
A Finite Frequency Approach to Reliable H∞ Filtering for Linear
Continuous-Time Systems with Sensor Faults

Heng Wang, Guang-Hong Yang, He-Hua Ju and Li-Guo Zhang

Abstract— The paper deals with the reliable H∞ filtering
problem for linear uncertain continuous-time systems with
bounded disturbances. Different from the existing approaches,
the filter is designed in certain finite frequency ranges, which is
important in practice, since the full frequency approaches are
conservative to some extent for the case when the frequency
ranges of disturbances are known beforehand. With the aid
of the Generalized Kalman-Yakubovich-Popov (GKYP) lemma,
the filter design problem is formulated into a set of linear matrix
inequalities (LMIs). A numerical example is given to illustrate
the effectiveness of the proposed methods.

I. INTRODUCTION

Recently, the H∞ filtering approach, has received
considerable attention due to its wide applicability when
robustness is imposed, where the main objective is to
minimize the H∞ norm from disturbances to the estimation
error [1]-[3]. On the other hand, LMI techniques have been
applied to filtering problems [4]-[7], which can be solved
effectively using the LMI control toolbox. In [8]-[13], the
parameter dependent Lyapunov method is adopted, and
through introducing appropriate slack matrix variables, the
conservatism is reduced greatly. In [14]-[16], the mixed
H2/H∞ filtering problem is studied, where the trade-off
between the minimization of the filtering error variance and
the H∞ disturbance attenuation is established.
Note that all the above filtering approaches are based on
the assumption that the sensors can provide uninterrupted
signal measurement. In practice, however, contingent faults
are possible for all sensors in a system, which may result
in a large degree of filter performance degradation and,
more importantly, possible hazard. Therefore, the need for
“reliable” filter that ensure performance despite the presence
of sensor faults is fairly evident. Similar to the general
notation of “reliable” controllers in [17]-[19], the “reliable”
filter has been designed in [20].
In this paper, the reliable filter design problem is revisited,
different from the existing reliable filtering approach [20],
here the reliable H∞ filter is designed in finite frequency
frequency ranges, which is important in practice, since
sometimes the frequency ranges of disturbances are known
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beforehand, for these cases, designing a filter in the full
frequency domain may introduce conservatism to some
extent [21]. A set of performance indexes are derived to
reflect the design constraints on the transfer functions from
disturbances and faults to the estimation error. By satisfying
these performance indexes simultaneously, the disturbance
and fault effects on estimation error are minimized. The
recently proposed GKYP lemma [22] is used in this paper
to formulate these performance indexes into a set of LMIs.

II. PROBLEM FORMULATION

A. System model

Consider a stable linear uncertain system described by

ẋ(t) = Ax(t) + Bd(t)
y(t) = Cx(t) + Dd(t)
z(t) = Lx(t) (1)

where x(t) ∈ Rn is the state, x(0) = x0, d(t) ∈ Rnd is the
energy bounded disturbance input satisfying d(t)T d(t) ≤ d̄2,
y(t) ∈ Rm denotes the measured output, z(t) ∈ Rq is
the vector to be estimated. All matrices are of compatible
dimensions. Assume that All matrices A,B, C, D, L are
unknown but

M̄ :=




A B
C D
L 0


 ∈ Dc (2)

where Dc is a given convex bounded polyhedral domain
described by zp vertices. That is each uncertain matrix in this
domain may be written as an unknown convex combination
of zp given extreme matrices M̄1, M̄2, . . . , M̄zp such that

Dc := {M̄(λ) : M̄(λ) =
zp∑

l=1

λlM̄l, λl ≥ 0,

zp∑

l=1

λl = 1}

where M̄l =




Al Bl

Cl Dl

Ll 0


.

B. Fault model

In this paper, it is assumed that at least one sensor is fault-
free, and the following type sensor fault model is adopted.
Definition 1 (Sensor fault model): when sensor faults occur,
the sensor signals of systems are given by

ysi(t) = Fiy(t) + (I − Fi)fi, i = 0, 1, . . . , Ns (3)
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TABLE I
DIFFERENT FREQUENCY RANGES

LF MF HF
Ω |ω| ≤ $` $1 ≤ ω ≤ $2 |ω| ≥ $h

where Ns is the number of the total possible fault modes,
and

fi =
[
fi1 . . . fik . . . fim

]T

with f
ik

≤ fik ≤ f̄ik being zero or nonzero constant,
k = 1, . . . , m, and m is the dimension of y(t). The diagonal
matrices F ,

i s are defined as

Fi = diag
[
Fi1 . . . Fik . . . Fim

]
(4)

where Fik = 1 if the kth sensor is fault-free, and Fik = 0 if
the kth sensor gets faulty. Without loss of generality, assume
that F0 = I which means that all the sensors are fault-free.
Remark 1: In the above sensor fault model, if Fik = 0 and
fik = 0, it means that the kth sensor is of outage. If Fik = 0
and fik equals to certain nonzero constant, the kth sensor
is called to be “stuck” here which is similar to the stuck-
actuator fault as stated in [19][23]. If Fi = I , ysi(t) = y(t),
which corresponds to the fault-free case. Ns denotes the total
number of the possible fault modes.

C. Filter design

The filter is of the form:

˙̂x(t) = Af x̂(t) + Bfy(t)
ẑ(t) = Cf x̂(t) (5)

where the vector x̂(t) is the filter state vector, and Af , Bf ,
and Cf are real matrices of appropriate dimensions to be
determined. The order of the filter nf is restricted to be
equal to the system order n.
The dynamics of (1) and (5) can be rewritten as the following
augmented system considering the faulty cases as stated in
subsection 2.2:

ξ̇(t) = ĀFi
ξ(t) + B̄Fi

d(t) + B̄fi
(6)

e(t) = C̄ξ(t) (7)

where e(t) = z(t) − ẑ(t) is the estimation error, ξ(t) =[
x(t)T x̂(t)T

]T
, and

[
ĀFi

B̄Fi
B̄fi

C̄ 0 0

]

=




A 0 B 0
BfFiC Af BfFiD Bf (I − Fi)fi

L −Cf 0 0




Finite frequency reliable H∞ filtering problem: The finite
frequency reliable H∞ filtering problem can be formulated
as follows: Given a prescribed scalar γ > 0, β > 0, design
a filter of form (5) such that for all d(t) ∈ L2[0,∞),

the augmented error system (6)-(7) is stable and satisfies
performance indexes

‖Gedi(jω)‖∞ = sup
ω∈Ω

σmax(Gedi(jω)) < γ, (8)

‖Gfi
(jω)‖∞ = sup

ω=0
σmax(Gfi

(jω)) < β (9)

for i = 0, 1, . . . , Ns, respectively, where Gedi
(jω) =

C̄(jωI − ĀFi)
−1B̄Fi , Gfi(jω) = C̄(jωI − ĀFi)

−1B̄fi and
ω ∈ R, Ω is defined in Table I, where LF, MF, and HF stand
for low, middle, and high frequency ranges, respectively.
Remark 2: Here performance index (8) is used to minimize
the disturbance effects on estimation error in certain finite
frequency ranges. Performance index (9) is used to minimize
the fault effects on estimation error, where the frequency is
zero.

D. Preliminaries

The following lemmas are essential for later developments.
Lemma 1: (Generalized KYP Lemma [22]) Given system
(A, B, C, D), let a symmetric matrix Π ∈ R(n+nz)×(n+nz)

be given, the following statements are equivalent:
i) The finite frequency inequality

[
G(jω) I

]
Π

[
G(jω)∗

I

]
< 0, ∀ ω ∈ Ω (10)

where G(jω) = C(jωI−A)−1B+D is the transfer function,
ω is defined in Table I.
ii) There exist Hermitian matrices P, Q ∈ Hn satisfying Q >
0, and

[
Ā I
C̄ 0

]
Ξ

[
Ā I
C̄ 0

]∗
+

[
B̄ 0
0 I

]
Π

[
B̄ 0
0 I

]∗
< 0 (11)

where Ξ =
[−Q P

P $2
` Q

]
for low frequency range |ω| ≤

$`, Ξ =
[ −Q P + j$cQ
P − j$cQ −$1$2Q

]
, $c = ($1 + $2)/2

for middle frequency range $1 ≤ ω ≤ $2, and Ξ =[
Q P
P −$2

hQ

]
for high frequency range |ω| ≥ $h.

Lemma 2(Projection Lemma [24]): Let Γ,Λ,Θ be given.
There exists a matrix F satisfying ΓFΛ+(ΓFΛ)T +Θ < 0
if and only if the following two conditions hold

Γ⊥ΘΓ⊥
T

< 0, ΛT⊥ΘΛT⊥
T

< 0

III. FINITE FREQUENCY RELIABLE FILTER
DESIGN

A. LMI Conditions for performance index (8)

In this subsection, LMI conditions for performance index
(8) in different frequency ranges are formulated. Firstly, two
lemmas based on the GKYP lemma are formulated which
are essential for the main theorem of this paper.
Lemma 3: Let real matrices ĀFi ∈ Rn×n, B̄Fi ∈ Rn×nd ,

C̄ ∈ Rnz×n, symmetric matrix Π =
[
I 0
0 −γ2I

]
∈

R(n+nz)×(n+nz) be given, the system is given in (6)-(7),
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then the following statements are equivalent:
i) The finite frequency performance index

σmax(Gedi(jω)) < γ, ∀ ω ∈ Ω (12)

is satisfied, where Ω is defined in Table I.
ii) There exist Hermitian matrices P, Q ∈ Hn satisfying Q >
0, and

[
ĀFi

I
C̄ 0

]
Ξ

[
ĀFi

I
C̄ 0

]∗
+

[
B̄Fi

0
0 I

]
Π

[
B̄Fi

0
0 I

]∗
< 0

(13)

where Ξ is the same as defined in Lemma 1.
Proof. As Π =

[
I 0
0 −γ2I

]
, and the frequency range is

ω ∈ Ω, applying Lemma 1, it is immediate.
Remark 3: Lemma 3 gives an inequality condition to the
performance index (8). Note that if we set Q = 0 of (13),
using Schur complement and after some matrix manipula-
tion, (13) becomes[

ĀP + PĀ∗ + B̄B̄∗ PC̄∗

? −γ2I

]
< 0 (14)

which is equivalent to the full frequency H∞ norm condition.
The following lemma provides an alternative condition to

(13) by introducing a multiplier R through the projection
lemma, which is similar to that of [25]. Firstly, define
J ∈ R(2n+nz)×2n, H̄ ∈ R(2n+nz)×(nd+nz), and L̄ ∈
R(2n+nz)×n as

J :=




I 0
0 I
0 0


 , H̄ :=




0 0
B̄Fi

0
0 I


 , L̄ :=



−I
ĀFi

C̄




Lemma 4: Let Hermitian matrix variables P, Q ∈ Hn and
Q > 0, R ∈ Rn×(2n+nz). Let N be the null space of R. The
following statements are equivalent:
i) The condition in (13) holds and

N∗(JΞJ∗ + H̄

[
I 0
0 −γ2I

]
H̄∗)N < 0 (15)

ii) There exists W ∈ Rn×n such that

JΞJ∗ + H̄

[
I 0
0 −γ2I

]
H̄∗ + He(L̄WR) < 0 (16)

Proof. Notice that the null space of L̄ is
[
ĀFi

I 0
C̄ 0 I

]
, and

using Lemma 2, we have that ii) is equivalent to i).
To convert inequality (16) into convex, we introduce the

change of variables proposed in [7]. Let X, Y, U, V be
defined by

W =
[
X U

? X̂

]
,W−1 =

[
Y V

? Ŷ

]

X, Y ∈ Rnp×np , X̂, Ŷ ∈ Rnz×nz are all symmetric
matrices. Multiplying the first row of W by the first column
of W−1, we have XY +UV ∗ = I , and then define the new
variables[

M G
H 0

]
=

[
V 0
0 I

] [
Af Bf

Cf 0

] [
U∗X−1 0

0 I

]
(17)

denoting Z := X−1, and define

F :=
[
X−1 Y

0 V ∗

]
, F̄ := diag(F, F, I), (18)

we have[Ai Bi

C 0

]
:=

[
F ∗ĀFi

WF F ∗B̄Fi

C̄WF 0

]

=




ZA ZA ZB
Y A + GFiC + M Y A + GFiC Y B + GFiD

L−H L 0




(19)

W := F ∗WF =
[
Z Z
Z Y

]
(20)

Considering the vertexes of system matrices A,B, C, D,

define Mi =
[Ai Bi

C 0

]
, then we have that Mi belongs

to a given convex bounded polyhedral domain Dc, which is
defined as

Dc := {Mi(λ) : Mi(λ) =
N∑

l=1

λlMi
l, λl ≥ 0,

N∑

l=1

λl = 1}

Mi
l =

[Ai
l Bi

l

Ci
l 0

]
=




ZAl ZAl ZBl

Y Al + GFiCl + M Y Al + GFiCl Y Bl + GFiDl

L−H L 0




Theorem 1: Consider the error system (6) with
(A,B, C, D, L) being uncertain, let symmetric matrix

Π =
[
I 0
0 −γ2I

]
and a non-negative scalar $` be given.

Suppose R =
[
0 I 0

] ∈ Rn×(2n+nz), and n = 2np,
then there exists a filter (5) with nf = np satisfying the
specification

σmax(Gedi
(jω)) < γ, ∀ |ω| ≤ $` (21)

if there exist matrix variables Z, Y,M,G, H , and Hermitian

matrix variables Pl =
[
P1l P2l

? P3l

]
,Ql =

[
Q1l Q2l

? Q3l

]
> 0

satisfying the following LMIs



−Q1l −Q2l P1l − Z P2l − Z
? −Q3l P ∗2l − Z P3l − Y
? ? Φ1l Φ2l

? ? ? Φ3l

? ? ? ?
? ? ? ?

0 0
0 0

(L−H)∗ −ZBl

L∗ −Y Bl −GFiDl

−γ2I 0
? −I




< 0, l = 1, . . . , N (22)

where Φ1l = $2
` Q1l+ZAl+(ZAl)∗,Φ2l = $2

` Q2l+ZAl+
(Y Al + GFiCl + M)∗,Φ3l = $2

` Q3l + (Y Al + GFiCl) +
(Y Al + GFiCl)∗.
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Proof. Applying Lemma 3 and Lemma 4, it follows that
inequality (16) gives a sufficient condition to performance
index (21). Since the frequency belongs to the low frequency
range, inequality (16) multiplied to the left by the full
rank matrix F̄ ∗ and to the right by F̄ provides the fol-

lowing inequality J

[−Q P
P $2

lQ
]

J∗+H
[
I 0
0 −γ2I

]
H∗+

He(LR) < 0 where P := F ∗PF,Q := F ∗QF,H :=


0 0
Bi 0
0 I


 ,L :=



−W
Ai

C


, then we have



−Q P −W 0
? $2

`Q+Ai +Ai∗ C∗
? ? −γ2I


 +




0
Bi

0







0
Bi

0



∗

< 0

(23)

Using Schur complement and after some substitution of the
corresponding matrices, it follows that (23) is equivalent to




−Q1 −Q2 P1 − Z P2 − Z
? −Q3 P ∗2 − Z P3 − Y
? ? Φ1 Φ2

? ? ? Φ3

? ? ? ?
? ? ? ?

0 0
0 0

(L−H)∗ −ZB
L∗ −Y B −GFiD
−γ2I 0

? −I




< 0 (24)

where

Φ1 = $2
` Q1 + ZA + (ZA)∗,

Φ2 = $2
` Q2 + ZA + (Y A + GFiC + M)∗,

Φ3 = $2
` Q3 + (Y A + GFiC) + (Y A + GFiC)∗

which means that inequality (24) gives a sufficient condition
to performance index (21).
Note that inequality (22) is linear on P1l, P2l, P3l, Q1l, Q2l,
Q3l, Al, Bl, Cl, Dl, multiply each inequality in (22) by
the uncertain parameter λl and then evaluate the sum from
l = 1, . . . , N , we have




−Q1(λ) −Q2(λ) P1(λ)− Z P2(λ)− Z
? −Q3(λ) P2(λ)∗ − Z P3(λ)− Y
? ? Φ1(λ) Φ2(λ)
? ? ? Φ3(λ)
? ? ? ?
? ? ? ?

0 0
0 0

(L−H)∗ −ZB(λ)
L∗ −Y B(λ)−GFiD(λ)
−γ2I 0

? −I




< 0 (25)

with

P1(λ) :=
N∑

l=1

λlP1l, P2(λ) :=
N∑

l=1

λlP2l,

P3(λ) :=
N∑

l=1

λlP3l, Q1(λ) :=
N∑

l=1

λlQ1l,

Q2(λ) :=
N∑

l=1

λlQ2l, Q3(λ) :=
N∑

l=1

λlP3l,

Φ1(λ) = $2
` Q1(λ) + ZA + (ZA)∗,

Φ2(λ) = $2
` Q2(λ) + ZA + (Y A + GFiC + M)∗,

Φ3(λ) = $2
` Q3(λ) + (Y A + GFiC) + (Y A + GFiC)∗

Since inequality (25) is nothing but (24), we can conclude
that if each inequality in (22) holds, condition (24) is then
satisfied, which completes the proof.
Similar to Theorem 1, the following three corollaries provide
LMI conditions for performance index (8) in middle/high
frequency range and for performance index (9), respectively.
Corollary 1: Consider the error system (6) with
(A,B, C, D, L) being uncertain, let symmetric matrix

Π =
[
I 0
0 −γ2I

]
and scalars $1, $2 be given. Suppose

R =
[
0 I 0

] ∈ Rn×(2n+nz), and n = 2np, then there
exists a filter (5) with nf = np satisfying the specification

σmax(Gedi
(jω)) < γ, ∀ $1 ≤ ω ≤ $2 (26)

if there exist matrices Z, Y,M, G,H , and Hermitian matrices

Pl =
[
P1l P2l

? P3l

]
,Ql =

[
Q1l Q2l

? Q3l

]
> 0 satisfying the

following LMIs



−Q1l −Q2l P1l + j$cQ1l − Z
? −Q3l P2l + j$cQ2l − Z
? ? Φ1l

? ? ?
? ? ?
? ? ?

P2l + j$cQ2l − Z 0 0
P3l + j$cQ3l − Y 0 0

Φ2l (L−H)∗ −ZBi

Φ3l L∗ −Y Bi −GDi

? −γ2I 0
? ? −I




< 0

(27)

for l = 1, . . . , N , where $c = ($1 + $2)/2,Φ1l =
−$1$2Q1l + ZAl + (ZAl)∗,Φ2l = −$1$2Q2l + ZAl +
(Y Al + GCl + M)∗,Φ3l = −$1$2Q3l + (Y Al + GCl) +
(Y Al + GCl)∗.

Proof. Following the same lines for that of Theorem 1, it
is immediate.
Corollary 2: Consider the error system (6) with
(A,B, C, D, L) being uncertain, let symmetric matrix

Π =
[
I 0
0 −γ2I

]
and a positive scalar $h be given.

Suppose R =
[
I −I 0

] ∈ Rn×(2n+nz), and n = 2np,
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then there exists a filter (5) with nf = np satisfying the
specification

σmax(Gedi
(jω)) < γ, ∀ |ω| ≥ $h (28)

if there exist matrices Z, Y,M, G,H , and Hermitian matrices

Pl =
[
P1l P2l

? P3l

]
,Ql =

[
Q1l Q2l

? Q3l

]
> 0 satisfying the

following LMIs



Q1l − Z − Z∗ Q2l − Z − Z∗ P1l + Z + (ZAl)∗

? Q3l − Y − Y ∗ P ∗2l + Z + (ZAl)
? ? Φ1l

? ? ?
? ? ?
? ? ?

Φ2l (L−H)∗ 0
Φ3l L∗ 0
Φ4l −(L−H)∗ −ZBl

Φ5l −L∗ −Y Bl −GDl

? −γ2I 0
? ? −I




< 0, l = 1, . . . , N

(29)
where Φ1l = −$2

hQ1l − ZAl − (ZAl)∗,Φ2l = P2l + Z +
(Y Al +GCl +M)∗,Φ3l = P3l +Y +(Y Al +GCl)∗,Φ4l =
−$2

hQ2l − ZAl − (Y Al + GCl + M)∗,Φ5l = −$2
hQ3l −

(Y Al + GCl)− (Y Al + GCl)∗.
Proof. Following the same lines for that of Theorem 1, it

is immediate.
Corollary 3: Consider the error system (6) with
(A,B, C, D, L) being uncertain, let symmetric matrix

Π =
[
I 0
0 −β2I

]
be given. Suppose R =

[
0 I 0

] ∈
Rn×(2n+nz), and n = 2np, then there exists a filter (5) with
nf = np satisfying the specification

σmax(Gfi(jω)) < β, for ω = 0 (30)

if there exist matrix variables Z, Y,M,G, H , and Hermitian

matrix variables Pl =
[
P1l P2l

? P3l

]
,Ql =

[
Q1l Q2l

? Q3l

]
> 0

satisfying fi ∈ {f ik
, f̄ik} and the following LMIs




−Q1l −Q2l P1l − Z P2l − Z
? −Q3l P ∗2l − Z P3l − Y
? ? Φ1l Φ2l

? ? ? Φ3l

? ? ? ?
? ? ? ?

0 0
0 0

(L−H)∗ 0
L∗ −G(I − Fi)fi

−β2I 0
? −I




< 0 (31)

for l = 1, . . . , N , where Φ1l = ZAl +(ZAl)∗,Φ2l = ZAl +
(Y Al + GFiCl + M)∗,Φ3l = (Y Al + GFiCl) + (Y Al +
GFiCl)∗.

Proof. Following the same lines for that of Theorem 1,
it can readily be formulated that (31) provides a sufficient
condition for performance index (30), note that inequality
(31) is linear dependent on fi, only vertices of fi(i.e.,
f

ik
, f̄ik) need to be checked, this completes the proof.

B. Stability conditions

In this subsection, conditions for the stability of the
augmented error system (6) are formulated.
Lemma 5: Given system (6) with matrices (A,B, C, D, L)
being uncertain, ĀFi is Hurwitz if and only if there exist

matrix variables W =
[
Z Z
Z Y

]
and Psl =

[
Ps1l Ps2l

? Ps3l

]
>

0 such that, for l = 1, . . . , N




−2Z −2Z P1l + (ZAl)∗

? −2Y P ∗2l + (ZAl)∗

? ? −Ps1l

? ? ?
? ? ?
? ? ?

P2l + (Y Al + GFiCl + M)∗ Z Z
P3l + (Y Al + GFiCl)∗ Z Y

−Ps2l 0 0
−Ps3l 0 0

? −Ps1l −Ps2l

? ? −Ps3l




< 0 (32)

Proof. Applying Theorem 3.1 of [26], following the same
lines for that of Theorem 1, it is immediate.
Combining Theorem 1, Corollaries 1-3 and Lemma 5, the
matrix variables that needed for determining the finite fre-
quency filter can be obtained as follows. Given β, solve the
following optimization problem:

min γ

s.t. (22), (31), (32), i = 0, 1, . . . , Ns, l = 1, . . . , N

or (27), (31), (32), i = 0, 1, . . . , Ns, l = 1, . . . , N

or (29), (31), (32), i = 0, 1, . . . , Ns, l = 1, . . . , N
(33)

for low/middle/high frequency ranges, respectively.
Then the filter parameters can be obtained as follows. Let

U and V be any factor such that V U = I − Y X where
non-singularity of I − Y X can be assumed without loss of
generality due to the strictness of the LMIs. Then the filter
parameters (Af , Bf , Cf ) can then be obtained by solving
(17) as following

[
Af Bf

Cf 0

]
=

[
V 0
0 I

]−1 [
M G
H 0

] [
U∗X−1 0

0 I

]−1

(34)

IV. NUMERICAL EXAMPLE

This section gives a numerical example to illustrate the
effectiveness of our approach. Consider the following system
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TABLE II
COMPARISON OF FILTERING PERFORMANCES OBTAINED BY DIFFERENT

METHODS

Method Given Given Given Full frequency
|ω| ≤ 0.32 |ω| ≤ 0.55 |ω| ≤ 1 approach

γ 0.4553 0.4601 0.48 0.6116

model

ẋ(t) =



−1 0 0.4
0 −0.8 0.2 + ρ

−0.1 −0.6 −0.5


x(t) +




0
0
1


 d(t)

y(t) =
[
0 1 0
0 0 1

]
x(t) +

[
1
0

]
d(t)

z(t) =
[
1 1 0

]
x(t) (35)

where ρ is the uncertain parameter satisfying 0 ≤ ρ ≤ 0.4,
and the sensor fault fi as defined in (3) is assumed to be
0 ≤ fi ≤ 0.3, i = 1, 2.

Without loss of generality, consider the low frequency fil-
tering problem, the middle/high frequency filtering problems
are similar. Assume that the frequency range of disturbance
is |ω| ≤ 0.55, given β = 0.63, solve the optimization
problem (33), the disturbance attenuation performance index
γ is obtained as γ = 0.46.

Applying the existing full frequency approach, given the
same β = 0.63, we get γ = 0.61.

In Table II, the finite frequency filtering approach is
compared with the the existing full frequency approach,
which shows that the finite frequency approach proposed in
this paper can receive better results.

V. CONCLUSIONS

In this paper, the problem of finite frequency reliable H∞
filtering problem has been investigated, which is important in
practice, since the full frequency approaches are conservative
to some extent for the case when the frequency ranges
of disturbances are known beforehand. Additionally, our
filtering approach is valid for both normal and sensor faulty
cases. Through solving a set of LMIs, the parameters of the
H∞ filter can readily be obtained. The numerical example
has illustrated the effectiveness of the proposed approach.
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