positive definite matrices.

When t ∈ [tk, tk+1), for the simplicity of notations,

suppose that the ith subsystem is active, i.e., σ(t) = i.

Differentiating (17) along the trajectory of (16) and noticing

di(t) ≤ τ , we obtain

V̇i(xt) ≤2xT (t)Pi(Aix(t) + Dix(t − di(t)))

+τ ẋT (t)Siẋ(t) −

∫ t

t−di(t)

ẋT (s)e−ητSiẋ(s)ds

−η

∫ 0

−τ

∫ t

t+θ

ẋT (s)e−η(t−s)Siẋ(s)dsdθ. (18)

Note that

τ ẋT (t)Siẋ(t) = xT (t)τAT
i SiAix(t)

+ 2xT (t)τAT
i SiDix(t − di(t))

+ xT (t − di(t))τDT
i SiDix(t − di(t)).

(19)

From the Jensen integral inequality, we obtain

−

∫ t

t−di(t)

ẋT (s)e−ητSiẋ(s)ds

≤−
1

τ

(

∫ t

t−di(t)

ẋ(s)ds

)T

e−ητSi

∫ t

t−di(t)

ẋ(s)ds

= −
1

τ
[x(t) − x(t − di(t))]

T
e−ητSi[x(t) − x(t − di(t))]

= −
1

τ
xT (t)e−ητSix(t) +

2

τ
xT (t)e−ητSix(t − di(t))

−
1

τ
xT (t − di(t))e

−ητSix(t − di(t)). (20)

Substituting (19) and (20) into (18), yields

V̇i(xt) + ηVi(xt)

≤

[

x(t)
x(t − di(t))

]T [

ϕi
11 ϕi

12

∗ ϕi
22

] [

x(t)
x(t − di(t))

]

.

Imposing condition (13) produces that

V̇i(xt) + ηVi(xt) < 0, i ∈ N. (21)

When t ∈ [tk, tk+1), integrating (21) from tk to t gives

V (xt) = Vσ(t)(xt) ≤ e−η(t−tk)Vσ(tk)(xtk
). (22)

Using (15) and (17), at the switching instant ti, we have

Vσ(ti)(xti) ≤ µVσ(t−
i

)(xt
−

i
), i = 1, 2, · · · . (23)

Therefore, it follows from (22), (23) and the relation k =
Nσ(t0, t) ≤ N0 + t−t0

Tη
, noticing N0 > 0, that

V (xt) ≤e−η(t−tk)µVσ(t−
k

)(xt
−

k
)

≤e−η(t−tk−1)µVσ(tk−1)(xtk−1
) ≤ · · ·

≤e−η(t−t0)µkVσ(t0)(xt0)

≤µN0 · e
−(η− ln µ

Tη
)(t−t0)Vσ(t0)(xt0).

(24)

In view of (17) again, it holds that

a‖x(t)‖2 ≤ V (xt), Vσ(t0)(xt0) ≤ b‖xt0‖
2
cl, (25)

where a = mini∈N λmin(Pi), b = maxi∈N λmax(Pi) +

τ2 maxi∈N λmax(Si). Let λ = 1
2 (η − ln µ

Tη
). Combining (24)

and (25) gives rise to

‖x(t)‖2 ≤
1

a
V (xt) ≤

b

a
µN0 · e

−(η− ln µ
Tη

)(t−t0)‖xt0‖
2
cl.

Therefore ‖x(t)‖ ≤
√

b
a
µ

N0

2 ·e−λ(t−t0)‖xt0‖cl, which means

that system (16) is exponentially stable. The remainder of the

proof follows the procedures as in theorem 1. ¤

Remark 4. We introduce Jensen integral inequality in our

proof, the computation complexities and analysis difficulties

are decreased, whereas the conservativeness is not increased
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compare to existing results, such as free weighting matrix

method (see, e.g., [3]), the correlative reference can be seen

[14].

Example 2. Consider the perturbed switched linear time-

varying delay system (12) with

A1 =

[

−4 −2.5
1.2 −1.5

]

, D1 =

[

0.2 0.1
0.1 0

]

,

A2 =

[

−2 0.5
−3.2 −3.5

]

, D2 =

[

0.1 0.1
0.2 0

]

,

and dσ(t) = 0.6 + 0.6 sin t. For η = 0.6, τ = 1.2, solving

(13) gives piecewise Lyapunov functional (17) with

P1 =

[

1.7368 −0.0128
−0.0128 1.9422

]

, P2 =

[

1.8561 −0.0567
−0.0567 1.7216

]

,

and

S1 =

[

0.3536 −0.1162
−0.11621.15345

]

, S2 =

[

1.0467 −0.2930
−0.2930 0.5838

]

.

Solving (15) gives µ = 2.9634, and according (14), we have

τ∗
α = ln µ

α
= 1.8106. By using average dwell time method

provided by Theorem 2, with the convergent perturbation

fσ(t) = sin t
t

and the bounded perturbation fσ(t) = sin t,

the stability and convergence of the system (12) can be

guaranteed, the simulation results are depicted in Fig.1.

C. Delay independent convergence criteria: state-dependent

switching law

In the perturbed switched linear time-delay systems (7),

if Lσ(t, φ) = Aσφ(0) + Dσφ(−τ(t)), where τ is constant

dealy, and φ(θ) = x(t + θ), θ ∈ (−τ, 0). We have the

following switched time-delay system with the form






ẋ(t) = Aσx(t) + Dσx(t − τ) + fσ(t),
φσ(θ) = x(t + θ), θ ∈ [tj − τ, tj ],
x(0) = φσ(0) = 0, j = 0, 1, · · · .

(26)
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Fig. 1. The state of the perturbed switched time-delay system: average
dwell time method.

We have the following delay independent stability and

convergence criteria.

Theorem 3. For given positive constant η > 0, if there exist

positive definite matrices Pi, S, and scalars αij > 0, (i, j ∈
N), such that the following matrices inequalities

[

Ξi PiDi

∗ −e−ητS

]

< 0 (27)

hold, where

Ξi := AT
i Pi + PiAi + ηPi + S +

∑

j 6=i,j∈N

αij(Pj − Pi),

if the system (26) is with the following switching law

σ(t) = arg min
i∈N

{xT (t)Pix(t)}. (28)

Then the system state of (26) is

(i) bounded if the perturbation fσ(t) is bounded;

(ii) asymptotically convergent if the perturbation fσ(t) is

bounded and asymptotically convergent;

(iii) exponentially convergent if the perturbation fσ(t) is

exponentially convergent.

Proof. The result follows from Theorem 1 if we can prove

that under the multiple Lyapunov functional switching law

(28), the nominal system of (26), i.e., the switched linear

time-delay system

ẋ(t) = Aσx(t) + Dσx(t − τ) (29)

is exponentially stable.

Design Lyapunov-Krasovskii functional candidate as

V (x(t)) = xT (t)Pσ(t)x(t) +

∫ t

t−τ

xT (s)e−η(t−s)Sx(s)ds.

(30)

Obviously, the Lyapunov-Krasovskii functional candidate

is positive definite.

For any t > 0, the jth switching instant is denoted by

tj (j ≥ 0). During any time interval [tj , tj+1), suppose that

the ith subsystem is active. Let ξ(t) =
[

xT (t), xT (t − τ)
]T

.

Consider the time derivative of V (x(t)) along the trajectory

of (29), we have

V̇ (x(t)) + ηV (x(t))

= ξT (t)

[

AT
i Pi + PiAi + ηPi + S PiDi

∗ −e−ητS

]

ξ(t).
(31)

According to the condition (27), we have
[

AT
i Pi + PiAi + ηPi + S PiDi

∗ −e−ητS

]

<

[

Πi 0
0 0

]

, (32)

where Πi := −
∑

j 6=i,j∈N

αi,j(Pj − Pi).

By virtue of the designed switching law (28), it follows

xT (t)(
∑

j 6=i,j∈N

αij(Pj − Pi))x(t) ≥ 0, ∀x(t) ∈ R
n.

During [tj , tj+1), when ξ(t) 6= 0, we easily get

V̇ (x(t)) + ηV (x(t)) < ξT (t)

[

Πi 0
0 0

]

ξ(t) ≤ 0.
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Thus, there holds

V̇ (x(t)) ≤ −ηV (x(t)), (33)

During any [tj , tj+1), (33) gives rise that

V (x(t)) ≤ e−η(t−tj)V (x(tj)). (34)

In addition, by the switching law (28), at the switching

instant tj , we have

xT (tj)Pσ(tj)x(tj) ≤ lim
t→t

−

j

xT (t)Pσ(t)x(t),

which implies V (xT (tj)) ≤ limt→t
−

j
V (xT (t)), by induction

on t0, t1, · · · , tj , from (34) we get

V (x(t)) ≤ e−η(t−t0)V (x(t0)).

Then we have ‖x(t)‖2 ≤ λM (Pi)+τλM (S)
λm(Pi)

e−η(t−t0)‖x(t0)‖
2
cl,

which implies exponential stability of the nominal systems

of (29), i.e., the system (26). The remainder of the proof is

omitted since it follows the iterative steps of Theorem 1. ¤

Remark 5. The delay independent criteria we obtained

are based on the multiple Lyapunov functional switching

scheme. It is highly desirable that some subsystems are

allowed to be unstable, comparatively, time-delay systems

without switching scheme can not earn such property.

Example 3. Consider the perturbed switched linear time-

delay system (26) with

A1 =

[

−1.5 −1.2
−1.2 1

]

, D1 =

[

−0.5 0.5
−0.1 −0.4

]

,

A2 =

[

−2.5 1
1 −2.3

]

, D2 =

[

−0.3 −0.2
0.1 −0.3

]

,

and τ = 0.9. For η = 0.4, solving (27) gives Lyapunov

functional (30) with

P1 =

[

17.9344 1.6235
1.6235 33.9704

]

, P2 =

[

16.9512 6.4649
6.4649 23.0416

]

,

and

S =

[

34.5285 0.6258
0.6258 32.0362

]

.

By multiple Lyapunov functional method provided by The-

orem 3, with the convergent perturbation fσ(t) = e−3t

and the bounded perturbation fσ(t) = sin t, the stability

and convergence of the system (26) can be guaranteed, the

simulation results are depicted in Fig.2.

IV. CONCLUSION

In this paper, we investigate the issue of stability and

convergence of perturbed switched linear time-delay systems.

By introducing the Variation-of-constants formula, the condi-

tions of the stability and convergence of perturbed switched

linear systems with time-delay are established. Based on

the general result of perturbed switched linear time-delay

systems, under two different switching schemes, new delay

dependent and independent stability criteria for switched

linear systems with time-delay are developed. The numerical

examples show feasibility and validity of the results.
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Fig. 2. The state of the perturbed switched time-delay system: multiple
Lyapunov functional method.
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