
Distributed decision making for task switching via

a consensus-like algorithm

Jay Wagenpfeil, Adrian Trachte, Takeshi Hatanaka, Masayuki Fujita, Oliver Sawodny

Abstract—We propose a consensus-like algorithm for switch-
ing from a first to a second task in Multi-Agent Systems. The
task-switch is supposed to occur synchronously for all agents
after each single agent has finished the first task, because
the two tasks may influence each other. As every agent has
only local information about its own task-state, the proposed
algorithm is used to determine the state of the whole network.
With this additional information each agent can decide when
to safely switch the task. In this paper, the first task is a
distributed exploration control law, while the second task is a
distributed coverage control law where the goal is to maximize
the probability of detecting certain events. By exploring the
mission space before switching to the coverage task, the overall
probability of detecting those events is increased. For the
exploration task a r-limited voronoi cell based algorithm is used
and for the coverage task a gradient based control law.

Index Terms—multi-agent networks, distributed algorithms,
coverage control, exploration, synchronous taskswitch, decision
making

I. INTRODUCTION

Multi-Agent Systems are systems in which several inter-

acting intelligent agents pursue some set of goals or perform

some set of tasks. These could be motion coordination tasks

as proposed in [1], like rendezvous [2] [3], deployment [4],

coverage [4] [5] or flocking control [2] [6]. For some goals it

is of interest to switch between several tasks due to changing

conditions or a goal which can be reached more easily by

switching from one task to another. This could be for example

a group of agents, which have to move to a certain position,

using flocking control for the movement, and switch then to

a coverage or exploration task when they reached their final

destination. Another goal would be to first explore the area, to

gather relevant information about the environment and then

switch to a coverage task, to cover regions of high interest.

We will focus upon a taskswitch from exploration to

coverage in this paper, nevertheless the algorithm can be

used also for any other taskswitch matching the later stated

assumptions. The taskswitching problem is motivated by the

occurrence of local maxima in the coverage control problem

defined by Li and Cassandras [7]. They introduced a sensor

network of agents, equipped with communication devices

and a single base station as a central data processing unit

with the goal to maximize the detected events that take

Jay Wagenpfeil, Adrian Trachte and Oliver Sawodny are with the Institute
for System Dynamics, University of Stuttgart, 70569 Stuttgart, GERMANY,
jay.wagenpfeil@isys.uni-stuttgart.de

Takeshi Hatanaka and Masayuki Fujita are with the Department of
Mechanical and Control Engineering, Tokyo Institute of Technology, Tokyo
152-8552, JAPAN, hatanaka@ctrl.titech.ac.jp

place randomly in the mission space. This coverage control

problem is formulated as a cost function that describes the

expected event detection probability over the whole mission

space. To maximize the joint event detection probability,

Li and Cassandras developed a gradient based algorithm

which requires only local information that every agent is

able to gather. As the distributed control algorithm uses local

gradients to compute the movement of the agents, it is only

possible to cover local maxima while other regions with high

event frequency may not be covered. To increase the coverage

and the event detection probability over the whole mission

space, it is reasonable to explore the mission space in a

first task and then switch the task to coverage as the second

task. Thereby, all regions with a high density function will

be discovered and, after switching the task, covered by the

sensing agents by using the gradient based algorithm.

In this paper we will introduce a consensus-like algorithm

and exemplify its usage by realizing a taskswitch from

exploration to coverage control. The taskswitch is supposed

to occur when the first task is finished, which is generally a

global condition, as the switch from exploration to coverage

should happen after all agents finished exploring the mission

space. But as agents can gather information only locally, by

sensing or communicating with their neighbors, it is neces-

sary to achieve a taskswitch consenus of all agents by using

only the provided local information. For the exploration task

a r-limited voronoi partition algorithm is used as proposed

in [1] and [6], where all agents move to the centroid of their

voronoi partition, and for the coverage task the gradient based

control law proposed by Li and Cassandras [7] is used.

II. MOTIVATION AND PROBLEM SETUP

Fig. 1: Model of the agent

The mission space is a simply connected area Ω ⊂ R
2,

wherein a network of n agents with the distinct identifiers

I = {1, 2, . . . , n} exists. The position of each agent i is

given by si ∈ Ω and all agents positions are described by

the vector s = [s1, s2, . . . , sn]. Agent i’s dynamics is defined

2009 American Control Conference
Hyatt Regency Riverfront, St. Louis, MO, USA
June 10-12, 2009

FrC19.6

978-1-4244-4524-0/09/$25.00 ©2009 AACC 5761

by the simple differential equation ṡi = ui, with ui being the

input.1 One of the agents is fixed and denoted as the base

station. A feedback-controller (FBC) makes the agent follow

reference trajectories that are generated by a task-dependent

cooperative control law. The task-state variable zi indicates

if agent i is still working on the first task (zi = 0) or has

already finished it (zi = 1). The consensus variable xi is used

to determine the task-state of the whole network. The task

switch is controlled by a dedicated module that is located in

the outermost layer of the agent model, which can be seen

in figure 1.

A. Exploration Task

For the exploration task an algorithm based on r-limited

Voronoi partitions is used as proposed in [4]. The r-limited

Voronoi partition of an agent i is defined by Vi = {q ∈
Ω | ‖q − si‖ ≤ min(‖q − sj‖ , Rvc) ∀ j ∈ I}, where Rvc is

the radius. The derivative of the multi-center function HC(s)
defined in [4] with respect to each agents position si can be

computed, with f(q) = −q2 as performance function, as:

∂HC

∂si

(s) = 2

∫

Vi

(q − si)φ(q)dq

= 2mVi
(cmVi

− si) ,

(1)

where φ(q) is the in [4] defined density function, and mVi
and

cmVi
are the mass and the center of mass of the Voronoi cell

with respect to the density function φ(q). But as we are in our

exploration task only interested in a maximum deployment

of the agents, we set the density function φ(q) = 1 ∀q ∈ Ω.

Therefore the terms mVi
and cmVi

equal now the area of the

Voronoi partition and the center of area. With this we can

define the input for the exploration task as:

ui,e =
∂HC

∂si

= 2mVi
(cmVi

− si) + ui,ktf (2)

ui,ktf is a term to guarantee connectivity (see the Appendix).

The convergence of agents with the simple dynamics ṡi =
ui, and the exploration task input ui,e with ui,ktf = 0 is

proven in [4]. We assume that the agents can deploy over

the whole area Ω without losing connectivity and that the

term ui,ktf does therefore not interfere with the convergence

of the exploration task.2 To determine if the exploration has

been finished, the threshold ǫexp is defined and each agent i
sets its task-state variable zi according to

zi =

{

0 if ‖ui,e‖ > ǫexp

1 if ‖ui,e‖ ≤ ǫexp .
(3)

1In many real-world setups non-holonomic motion constraints appear. For
the sake of generality, in this paper we consider only a simple motion
dynamics. A simple approach is to introduce an additional controller
between the feedback-controller and the cooperative-control module, which
locally compensates the non-holonomically constrained system such that the
reference trajectory for a single integrator model can be applied.

2In the case that the mission space cannot be completely explored without
losing connectivity, a steady state formation of the agents is reached, which
is the maximum deployment within the connectivity constraints.

B. Coverage Task

For the coverage task, the agent will follow a gradi-

ent, computed to maximize the cost function HCS(s) =
∫

Ω
E(x)P (x, s)dx 3 introduced by Li and Cassandras [7].

The cost function describes the joint-event detection proba-

bility with E(x) defining the event density function, which is

the frequency with which random events take place (Hz/m2).

P (x, s) is the probability that an event is detected by the

sensor network and is defined as

P (q, s) = 1 −
n

∏

i=1

[1 − pi(q)] , (4)

where pi(q) is the probability of each agent to detect an

event. With the assumption, that the detection probability to

detect events of an agent pi(q) is equal to zero if the range

δi(q) = ‖q − si‖ is bigger than the maximum sensing range

Rsens, it is possible to define Ωi = {q | δi(q) ≤ Rsens}, which

is the sensing area of agent i, and maximizes the cost function

by using the following local gradient:

∂HCS

∂si

=

∫

Ωi

Φ(q)
∏

k∈Ni\{i}

[1 − pk(q)]
dpi(q)

dδi(q)

si − q

δi(q)
dq (5)

Note that this means that each agent i must be able to locate

its neighbor agents at least within the distance 2Rsens. Locat-

ing the agents is independent from sensing the environment

and thus not limited to the sensing range of the detector. With

(5) the input for the coverage task can be defined as:

ui,c = ω1
∂HCS

∂si

− ω2
∂HCOM

∂si

+ ui,ktf (6)

where ω1 and ω2 are weighting factors. G is an additional

communication cost term, which can be found in [7] and

ui,ktf is a term to guarantee connectivity (see the Appendix).

C. Communication

Each agent is equipped with a communication device that

enables it to establish a bi-directional communication with

its neighbors Ni = {j ∈ I : ‖si − sj‖ < Rcom} that are

the agents within communication range Rcom. Note that this

implies that each agent has itself as a neighbor. To evaluate

the task-state of the network, agents communicate with all

neighboring agents during the exploration task. In discrete

time, this communication topology can be modelled at each

time-step k by the undirected unweighted symmetric graph

G(k) = (V, E(k)), with the vertices V = I and the possibly

time-varying set of edges E(k) ⊆ I ×I which also includes

self-loops. The pair (i, j) is an edge of the graph if and only

if agent i is a neighbor of agent j (and vice versa). In every

time-step we can define the adjacency matrix A(k) = [aij(k)]
to the graph G(k), which is a symmetric n×n matrix. For the

elements aij(k) holds that aij(k) = 1 if (i, j) ∈ E(k), and

aij(k) = 0 otherwise. Additionally we define di(k) = ‖Ni‖,

which is the number of neighbors of each agent in each time

3Note that in [7], Li and Cassandras use R(x) instead of E(x) for the event
density function.

5762

step, and the matrix D(k), which is a diagonal matrix with

di(k) as entries.

There is a secondary, overlying communication protocol

that computes the cheapest path (with respect to the commu-

nication cost) from each agent to the base station. The thereby

formed communication graph has a tree structure and can

thus not only be used to minimize the communication costs

during the coverage task but also to ensure connectivity of the

network during both tasks. A detailed study of shortest path

searches in dynamically changing networks and the design

of a connectivity maintenance control law can be found in

diploma thesis of Trachte [8].

Please note that we do not take physical properties of the

communication medium into account. Particularly the im-

plementation of wireless communication protocols requires

the consideration of issues like interference and other radio

disturbances.

III. ALGORITHM

In this section we will present the algorithm that will

control and synchronize the taskswitch of each agent in the

network.

Assumption 1: There exists a time k0 such that A(k) =
A(k0) for all k ≥ k0. That means there exists a time after

which the communication topology is fixed. This assumption

can be motivated by the given problem setup: the task should

be switched after all agents have finished the exploration task,

i.e. when all agents stopped their movement. Neglecting any

disturbance effects on communication, including failure of

single agents, it is possible to assume that the communication

topology remains fixed, if the agents do not move.

If a change in topology occurs between the time-step k
and the following time-step k + 1, then A(k + 1) 6= A(k)
or equivalently, the set Itc(k) = {j : Nj(k + 1) 6= Nj(k)}
is non-empty. For those agents i ∈ Itc(k) that have different

neighbors at time-steps k and k + 1, we set in step k the

task-state zi(k) = 0.

Assumption 2: There exists a time k1 ≥ k0 such that

z(k) = 1, respectively Z(k) = I , for all k ≥ k1. This means

there exists a time after which all agents in the network have

completely finished the first task.

It is furthermore assumed, that the number of agents in

the network and the communication range are chosen such

that the agents can deploy over the whole mission space.

Moreover it is required that connectivity is maintained at all

times, this problem is left to the implementation of the control

tasks. With these assumptions we can state the algorithm for

the synchronized task-switch. The algorithm is derived from

a first-order linear consensus protocol and is for each agent

i given by

xi(k + 1) = zi(k) ·
1

di(k) + 1
·

∑

j∈Ni(k)

xj(k) + 1

 . (7)

The value of the consensus variable xi of each agent i is in

the next step set to the average of its task-state variable and

begin step�

receive x(k) from neighbors;

compute moveme t move;}{ n ;

set task-state zi(k);

if topology changed then

 end if

reset zi(k);

compute x (k+1);i

send xi(k+1) to neighbors;

end step

Fig. 2: Sequence of operations within one step in a pseudo code.

all its neighbors consensus variables if the agent has finished

the first task, or to 0 otherwise. At the end of each step, agents

send a message to all their neighbors telling them thereby the

state of their consensus variable; these messages are received

and processed in the beginning of the next step. While this

implies some kind of synchrony between the agents, this is

not subject of this paper and might be a task for a underlying

layer of the communication protocol. A formal description of

the complete sequence of operations within one step is shown

in figure 2.

For the complete multi-agent network, the update rule for

the next step is given by

x(k + 1) = Z(k) · (D(k) + I)−1 · [A(k)x(k) + 1] . (8)

Each agent will use its consensus variable to determine the

task-state of the whole network. If not all agents have finished

the first task or there are changes in topology, i.e. if z 6= 1,

then xi(k) < 1. If all agents finished the first task and the

communication topology remains fixed, then the value of the

consensus variable of each agent will converge to 1.

A. Convergence of the algorithm

The following lemma will state the convergence of the

algorithm. An elaborate proof can be found in the diploma

thesis by Wagenpfeil [9]. Related studies of other linear

consensus algorithms can be found in the relevant literature.

Lemma 1: Under the stated assumptions, the algorithm

will converge such that for all agents i ∈ I the consensus

variable xi(k) → 1 for k → ∞, k ≥ k1.

B. Threshold design for switching the task

The presented algorithm will let the consensus variable

of each agent converge to 1, when the exploration task

is finished. As the convergence is asymptotical, the actual

switch from the first to the second task will be performed

when the value of the consensus variable is sufficiently close

to one. To avoid premature task-switches, a threshold for

switching the task must be defined, that is larger than all

consensus values that occur at any time while the first task

has not yet been finished.

Lemma 2: An upper bound on the value of the consensus

variables at any time in a network of n agents is given by the

maximal steady-state value ‖x̄∗‖∞ in a worst-case scenario

5763

with fixed chain topology, where all agents but one at the

end of the chain have finished the exploration task.

For an elaborate proof of this lemma please refer to [9].

By constructing such a network, it is possible to compute the

worst case steady-state consensus values for a static network.

At steady state, the system is described by

x̄∗ = Z̄∗ · (D̄∗ + I)−1 · (Ā∗x̄∗ + 1) , (9)

where Z̄∗ = diag([1 1 1 · · · 1 0]T) and D̄∗ =
diag([3 4 4 · · · 4 3]T) are diagonal matrices, and Ā∗ is

a tridiagonal matrix with ones on the main and the two

secondary diagonals. Since it is already known that x̄∗
n = 0,

the last equation – respectively the last row and column of

each matrix and the last element of each vector – can be

omitted and it follows

(D̄[1 ... n−1] +I[1 ... n−1]− Ā∗
[1 ... n−1])x̄

∗
[1 ... n−1] = 1[1 ... n−1] .

Due to the properties of the matrices A and D, this equation

can be solved and the threshold for switching the task is

given by δ = ‖x∗‖∞ = x̄∗
1.

Theorem 1: Under Assumption 1, the following state-

ments are true. If xi(k) > δ for some i, then zj(k) = 1 ∀ j ∈
I, in other words the first task is completed. If zj(k) 6= 1
for some j ∈ I, then xi(k) ≤ δ ∀ i ∈ I.

The proof of this Theorem follows straightly from

Lemma 2.

The analysis so far assumed a more or less constant input

– i.e. the values of the task-state variables – before the

task-switch occurs. The analysis of an arbitrary dynamically

changing input is more challenging. For networks with more

than two agents the authors could not find an input that

destabilizes the system such that the consensus variables take

values larger than the proposed maximum steady-state value

for a constant input. Unfortunately, a proof that such an input

does not exist could not be found. Moreover the case of

malicious or faulty agents that generate arbitrary input values

should be considered, algorithms to detect and remove such

agents are discussed in [10].

IV. TIME COMPLEXITY

Lynch [11] defines the notion of time complexity, which

is basically the time that an algorithm needs to perform. In

our setup where we want to switch to the coverage task after

finishing the exploration task, a sensible definition of the time

complexity could be as follows: the time complexity TC is

the time from when the last agent finished the exploration

task until the last agent starts with the coverage task.

Agents that start with the coverage task may interfere with

neighboring agents, that have finished the exploration task

but not yet switched to the coverage task. The movement

might cause those neighbors to resume the exploration task.

To avoid this, agents that switch the task to coverage have

to wait a certain time ∆ksafety to ensure that all agents

will have switched to the coverage task during this time.

Setting ∆ksafety = TCwc(n) to the maximum value of the

time complexity TCwc(n) will guarantee, that no agent starts

performing the coverage task before the last agent in the

network has switched to the coverage task.

Theorem 2: An upper bound on the time-complexity

TCwc(n) is given by

TCwc(n) =
ln(1 − δ(n))

ln
(

n
n+1

) , (10)

where δ(n) is the threshold of the task-switch as designed in

section III-B depending on the number of agents n.

Proof: Remember that k1 is the time-step when the last

agent finishes the exploration task, i.e. z(k1 − 1) 6= 1 and

z(k) = 1 for all k ≥ k1. Let xlb(k1) be the lowest value of

all consensus variables in the network, i.e. xlb(k1) ≤ xj(k1)
for all j ∈ I. In the next step k1 + 1, for any agent i holds

xi(k1 + 1) =
1

di + 1
·

∑

j∈Ni(k1)

xj(k1) + 1

≥
1

di + 1
· (di · xlb(k1) + 1)

≥
1

dmax + 1
· (dmax · xlb(k1) + 1)

where dmax = maxi∈I{di}, keeping in mind that xi < 1
for all i ∈ I. A single agent however has no knowledge of

the communication topology of the whole network and hence

cannot determine dmax. Therefore, a worst case topology has

to be assumed, which corresponds to the existence of an

agent with the largest possible number of neighbors which is

dmax,wc = n. The lower bound xlb(k1 + 1) to all consensus

variables in step k1 + 1 is thus given by

xlb(k1 + 1) =
1

n + 1
· (n · xlb(k1) + 1) .

The same argumentation holds for the lower bounds on the

consensus variables in the following steps k1 +2, k1 +3, etc.

The lower bound can therefore generally be described by

xlb(k + 1) =
1

n + 1
· (n · xlb(k) + 1) (11)

with k ≥ k1 and xlb,0 := xlb(k1) = mini{xi(k1)}. This is a

simple difference equation with the solution

xlb(k) = 1 −

(

n

n + 1

)k−k1

(1 − xlb,0). (12)

With (12) it is possible to compute the latest possible time

tcov,wc at which all agents have started the coverage task4

. Using the above defined threshold x̄∗
1, then from the

switching condition for the lower bound on the consensus

variables follows

tcov,wc = inf
t∈R

{

1 −

(

n

n + 1

)t−k1

(1 − xlb,0) ≥ x̄∗
1

}

.

4Note that tcov,wc ∈ R for the sake of an easier notation. For the
discrete-time setup, the worst-case time-step kcov,wc is given by kcov,wc =
inf {k ∈ Z | k ≥ tcov,wc}.

5764

center µ width σ peak value α

(18,10) 6 0.5
(25,20) 4 1.0
(55,05) 6 1.0
(45,15) 4 0.5
(60,28) 6 1.0

TABLE I: Parameters for the event density function, center position µ
and width σ in meters.

Fig. 3: Deployment of 100 agents into the mission-space at time t =
0.1 s

The worst initial condition for the lowest bound clearly is

xlb,0 = 0 and it follows

tcov,wc =
ln(1 − δ(n))

ln
(

n
n+1

) + k1, (13)

respectively for the upper bound on the time complexity,

which is given by TCwc = tcov,wc − k1, follows (10).

V. SIMULATION RESULTS

The previously presented problem setup has been imple-

mented in a Java-based multi-agent simulation environment

to illustrate the benefit of the proposed algorithm. The mis-

sion space is a rectangular shaped area with the dimensions

64 m×32 m. The event density function E(x) is given by the

sum of five rotationally symmetric 2-dimensional Gaussian

functions of the form fgauss(x) = α · exp
(

−‖x−µ‖2

2σ2

)

(in Hz/m2). The parameters for each of the five Gaussian

functions can be found in table I. The simulation is run with a

fixed sample time of 0.02s with time-discrete versions of the

agents dynamics and control laws, derived from the equations

in section II.

A network of 100 mobile agents and one base is deployed

within a disc with radius 5 m located at (10 m, 10 m). Figure

3 shows the agents at time 0.1 s, the agents are depicted as

blue squares and intensity of the red color corresponds to the

event density function. Each mobile agent is equipped with a

sensor to detect nearby occurring events. The sensing range

of this detector is Rsens = 5m and the detection probability,

depicted in green, is modeled by pi(x) = e−‖x−si‖ for

all agents i ∈ I. The communication range is limited to

Rcomm = 21m.

We will present simulation results first for a classical setup

like in [7], where the agents only perform the coverage task,

and second for the extended setup where the agents will

(a) (b)

(c) (d)

Fig. 4: (a) Agents at stationary formation (shown at time t = 60 s) when
only using the coverage algorithm by Li and Cassandras [7]. (b)-(d)
When using the proposed algorithm, agents first explore the mission
space ((b) at t = 4 s), synchronously switch the task ((c) at t = 43 s)
and converge to a stationary formation ((d) at t = 60 s)

.

switch to the coverage task after completely exploring the

mission space.

In the first case, the network finally converges to a station-

ary formation as shown in figure 4(a). It can be clearly seen

that several areas of high event density are not covered.

In the second case, the agents first deploy over the whole

mission space, as seen in figure 4(b), using r-limited Voronoi

cells (borders are depicted in blue) with radius Rvc = 10m.

Agents that stop or come close to a rest are considered

to have finished the first task and are depicted as yellow

squares. After all agents have finished the first task, they

synchronously switch the task according to the presented

algorithm (as seen in figure 4(c), agents are now depicted as

red squares) and start with the coverage task. The network

converges to a stationary formation that clearly differs from

the one seen in the first case. Figure 4(d) shows that now

also the areas with high event density in the right half plane

of the mission space are well covered by agents. There is

a small group of three agents in the lower left corner of

the mission space, that remains stationary at this position.

The observed behavior occurs because the gradient of the

event density function is very close to zero and so are

the generated reference trajectories for these agents. This

is another drawback of the original gradient-based coverage

algorithm, but is not to be addressed in this work.

Figure 5 illustrates the joint rate of events detected by all

agents. In the first case for only coverage the joint event

detection rate reaches a maximum value of 591.0 Hz. For

the extended setup with exploration the joint event detection

rate converges to a value of 596.7 Hz during the exploration

task. After switching to the coverage task at time t = 41.84 s,
F (s) further increases and reaches a top value of 994.1 Hz.

Interestingly, before the task-switch happens, both setups

have almost the same event detection rate. This means, that

the exploration task reaches the same value as the gradient

based coverage task. After switching from exploration to

5765

0 10 20 30 40 50 60
0

200

300

600

800

1.000

time [s]

jo
in

t
e

v
e

n
t

d
e

te
c

ti
o

n
 r

a
te

 [
H

z
]

only coverage

coverage with exploration

task−switch

Fig. 5: The joint event detection rate for a setup with only coverage
(blue) and an extended setup with preceded exploration (red).

−5

0

5

−5

0

5
0

2

4

6

8

10

x
y

f k
tf

0

1

2

3

4

5

6

7

8

Fig. 6: An exemplary potential function fktf = ‖η‖ · (Rcom − ‖η‖)−10

with Rcom = 5, d = 2, η = ‖[x, y]T ‖ and function values above 8 are
cut off.

coverage the second setup reaches a value which is about

68% higher than the setup using only coverage.

VI. CONCLUSIONS

In this paper, an algorithm to control the synchronous

task-switch of all agents in a mobile network is proposed.

The decision when to switch the task of an individual

agent is made solely based on locally available information.

Therefore, the algorithm can easily be implemented and does

not require broadcasting mechanisms to communicate with

all agents in a network. Instead, the necessary information

exchange within the network relies only on communication

with direct neighbors. The convergence of the algorithm

was closely investigated and an upper bound of the time

complexity was shown. The benefit of the proposed algorithm

was shown by combining a cooperative sensing problem with

an exploration task. By that it was possible to significantly

increase the stationary joint event detection rate in a java-

based simulation.

APPENDIX

Connectivity maintenance is based on the cheapest path

communication protocol, which uses a shortest path algo-

rithm (like e.g. in [12]) to find the cheapest communication

path from each agent through the network to the base. As

long as such a path can be found for each agent, the whole

network remains connected. Each agent i (except for the base

station) has a downstream neighbor hi, that is the next hop

on the path towards the base. Agents whose downstream

neighbor is agent i, are agent i’s upstream neighbors and

denoted as Ui.

Connectivity to the base is maintained as long as all agents

stay connected with their down- and upstream neighbors.

This is achieved by means of a so called keep-together

function fktf,i(Rcom, ηi), with ηi = ‖shi
− si‖ being the

distance between agent i and its downstream neighbor agent

hi. This artificial potential function is designed such that it is

close to zero for ηi < Rcom and fktf,i → ∞ for ηi → Rcom

(e.g as used for the simulations ‖η‖ · (Rcom − ‖η‖)−10). By

adding the term

ui,ktf = −

(

∂fktf,i

∂si

)T

−
∑

j∈Ui

(

∂fktf,j

∂si

)T

(14)

to the input ui of each agent, connectivity to the down- and

upstream neighbors is achieved.

The keep-together-function can be thought of as a chain

link between the agents. As long as each agent is close

enough to all of its neighbors the influence of the keep-

together-function is low, as the function is close to zero.

But as soon as an agent comes close to its communication

range and is endangered to lose the connectivity to one of its

neighbors, the keep-together function pulls the agent towards

this neighbor and vice-versa.

REFERENCES

[1] S. Martinez, J. Cortes, and F. Bullo, “Motion coordination with
distributed information,” Control Systems Magazine, IEEE, vol. 27,
no. 4, pp. 75–88, 2007.

[2] J. Lin, A. Morse, and B. Anderson, “The multi-agent rendezvous
problem,” in Decision and Control, 2003. Proceedings. 42nd IEEE

Conference on, vol. 2, 2003, pp. 1508–1513 Vol.2.
[3] J. Cortes, S. Martinez, and F. Bullo, “Robust rendezvous for mobile

autonomous agents via proximity graphs in arbitrary dimensions,”
Automatic Control, IEEE Transactions on, vol. 51, no. 8, pp. 1289–
1298, 2006.

[4] ——, “Spatially-distributed coverage optimization and control with
limited-range interactions,” ESAIM: Control, Optimisation and Cal-

culus of Variations, vol. 4, pp. 691–719, 2005.
[5] M. Schwager, J.-J. Slotine, and D. Rus, “Decentralized, adaptive con-

trol for coverage with networked robots,” in Robotics and Automation,

2007 IEEE International Conference on, 10-14 April 2007, pp. 3289–
3294.

[6] Q. Jiang, “An improved algorithm for coordination control of multi-
agent system based on r-limited voronoi partitions,” Automation Sci-

ence and Engineering, 2006. CASE ’06. IEEE International Confer-

ence on, pp. 667–671, Oct. 2006.
[7] W. Li and C. Cassandras, “Distributed cooperative coverage control of

sensor networks,” in Decision and Control, 2005 and 2005 European

Control Conference. CDC-ECC ’05. 44th IEEE Conference on, 12-15
Dec. 2005, pp. 2542–2547.

[8] A. Trachte, “Dynamic shortest path search and connectivity mainte-
nance in multi-agent systems,” Master’s thesis, University Stuttgart,
2008.

[9] J. Wagenpfeil, “Consensus problems and decision making in multi-
agent networks with range-limited information exchange,” Master’s
thesis, University Stuttgart, 2008.

[10] M. Jelasity, A. Montresor, and O. Babaoglu, “Detection and removal
of malicious peers in gossip-based protocols,” in In Future Directions

in Distributed Computing 2004, 2004.
[11] N. Lynch, Distributed Algorithms. Morgan Kaufmann, 1996.
[12] J. Al-Karaki and A. Kamal, “Routing techniques in wireless sensor

networks: a survey,” Wireless Communications, IEEE [see also IEEE

Personal Communications], vol. 11, no. 6, pp. 6–28, 2004.

5766

