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Abstract— This paper focuses on time-optimal robot path
tracking and develops an approximate, log-barrier batch so-
lution method to rapidly solve discretized, convexly reformuled
path tracking problems. Based on this batch solution method,
which results in smooth actuator torques, a recursive variant is
derived for on-line path tracking. The results and trade-offs in
calculation time, delay and path duration are compared for the
batch and recursive variant of the log-barrier method as well
as for an exact solution method, by means of an experimental
test case of a robot carrying out a writing task, in which the
path data is generated on-line by human demonstration.

I. INTRODUCTION

T IME-OPTIMAL path tracking, which involves planning

of robot motions along prescribed geometric paths, is

of significant importance for industrial applications, such

as robotic welding, gluing and painting, as well as for

applications such as programming by human demonstration,

and target interception and capturing, but is a complex task,

due to the nonlinear, coupled robot dynamics [1].

Methods for time-optimal path tracking subject to actuator

constraints have been proposed in [2]–[6] and most of them

exploit that motion along a predefined path can be described

by a single path coordinate s and its time derivative ṡ [2], [3].

However, these methods are all off-line batch methods and

are generally considered to be intractable for on-line use [7].

In contrast, this paper focuses on on-line time-optimal path

tracking. Starting from a discretized convex reformulation of

time-optimal path tracking problems presented in [6], this

paper devises a log-barrier batch solution method, which

allows to rapidly obtain an approximate solution with smooth

actuator torques. Subsequently, a recursive variant of the

method is deduced for the case whereby the path data is

generated on-line, enabling on-line near time-optimal path

tracking. By means of an experimental test case, the results

and trade-offs in calculation time, delay and path duration

are compared for the batch and recursive variant of the log-

barrier method as well as for the exact, time-optimal solution

method presented in [6]. The test case considers the example

of a robotic manipulator performing a writing task, whereby

the path data is generated on-line by human demonstration.

The outline of this paper is as follows. Section II discusses

the basic time-optimal path tracking problem and summa-

rizes the discretized convex reformulation derived in [6].
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Subsequently, Section III presents a fast, approximate log-

barrier batch method to solve this nonlinear optimization

problem, while Section IV derives a recursive variant of the

batch method for on-line path tracking. Section V applies the

batch and recursive variant of the log-barrier method, as well

as the exact, time-optimal solution method presented in [6]

to the example of a six-DOF KUKA 361 industrial robotic

manipulator carrying out a writing task. Finally, conclusions

and future work are given in Section VI.

II. PROBLEM FORMULATION

This section introduces the problem formulation and

briefly recapitulates the discretized convex reformulation of

time-optimal path tracking problems, derived in [6]. Consider

an n-DOF robotic manipulator with equations of motion

τ = M(q)q̈ + C(q, q̇)q̇ + Fs(q)sgn(q̇) + G(q), (1)

where q, q̇, q̈ and τ ∈ Rn are the joint angles, their time-

derivatives and the actuator torques respectively, and where

M(q), C(q, q̇), Fs(q) and G(q) represent a mass matrix, a

matrix accounting for Coriolis and centrifugal effects, a ma-

trix of Coulomb friction torques and a vector accounting for

gravity and other joint angle dependent torques respectively.

Consider a path q(s), given in joint space coordinates,

as a function of a scalar path coordinate s ∈ [0, S]. The

path coordinate determines the spatial geometry of the path,

whereas the trajectory’s time dependency follows from the

relation s(t) between the path coordinate s and time t. Since

this paper considers time-optimal path tracking, it is assumed

that ṡ(t) ≥ 0 everywhere and ṡ(t) > 0 almost everywhere.

For the given path, the joint velocities and accelerations

can be rewritten using the chain rule as

q̇(s) = q′(s)ṡ, (2)

q̈(s) = q′(s)s̈ + q′′(s)ṡ2, (3)

where ṡ = ds
dt , s̈ = d2s

dt2 , q′(s) = ∂q(s)
∂s and q′′(s) = ∂2q(s)

∂s2 .

Substituting q̇(s) and q̈(s) based on equations (2)-(3), the

equations of motion (1) can be rewritten as [2]

τ (s) = m(s)s̈ + c(s)ṡ2 + g(s), (4)

where

m(s) = M(q(s))q′(s), (5)

c(s) = M(q(s))q′′(s) + C(q(s),q′(s))q′(s), (6)

g(s) = Fs(q(s))sgn(q′(s)) + G(q(s)), (7)

and where sgn(q̇(s)) is replaced by sgn(q′(s)) using equa-

tion (2) and the assumption that ṡ > 0 almost everywhere.
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A. Optimal control problem formulation

Similarly as in [2], [3], the time-optimal path tracking

problem subject to lower and upper bounds τ (s) and τ (s)
on the torques, can be expressed as

min
T,s(·),τ (·)

T =

∫ T

0

1dt, (8)

s.t. τ (t) = m(s(t))s̈(t) + c(s(t))ṡ(t)2 + g(s(t)), (9)

s(0) = 0 and s(T ) = S, (10)

ṡ(0) = ṡ0 and ṡ(T ) = ṡT , (11)

ṡ(t) ≥ 0, (12)

τ (s(t)) ≤ τ (t) ≤ τ (s(t)), (13)

for t ∈ [0, T ],

where T is the path duration, and ṡ0 and ṡT are the initial

and final velocity along the path, usually chosen equal to 0.

B. Discretized convex optimization problem formulation

As shown in [6], based on a nonlinear change of variables

a(s) = s̈ and b(s) = ṡ2, and a change of integration variable

in objective function (8)

T =

∫ T

0

1dt =

∫ S

0

1

ṡ
ds, (14)

problem (8)-(13) can be reformulated as a convex optimal

control problem in which time t does not appear anymore,

while s acts as a pseudo-time, b(s) as the differential state,

a(s) as the control input and τ (s) as algebraic state variable.

Using direct transcription [8], which involves discretizing

the path coordinate s on K + 1 grid points s0 = 0 ≤ sk ≤
S = sK and modeling the functions b(s), a(s) and τi(s) by

a finite number of variables bk, ak, τk
i , this convex optimal

control problem can be discretized to obtain a large sparse

optimization problem. Similar as in [6], the functions b(s),
a(s) and τi(s) are assumed to be piecewise linear, piecewise

constant, and piecewise nonlinear respectively, while the

variables bk = b(sk) are assigned on the grid points sk,

and ak = a(sk+1/2) and τk
i = τ (sk+1/2) are assigned in

between the grid points sk, where sk+1/2 = (sk + sk+1)/2.

Based on this transcription scheme, the following large scale

nonlinear optimization problem is obtained [6]:

min
a,b,τ

K−1
∑

k=0

2∆sk

√
bk+1 +

√
bk

, (15)

s.t. τ
k = m(sk+1/2)ak

+ c(sk+1/2)
(bk + bk+1)

2
+ g(sk+1/2), (16)

b0 = ṡ2
0 and bK = ṡ2

T , (17)

(bk+1 − bk) = 2ak∆sk, (18)

bk ≥ 0 and bK ≥ 0, (19)

τ (sk+1/2) ≤ τ
k ≤ τ (sk+1/2), (20)

for k = 0 . . .K − 1,

where objective function (15) is obtained by analytically

calculating (14) as a sum of integrals over [sk, sk+1] for

k = 0 . . .K − 1, ∆sk = sk+1 − sk, and a, b and τ denote

the K- and (K + 1)-dimensional vectors and the (n × K)-
dimensional matrix containing ak, bk and τ

k respectively.

III. LOG-BARRIER BATCH SOLUTION METHOD

By reformulating problem (15)-(20) as a second-order

cone program (SOCP) [9] and applying an SOCP solver

to the resulting problem as in [6], problem (15)-(20) can

be solved efficiently and up to a high numerical accuracy.

However, in practice, it is rarely necessary to determine

control inputs up to a very high accuracy and in such a way

that active bound constraints are satisfied up to equality [10].

Based on this consideration, a fast log-barrier based interior

point method is devised in [10], to obtain an approximate

solution to quadratic optimal control problems. This section

extends the method in [10] to the nonlinear non-quadratic

time-optimal path tracking problem (15)-(20).

A. Log-barrier optimization problem formulation

To simplify the log-barrier problem formulation, ak and

τ
k are first eliminated from problem (15)-(20), while b0 and

bK are replaced by ṡ2
0 and ṡ2

T , resulting in

min
b

K−1
∑

k=0

2∆sk

√
bk+1 +

√
bk

, (21)

s.t. bk ≥ 0, for k = 1 . . .K − 1, (22)

τ i(s
k+1/2) ≤ fk

c,i(b
k, bk+1) ≤ τ i(s

k+1/2), (23)

for k = 0 . . .K − 1 and for i = 1 . . . n,

where the variable vector b is reduced to a (K − 1)-
dimensional vector containing bk for k = 1 . . .K − 1 and

fk
c,i(b

k, bk+1) = mi(s
k+1/2)

(bk+1 − bk)

2∆sk
+ ci(s

k+1/2)

× (bk + bk+1)

2
+ gi(s

k+1/2). (24)

Subsequently, similar as in [10], problem (21)-(23) is

approximated by an unconstrained optimization problem, by

augmenting objective function (21) with log-barrier terms

associated with constraints (23), and omitting constraints

(22) and (23) as

min
b

K−1
∑

k=0

fk
b (bk, bk+1), (25)

where

fk
b (bk, bk+1) =

2∆sk

√
bk+1 +

√
bk

+
−κ

2nK

×
n

∑

i=1

log
[(

τ i(s
k+1/2) − fk

c,i(b
k, bk+1)

)

×
(

−τ i(s
k+1/2) + fk

c,i(b
k, bk+1)

)]

. (26)

Here, the tuning parameter κ, called the log-barrier param-

eter, is divided by the number of inequality constraints to

define problem (25) in a grid-independent way, while the

log-barrier terms for constraints (22) are omitted, since the
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terms 2∆sk−1
√

bk+
√

bk−1
and 2∆sk

√
bk+1+

√
bk

in objective function (25)

already act implicitly as barriers for bk ≥ 0.

B. Log-barrier batch solution method

Typical interior point methods determine a solution to

problem (21)-(23), by repeatedly solving problem (25) using

Newton’s method, for progressively decreasing values of

κ. However, similar as in [10], this paper solves problem

(25) using a single fixed κ instead, to rapidly obtain an

approximate solution b(opt) to problem (21)-(23).

Because of the convexity of problem (21)-(23), the glob-

ally optimal solution b(opt) to problem (25), for a given value

of κ, is found by solving the first-order optimality conditions

r(b) = 0, (27)

where element k of r(b) is given by

rk(b) =
∂fk−1

b (bk−1, bk)

∂bk
+

∂fk
b (bk, bk+1)

∂bk
. (28)

Starting from an initial guess b(0), the solution to equations

(27) is determined by successively linearizing equations (27)

around the current iterate b(j) and determining a search

direction ∆b(j) as the solution to the linear system,

r(b(j)) +
∂r(b)

∂b

∣

∣

∣

∣

b=b(j)

∆b(j) = 0, (29)

where element kl of the Hessian matrix
∂r(b)

∂b
is given by

∂rk(b)

∂bl
=

∂2fk−1
b (bk−1, bk)

∂bk∂bl
+

∂2fk
b (bk, bk+1)

∂bk∂bl
. (30)

Since rk(b) depends only on bk−1, bk and bk+1, the Hessian

matrix
∂r(b)

∂b
is tri-diagonal. This tri-diagonal structure can

be exploited to reduce the computational cost of solving (29)

to O(K) instead of O(K3) [10].

Subsequently, the updated iterate is calculated as b(j+1) =
b(j) + t∆b(j), where t is determined using a back-tracking

line search [9] and such that constraints (23) are satisfied [9].

As soon as
∥

∥r(b(j+1))
∥

∥ ≤ ǫabs, where ǫabs is a suitably

chosen threshold, the iterations are stopped and the iterate

b(j+1) is considered to be the solution to problem (25).

C. Initialization of the log-barrier batch solution method

Due to the elimination of ak and τ
k, it is not straightfor-

ward to find an initial guess b(0) which satisfies constraints

(23). A simple and inexpensive initialization approach con-

sists of choosing b(0) as the function values of a parabola

evaluated at the grid points sk, with values ṡ2
0 and ṡ2

T at

s = 0 and s = S, and with a parameter b. In other words,
(

bk
)(0)

= −b
(

sk/S
)2

+
(

ṡ2
T − ṡ2

0 + b
)

(sk/S) + ṡ2
0. (31)

Starting from some positive or negative value, b can be

progressively decreased, until b(0) satisfies constraints (23).

This approach is, although not guaranteed to work in general,

successful in many cases, and guaranteed to work in the

frequently encountered case where both ṡ2
0 and ṡ2

T are equal

to 0. In this case, b can be chosen as some positive value,

which is progressively decreased in absolute value until

constraints (23) are satisfied.

D. Influence of the log-barrier parameter

The choice of the log-barrier parameter κ affects the

quality of the approximate solution, as well as the calculation

time of the log-barrier method. To demonstrate the effect of

κ on the quality and optimality of the solution, the example

of the elbow manipulator, originally introduced in [3], is

considered and solved for five logarithmically spaced values

of κ, namely 0.03, 0.12, 0.43, 1.60 and 5.94. The top part of

Fig. 1 shows the evolution of the pseudo-velocity
√

b(s) = ṡ,

while the bottom part shows the evolution of the torques τ in

dashed lines for the different values of κ. Fig. 1 also shows

the time-optimal solution in full lines, calculated using the

exact SOCP method in [6]. For small κ, the log-barrier based

solution is close to the time-optimal solution, whereas for

increasing κ, the pseudo-velocity ṡ, as well as the torques

τ , become increasingly smoother.
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Fig. 1. The pseudo velocity ṡ (top) and the torques τ (bottom) as a function
of the path coordinate s.

Fig. 2 shows the influence of κ on the optimality of the

solution, represented by the path duration, normalized by

the optimal path duration obtained using the SOCP method.

The five values of κ between 0.03 and 5.94, corresponding

to the solution represented by the dashed lines in Fig. 1,

are also indicated. For small κ, for example κ ≈ 0.03, the

torques differ only slightly from the time-optimal solution

(Fig. 1, bottom), while the path duration is nearly equal to

the optimal path duration. For larger κ, for example κ ≈
0.12, the torques are already clearly different from the time-

optimal solution (Fig. 1, bottom), although they only result

in a 1.1% increase in path duration. For even larger κ, for

example κ > 1 the increase in path duration is more rapid

and grows beyond 10% of the optimal path duration.
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Fig. 2. The path duration as a function of the log-barrier parameter κ.

To illustrate the influence of κ on the calculation time, the

log-barrier method is applied to the example of a six-DOF

KUKA 361 industrial manipulator performing a complex

writing task, which is introduced in [6]. The solution is

calculated for different values of κ, which are logarithmically

spaced between 0.03 and 320. Fig 3 shows the calculation

time as a function of κ. For small κ, the log-barrier batch

method calculates a solution which is close to the exact,

time-optimal solution, and requires about 0.77 s to converge,

whereas for increasing κ, the calculation time reduces spec-

tacularly to 0.05 s and stabilizes around this value.
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Fig. 3. The calculation time as a function of the log-barrier parameter κ.

These examples illustrate that, although the use of a single

fixed κ results in an approximate solution, this solution can

be obtained in considerably less calculation time. Further-

more, compared to the exact, time-optimal solution obtained

using the SOCP method in [6], which is usually too agressive

for implementation on a real robotic manipulator without

incorporation of additional smoothness constraints or penalty

terms in the objective function [6], the solution obtained

using the log-barrier method is much more practicable, and

results in only a moderate increase in path duration. To

rapidly obtain a solution with smooth actuator torques, values

of κ around or larger than ten per cent of the optimal path

duration are typically a good choice1.

1As explained in [9], [10], κ is an upper bound for the suboptimality of
the solution, that is, the difference between the obtained path duration and
the optimal path duration.

IV. LOG-BARRIER BASED RECURSIVE SOLUTION

METHOD

The batch method presented in Section III allows to obtain

a solution very fast. However, it requires all path data to be

available in order to determine a solution. In applications

such as target interception and capturing, where the path data

is generated on-line based on incoming sensor information, it

may be desirable to optimize the path tracking based on the

already available path data, and have the robotic manipulator

track the optimized part of the path as soon as possible. This

is illustrated schematically in Fig. 4.
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Fig. 4. The data, optimization and execution flow.

As soon as new path data comes in (Fig. 4, a), the

path tracking optimization can be updated, while the robotic

manipulator continues to execute the optimized part of the

path (Fig. 4, b). Obviously, the path tracking optimization

should not adjust the executed part of the path (Fig. 4, c).

Compared to the previous solution, the addition of new path

data has a noticeable impact on the new solution only over

a certain horizon (Fig. 4, d). Specifically, the new solution

tends to differ considerably from the previous solution near

the end of the path, whereas closer to the start of the path,

the new solution closely resembles the previous solution.

This section derives a recursive variant of the solution

method in Section III, which takes into account these aspects

and which allows to plan and execute the path tracking

with almost zero delay. In addition, the initialization of

b is incremental, simple and guaranteed to work, while

the selection of the horizon over which the optimization is

updated, is carried out automatically.

A. Recursive log-barrier solution method

Consider a solution b(opt,L) to the approximate path track-

ing problem (25) for s ∈ [0, sL] with initial and terminal

constraint b0 = ṡ2
0 and bL = 0 respectively. Since the end

of the path is not known beforehand, the terminal constraint

bL = 0 is imposed to ensure that a safe termination of the

path is always possible, and ∆sk is chosen equal to 1 for

k ≥ 0. Starting from b(opt,L), the goal is to determine a

solution b(opt,L+1) for s ∈ [0, sL+1] with initial and terminal

constraint b0 = ṡ2
0 and bL+1 = 0 respectively.

To initialize b(0,L+1), the previous solution b(opt,L) and

some reasonable initial guess for (bL)(0,L+1) can be used.
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However, as the addition of a new point on the path may

result in large differences between b(opt,L) and b(opt,L+1)

near the end of the path, the last elements b(opt,L) are

usually not good initial guesses for the last elements of

b(opt,L+1). Therefore, solving for b(opt,L+1) using the method

in Section III will result in a large number of iterations,

which are costly, because for large L, the L-dimensional

iterates b(j,L+1) consists of a large number of variables.

Hence, instead of solving for b(opt,L+1) directly, a series

of optimization problems with an increasing horizon H is

solved, which require fewer and fewer, but costlier and

costlier iterations.

First, the horizon H is chosen small, for example H =
1. Subsequently, the first L − H elements of b(0,L+1) are

assumed to be fixed, and a solution for the last H elements

of b(opt,L+1) is determined using the method in Section III,

resulting in a large number – due to the quality of the initial

guess – of cheap – due to the small problem size – iterations.

The last H elements of this partial solution are then used,

as a new and better initial guess for a new optimization

problem with an increased horizon pH , where for example

p = 3, which can then be solved with costlier, but fewer –

due to the quality of the new initial guess – iterations. This

approach can be repeated until the horizon is expanded to

L, or, when the robotic manipulator has already executed R
points on the path, until the horizon is expanded to L − R.

Since the addition of a new point on the path has a smaller

effect further away from the end of the path, however, it is

not always necessary to expand H up to L or L−R. Namely,

as soon as the current solution b(opt,L+1) over a horizon H
satisfies the termination criterion over a horizon G > H , for

example2

∥

∥

∥

∥

∥

∥





r(L+1−G)(b
(opt,L+1))

. . .
r(L)(b

(opt,L+1)





∥

∥

∥

∥

∥

∥

∞

< ǫabs, (32)

it is sufficiently close to the solution over the entire horizon

L. Here, ‖·‖∞ is the ∞-norm or the maximum absolute

value over the elements of the vector. In this way, the

horizon can be automatically selected and limited in size. The

recursive algorithm described above is given schematically

by Algorithm 1 and illustrated in Fig. 4.

B. Initialization of the recursive log-barrier solution method

When a point is added to the path, a reasonable initial

guess (bL)(0,L+1) is required, while the other elements of

b(0,L+1) are initialized to the previous solution b(opt,L).

Since b(opt,L) is the solution to a smaller problem, constraints

(23) are guaranteed to be satisfied for k = 0, . . . , L − 2.

Moreover, since b(opt,L) is the solution for the approximate

path tracking problem (25) for s ∈ [0, sL], in combination

with the terminal constraint bL = 0, constraint (23) for k =

2In this paper, the ∞-norm ‖·‖
∞

is adopted as it is independent of the
size of the residual vector r(b) and it guarantees that all residuals are
sufficiently small.

Algorithm 1 The recursive algorithm.

initialize:

L = 2, p = 3
(bL−1)(0,L) = 1
while L ≤ K do

decrease (bL−1)(0,L) until b(0,L) is feasible

H = 1
repeat

determine b(opt,L) =

















(b1)(0,L)

. . .
(bL−H−1)(0,L)

(bL−H)(opt,L)

. . .
(bL−1)(opt,L)

















if H = L − R then

break

else

H = min(L − R, pH)
end if

until

∥

∥

∥

∥

∥

∥





r(L−H)(b
(opt,L))

. . .
r(L−1)(b

(opt,L)





∥

∥

∥

∥

∥

∥

1

< ǫabs

b(0,L+1) =

(

b(opt,L)

(bL−1)(opt,L)/2

)

get next point on the path

calculate m(sL+1/2), c(sL+1/2) and g(sL+1/2)
L = L + 1

end while

L − 1 is guaranteed to be satisfied with strict inequalities3.

Hence, it is always possible to initialize (bL)(0,L+1) to a

very small, but non-zero value such that (23) is satisfied

for k = L − 1. Furthermore, in combination with the new

terminal constraint bL+1 = 0, (bL)(0,L+1) can be chosen

small enough to also satisfy constraint (23) for k = L. Thus,

provided that a feasible solution to the previous problem for

s ∈ [0, sL] is available, a feasible initialization to the new

problem for s ∈ [0, sL+1] can always be found. Namely, it

suffices to initialize the last element of b(0,L+1) to some

reasonable value, for example (bL−1)(opt,L)/2, which is

progressively decreased, until constraints (23) are satisfied

for k = 0, . . . , L.

V. TEST CASE: WRITING TASK

To illustrate the practicality of the batch and the recursive

variant of the log-barrier method discussed in Sections III

and IV, they are applied to the example of a six-DOF

KUKA 361 industrial manipulator performing a writing task

(Fig. 5), whereby the path data is generated on-line by

a human demonstrator using a Wacom tablet. Using the

recursive algorithm explained in Section IV, the path tracking

is optimized on-line and the robotic manipulator attempts to

follow the human demonstrator as fast as possible.

3Since κ > 0 is chosen as a fixed value, equality of one of the constraints
(23) for the solution to problem (25) would imply an infinite optimal value
of function (25).
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Fig. 5. A KUKA 361 industrial manipulator performing a writing task.

The path tracking is illustrated for the case whereby

the demonstrator writes “Optec”4 on the Wacom tablet. As

soon as the demonstrator starts writing, the path tracking

optimization starts, while the robotic manipulator moves to

the corresponding position and starts tracking the demon-

strator. After writing “Op”, the demonstrator briefly pauses

the writing, allowing the manipulator to catch up. Subse-

quently, the demonstrator resumes the writing, while the

robotic manipulator tracks the human again. A video of

the demonstration and execution has been made available

online [11].

The path tracking solution obtained using the recursive

log-barrier method is compared to the solution obtained using

the batch variant, and to the exact, time-optimal solution

determined using the SOCP method in [6]. The pseudo-

velocity ṡ =
√

b(s) obtained using the different methods

is shown in the top part of Fig. 6, while the path time as a

function of the path coordinate is shown in the bottom part

of Fig. 6. Although in the implementation of the recursive

method ∆sk = 1 for k ≥ 0, the path coordinate is

normalized in Fig. 6 to compare the different methods.

Because the recursive method is not allowed to update the

part of the path that has already been executed by the

manipulator, it does not yield the same solution as the batch

variant of the method. When the human demonstrator is

far ahead of the manipulator, the solution produced by the

recursive method resembles the batch solution closely, for

example for s = 0.05 . . . 0.3 (Fig. 6, top), because there is

a long planning horizon. When the manipulator is close to

the human demonstrator, the manipulator moves with a low,

almost constant velocity along the path. This can be seen

in the top part of Fig. 6 around s = 0.3, which is where

the human slows down, and eventually pauses at around

s = 0.35. The closer the manipulator is to the human on

the path, the shorter the planning horizon, and the more

conservative the path execution, because the velocity at the

end of the path, which by definition coincides with the

position of the human on the path, is imposed to be zero.

As shown in the bottom part of Fig. 6, the SOCP method

realizes a shorter path duration than the log-barrier methods.

In turn, the log-barrier batch method realizes a shorter

path duration than the recursive variant, because the latter

4Acronym for “Optimization in Engineering Center”. More information
can be found on http://homes.esat.kuleuven.be/∼optec/.

is limited by the speed of the human demonstrator. For

example, around s = 0.3, where the human demonstrator

slows down, the path time of the recursive method increases

considerably compared to that of the batch method. Further-

more, when the human demonstrator stops, around s = 0.35,

the path tracking optimization does not receive new path

data, such that the path time simply increases. When the

human demonstrator starts moving and speeds up again, the

path times of the recursive and batch variant again progress

similarly.
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Fig. 6. The pseudo velocity ṡ (top) and the path time t (bottom) as a
function of the path coordinate s.

As shown in Fig. 7, the torques obtained using the

log-barrier methods are generally much smoother than the

torques obtained using the exact solution method. However,

when the human demonstrator writes very slowly, for exam-

ple between s = 0.27 . . . 0.34, new points are added to the

path very slowly and one by one. As a result, during this

phase, the robot repeatedly moves forward only one point

at a time, and waits for the next point on the path to be-

come available. The path tracking optimization causes these

incremental motions to be executed in a near time-optimal

fashion, thereby resulting in a behavior of the torques which

is somewhat comparable to bang-bang behavior, although

considerably less agressive.

For the considered test case, the duration of the human

demonstration is equal to 9.373 s. When solving the problem

(K = 1436) on an Intel Pentium M CPU running at

1.73 GHz, the SOCP method takes 4.900 s, the batch log-

barrier method 0.086 s and the recursive log-barrier method

0.937 s. Although the batch variant is much faster than

the recursive variant, it can only be applied after all path

data is collected. As a result, there is a considerable delay
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Fig. 7. The torques for the first three axes (blue: axis 1, green: axis 2, red:
axis 3) as a function of the path coordinate s.

between the start of the human demonstration and the end

of the path execution, which amounts to the sum of the

demonstration duration, the calculation time and the path

duration (Fig. 6, bottom), namely 9.373 + 0.086 + 8.004 =
17.463 s. Conversely, for the recursive method, the delay

between the start of the human demonstration and the start of

the path execution is negligible, with an average calculation

time per additional point on the path of 6 · 10−4 s, such

that the time between the start of the human demonstration

and the end of the path execution amounts only to the path

duration, namely 11.548 s (Fig. 6, bottom).

VI. CONCLUSIONS AND FUTURE WORK

Starting from a discretized convex reformulation of time-

optimal path tracking problems, which is presented in [6],

this paper presents a log-barrier batch solution method,

which allows to rapidly obtain an approximate solution with

smooth actuator torques. Compared to the exact solution

obtained using the SOCP method in [6], the solution obtained

using the log-barrier method is much more practicable, and

results in only a modest increase in path duration. Using the

log-barrier parameter, the smoothness of the torques can be

easily adjusted, while increasing the smoothness allows to

greatly reduce the calculation time.

To enable on-line path tracking, a recursive variant of

the log-barrier batch method is deduced, which takes into

account that the addition of new path data has an effect on

the previous solution only over a limited horizon.

Experimental results show that the log-barrier batch

method is much faster than the SOCP method presented

in [6], while the recursive method is faster than the SOCP

method, but slower than the batch method. The main advan-

tage of the recursive method with respect to the log-barrier

batch and SOCP method is that the path execution can start

right away, thus considerably reducing the time between the

start of the path generation and the end of the path execution.

Future work will focus on extending the log-barrier meth-

ods to deal with varying paths and to take into account

uncertainty on the parameters of the equations of motion

of the robotic manipulator. Furthermore, the zero-velocity

constraint at the end of the path will be replaced by a

less conservative velocity constraint, based on an estimate

of the speed of the human demonstrator, to improve the

performance of the on-line path tracking.
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