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Abstract— In this paper we study the global robust output
regulation problem for a class of nonlinear systems by output
feedback control. The class of systems possesses nonlinear zero-
dynamics and, is thus considerably larger than systems studied
in the existing literature. As an illustration of our approach,
we have applied our approach to the global robust asymptotic
tracking problem of the hyperchaotic Lorenz system.

Index Terms–adaptive control, output regulation, nonlinear
systems.

I. INTRODUCTION

In this paper, we consider the global robust output regu-

lation problem for the following class of uncertain nonlinear

systems

ż = f(z, y, v, w)

ẋi = xi+1 + gi(z, y, v, w), i = 1, · · · , r − 1

ẋr = b∞u + gr(z, y, v, w)

y = x1

e = x1 − q(v, w) (1)

where (z, x) ∈ R
n × R

r with r ≥ 2 is the state, u ∈ R

is the input, y ∈ R is the output, e represents the tracking

error, w ∈ W ⊂ R
nw is an uncertain parameter vector with

W an arbitrarily prescribed subset of R
nw , and v(t) ∈ R

nv

is an exogenous signal representing both reference input and

disturbance. It is assumed that v(t) is generated by a linear

system of the following form

v̇ = A1v, v(0) = v0 (2)

where all the eigenvalues of matrix A1 are simple with zero

real part. All functions in (1) are supposed to be globally

defined, sufficiently smooth, and satisfy f(0, 0, 0, w) = 0,

gi(0, 0, 0, w) = 0, and q(0, w) = 0 for all w ∈ R
nw . The

quantity b∞ is called high frequency gain and is assumed to

be a nonzero constant with an unknown sign.

The precise statement of our problem is given as follows.

Problem 1.1: Design a dynamic output feedback control

law of the form

u = u
K

(ζ, e), ζ̇ = g
K

(ζ, e) (3)

where ζ ∈ R
nζ for some integer nζ > 0, and u

K
and g

K
are

globally defined sufficiently smooth functions vanishing at

the origin, such that, for all initial conditions, and all w ∈ W,

the trajectory of the closed-loop system composed of (1) to
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(3) exists and is bounded over [0,+∞), and the error output

e(t) asymptotically approaches zero as t → +∞.

When the exogenous signal v(t) is not present in system

(1), or what is the same, the dimension of v is zero, system

(1) is the same as the so-called output feedback system.

The global robust stabilization problem for such systems

has been studied in [6], [8]. For this reason we will also

call (1) as output feedback system. It is known that the

robust output regulation problem is typically handled by

the internal model approach [1], [4]. The internal model

approach consists of two steps. In the first step, an appropri-

ate dynamic compensator called internal model is designed.

Attachment of the internal model to the given plant leads to

an augmented system. The internal model has the property

that the stabilization solution of the augmented system will

lead to the output regulation solution of the given plant

and the exosystem. Thus, the second step is to globally

stabilize the augmented system. It is noted that, due to the

attachment of the internal model, the augmented system may

be more complicated than the original system. Therefore, the

stabilization problem of the augmented system can also be

more challenging than that of the original system with v set

to zero.

A subclass of (1) is given as follows

ż = H(w)z + g0(y, w)

ẋi = xi+1 + gi(y, w), i = 1, · · · , r − 1

ẋr = b∞u + Q(w)z + gr(y, w)

y = x1 (4)

where H(w) and Q(w) are matrices of appropriate dimen-

sions, and H(w) is Hurwitz for each constant uncertainty

w [11]. A disturbance rejection problem for system (4) has

been studied in [2] which can be viewed as a special case of

the output regulation. A special feature of (4) is that its zero

dynamics ż = H(w)z is a linear stable system. This special

feature lends itself to an effective approach to designing

an output feedback control law without employing some

type of observer. In contrast, system (1) does not possess

this feature and hence the approach in [2] is not applicable

here. Therefore, we need to employ a different technique to

tackle our problem which involves the use of some observer.

Another feature of our problem is that we will not assume

the knowledge of the sign of the high frequency gain b∞.

The organization of this paper is as follows. In Section

II, we introduce a set of basic assumptions on system (1) so

that the robust output regulation problem of system (1) can

be converted into a global robust stabilization problem of an
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augmented system based on the general framework in [4].

Section III presents the main result of this paper. A design

example is illustrated in Section IV. Section V concludes

this paper with a few remarks.

II. ASSUMPTIONS AND PROBLEM CONVERSION

It is known from [4] that the output regulation problem

of a given plant can be converted into the global robust

stabilization problem of an augmented system composed

of the given plant and the so-called internal model. To

accomplish this conversion, we will first list some standard

assumptions as follows.

Assumption 1: There exists a smooth function z(v, w) :
R

nv+nw 7→ R
n with z(0, 0) = 0 such that

∂z(v, w)

∂v
A1v = f

(
z(v, w), q(v, w), v, w

)
(5)

for all (v, w) ∈ R
nv × W.

Let

x(v, w) = col(x1(v, w), · · · ,xr(v, w))

with x1(v, w) = q(v, w) and for i = 2, · · · , r,

xi(v, w) = LA1vxi−1(v, w)

−gi−1(z(v, w), q(v, w), v, w)

u(v, w) = b−1
∞

[
LA1vxr(v, w)

−gr(z(v, w), q(v, w), v, w)
]

where LA1vq(v, w) = ∂q(v,w)
∂v

A1v. Then, under Assumption

1, the solution to the regulator equations associated with

system (1) and exosystem (2) is given by z(v, w), x(v, w)
and u(v, w).

Assumption 2: There exist an integer ns, a sufficiently

smooth function τ : R
nv+nw 7→ R

ns vanishing at the origin,

and a pair of matrices Φ ∈ R
ns×ns and Ψ ∈ R

1×ns , such

that

dτ(v, w)

dt
= Φτ(v, w), u(v, w) = Ψτ(v, w) (6)

for all (v, w) ∈ R
nv × W. Moreover, the pair (Ψ,Φ) is

observable and all the eigenvalues of Φ are simple with zero

real part.

System (6) is called a steady-state generator in [4]. As-

sumption 2 guarantees the existence of the internal model.

In fact, under Assumption 2, the Sylvester equation

TΦ − MT = NΨ (7)

has a unique nonsingular solution T for a given controllable

pair (M, N) with M a Hurwitz matrix and N a vector of

appropriate dimensions [12]. Let θ(v, w) = Tτ(v, w). Then,

we have

θ̇(v, w) = (M + NΨo)θ(v, w)

u(v, w) = Ψoθ(v, w) (8)

where Ψo = ΨT−1. Next, we can define the following

dynamics

η̇ = Mη + Nu (9)

as an internal model with output u [4], [12].

Attaching the internal model (9) to system (1) and per-

forming the following coordinate and input transformation

z̄ = z − z(v, w), x̄ = x − x(v, w)

η̄ = η − θ(v, w), ū = u − Ψoη (10)

yields

˙̄z = f̄(z̄, e, v, w)

˙̄η = (M + NΨo)η̄ + Nū

˙̄xi = x̄i+1 + ḡi(z̄, e, v, w), i = 1, · · · , r − 1

˙̄xr = b∞ū + b∞Ψoη̄ + ḡr(z̄, e, v, w) (11)

where x̄ = col(x̄1, · · · , x̄r) and

f̄(z̄, e, v, w) = f(z̄ + z(v, w), e + q(v, w), v, w)

−f(z(v, w), q(v, w), v, w)

ḡi(z̄, e, v, w) = gi(z̄ + z(v, w), e + q(v, w), v, w)

−gi(z(v, w), q(v, w), v, w) (12)

for i = 1, · · · , r.

System (11) is called augmented system and has the

following property [4]:

f̄(0, 0, v, w) = 0, ḡi(0, 0, v, w) = 0, i = 1, · · · , r (13)

for all (v, w) ∈ R
nv × W. Therefore, by Corollary 3.1 in

[4], the global robust output regulation problem of system

(1) as described in Problem 1.1 will be solved if the

following global robust stabilization problem for system (11)

is solvable.

Problem 2.1: Design a dynamic output feedback control

law of the form

ū = ū
K

(ζ̄, e), ˙̄ζ = ḡ
K

(ζ̄, e) (14)

where ζ̄ ∈ R
nζ̄ for some integer nζ̄ > 0. ū

K
and ḡ

K
are

globally defined sufficiently smooth functions vanishing at

the origin such that, for any fixed w ∈ W and any v(t)
generated by (2), the solution of the closed-loop system

composed of (11) and (14) is bounded and x̄1(t)(= e(t))
approaches zero asymptotically.

III. MAIN RESULT

A specific difficulty with the global robust stabilization

problem of system (11) is that it is not in the output feedback

form as displayed in (1) due to the presence of the internal

model. Moreover, like z̄, the state η̄ is not available for

feedback. Nevertheless, performing, as in [7], the following

coordinate transformation on (11)

η̃ = η̄ − crx̄r − · · · − c1x̄1 (15)

where cr = b−1
∞

N , ci−1 = Mci for i = 2, · · · , r, gives

˙̃η = Mη̃ + Mc1e −
r∑

i=1

ciḡi(z̄, e, v, w)

˙̄x = Asx̄ + b∞BΨoη̃ + ḡ(z̄, e, v, w) + b∞Bū (16)
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where ḡ(z̄, e, v, w) = col(ḡ1(z̄, e, v, w), · · · , ḡr(z̄, e, v, w))

As =

[
0 Ir−1

sr sr−1, · · · , s1

]

, B = col(0, · · · , 0
︸ ︷︷ ︸

r−1

, 1) (17)

and real scalars si = b∞Ψocr+1−i for i = 1, · · · , r. Further

performing another coordinate transformation on x̄-system

ξ = b−1
∞

Us · x̄ (18)

where

Us =










1 0 · · · 0 0
−s1 1 · · · 0 0

...
. . .

. . .
...

...

−sr−2 −sr−3 · · · 1 0
−sr−1 −sr−2 · · · −s1 1










(19)

gives

˙̄z = f̄(z̄, e, v, w)

˙̃η = Mη̃ + Mc1e −
r∑

i=1

ciḡi(z̄, e, v, w)

ξ̇ = Acξ + BΨoη̃ + G(z̄, e, v, w) + Bū (20)

where Ac =

[
0 Ir−1

0 0

]

and

G(z̄, e, v, w) = col
(
G1(z̄, e, v, w), · · · ,

Gr(z̄, e, v, w)
)

G1(z̄, e, v, w) = s1e + b−1
∞

ḡ1(z̄, e, v, w)

Gi(z̄, e, v, w) = sie − b−1
∞

i−1∑

j=1

sj ḡj(z̄, e, v, w)

+b−1
∞

ḡi(z̄, e, v, w) (21)

for i = 2, · · · , r. It is noted that Us is such that

UsAsU
−1
s =

[
s[r−1] Ir−1

sr 0

]

(22)

where s[r−1] = col(s1, · · · , sr−1) and e = x̄1 = b∞ξ1.

As our purpose is to design an output feedback control law

that only relies on e(t), we need to introduce some sort of

observer to estimate the state ξ(t). We will adopt a standard

observer such as what can be found in [6] as follows:

˙̂
ξ = Acξ̂ + λ(e − ξ̂1) + Bū (23)

where λ = col(λ1, · · · , λr) is chosen such that the matrix

Ao =

[
−λ[r−1] Ir−1

−λr 0 · · · 0

]

is Hurwitz. The observation

error ξ̃ = ξ − ξ̂ satisfies

˙̃
ξ = Aoξ̃ − λ(1 − b−1

∞
)e + BΨoη̃ + G(z̄, e, v, w). (24)

Attaching (24) to (20) and replacing the state variable

vector ξ by (e, ξ̂2, · · · , ξ̂r) gives the following system

Ż = F (Z, e, µ)

ė = b∞ξ̂2 + b∞ξ̃2 + b∞G1(z̄, e, µ)
˙̂
ξi = ξ̂i+1 + λi(e − ξ̂1), i = 2, · · · , r − 1
˙̂
ξr = ū + λr(e − ξ̂1) (25)

where Z = col(z̄, η̃, ξ̃), µ = (v, w), and

F (Z, e, µ) =





f̄(z̄, e, v, w)
Mη̃ + Mc1e −

∑r
i=1 ciḡi

Aoξ̃ − λ(1 − b−1
∞

)e + BΨoη̃ + G



 .

It can be seen that system (25) is in a standard lower

triangular form. To guarantee the solvability of the global

stabilization problem for such a system, we need one more

assumption as follows.

Assumption 3: For any compact subset Σ ⊂ R
nv × W,

there exists a C1 function Vz̄(z̄) satisfying αz̄(‖z̄‖) ≤
Vz̄(z̄) ≤ ᾱz̄(‖z̄‖) for some class K∞ functions αz̄(·) and

ᾱz̄(·) such that, for any (v, w) ∈ Σ, along the trajectory of

z̄ subsystem

∂Vz̄

∂z̄
(z̄) · f̄(z̄, e, v, w) ≤ −αz̄(‖z̄‖) + δeγe(|e|) (26)

where δe is some unknown constant, αz̄(·) is some known

class K∞ function satisfying lims→0+ sup(α−1
z̄ (s2)/s) <

∞, and γe(·) is a known smooth positive definite function.

We are now ready to construct our control law using a

recursive method modified from the tuning function approach

described in [9]. For this purpose, we introduce the following

notation.

κ1(e, k) = N (k)ρ(e)e ,

κ2(e, k, b̂, ξ̂1, ξ̂2) = −2ω1 − λ2(e − ξ̂1)

−b̂E1ξ̂2 − ω1E
2
1 − K1 ,

φ2(e, k, b̂, ξ̂2) = ω1E1ξ̂2 ,

κi(e, k, b̂, ξ̂1, · · · , ξ̂i) = −ωi−2 − ωi−1 − λi(e − ξ̂1)

+
i−1∑

j=1

∂κi−1

∂ξ̂j

˙̂
ξj +

∂κi−1

∂b̂

˙̂
b

−b̂Ei−1ξ̂2 − ωi−1E
2
i−1

−Ki−1, i = 3, · · · , r ,

φi(e, k, b̂, ξ̂1, · · · , ξ̂i) = φi−1 + ωi−1Ei−1ξ̂2

i = 3, · · · , r (27)

where, for i = 1, · · · , r, Ei = −∂κi

∂e
and Ki = −∂κi

∂k
k̇,

k is a variable governed by the second equation of (30),

N (k) is a Nussbaum-type function (see [13]), for instance,

N (k) = exp(k2) cos(0.5πk) or N (k) = k2 cos(k), b̂ is an

estimate for b∞ and is governed by the third equation of

(30), and ρ(e) ≥ 1 is a positive continuous function. Also,

for i = 1, · · · , r − 1, let

ωi(e, k, b̂, ξ̂1, · · · , ξ̂i) = ξ̂i+1 − κi(e, k, b̂, ξ̂1, · · · , ξ̂i). (28)

For convenience, we let ωr = 0 and ξ̂r+1 = ū. The derivative

of ωi satisfies

ω̇1 =
˙̂
ξ2 − κ̇1 = ω2 + κ2 + λ2(e − ξ̂1)

+E1(b∞ξ̂2 + b∞ξ̃2 + b∞G1) + K1

ω̇i =
˙̂
ξi+1 − κ̇i = ωi+1 + κi+1 + λi+1(e − ξ̂1)

+Eiė −
i∑

j=1

∂κi

∂ξ̂j

˙̂
ξj −

∂κi

∂b̂

˙̂
b + Ki (29)
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for i = 2, · · · , r − 1.

Theorem 3.1: Under Assumptions 1 to 3, there exist a

sufficiently smooth function ρ(e) ≥ 1 and a control law of

the form

ū = κr(e, k, b̂, ξ̂1, · · · , ξ̂r)

k̇ = ρ(e)e2

˙̂
b = φr(e, k, b̂, ξ̂1, · · · , ξ̂r) (30)

that solves Problem 2.1.

Outline of the Proof : For any given v0 ∈ R
nv and

w ∈ W, there exists a compact set Σ such that µ(t) =
(v(t), w) ∈ Σ for all t ≥ 0. Performing the recursive

method using the notations of (27), (28) and (29), we can

get a C1 function V (Z, e, b̃, ω1, · · · , ωr−1), where b̃(t) =
b∞ − b̂(t), satisfying α(‖ Z, e, b̃, ω1, · · · , ωr−1 ‖) ≤ V ≤
ᾱ(‖ Z, e, b̃, ω1, · · · , ωr−1 ‖) for some class K∞ functions

α(·) and ᾱ(·), such that, along the trajectory of the closed-

loop system composed of system (25) and control law (30)

V̇ ≤
(

b∞N (k) + p
)

k̇ −
r−1∑

j=1

ω2
j − ‖Z‖2

(31)

for some continuous function ρ(e) ≥ 1 and some constant

p > 0.

Integrating both sides of (31) over [0, t), ∀ t ≥ 0 gives

V (t) ≤

∫ t

0

(

b∞N (k(τ)) + p
)

k̇(τ)dτ + V (0). (32)

As in [15], the above inequality implies that V (t) and k(t)
are bounded over each time interval [0, T ) with 0 < T ≤
+∞. So the solution of the closed-loop system composed of

system (25) and control law (30) is defined on [0,+∞) and

bounded over [0,+∞).
We now show e(t) will approach the origin as t → +∞.

Since k(t) is bounded over [0,+∞) and k̇(t) = ρ(e)e2 with

ρ(e) ≥ 1, e is square integrable over [0,+∞). Furthermore,

both e(t) and ė(t) are bounded over [0,+∞). Using Bar-

balat’s lemma concludes that e(t) tends to zero as t → +∞.

This completes the proof.

Remark 3.1: As a result of the above theorem, the fol-

lowing control law

u = κr(e, k, b̂, ξ̂1, · · · , ξ̂r) + Ψoη

k̇ = ρ(e)e2

˙̂
b = φr(e, k, b̂, ξ̂1, · · · , ξ̂r)

η̇ = Mη + Nu
˙̂
ξ = Acξ̂ + λ(e − ξ̂1) + Bu − BΨoη (33)

which is in the form (3) solves the global robust output

regulation problem for system (1).

IV. EXAMPLE

The controlled single-input single-output hyperchaotic

Lorenz system [10] is described by the following equations:

ż1 = a11z1 + a12x1

ż2 = a3z2 + z1x1

ẋ1 = x2 + a21z1 + a22x1 − z1z2

ẋ2 = b∞u + a4z1 (34)

where (a11, a12, a21, a22, a3, a4) is a constant parameter vec-

tor satisfying a11, a3 < 0 and b∞ is some unknown nonzero

constant. A detailed analysis of this system with u = 0 has

been given in [10] and various types of chaotic behaviors

for different values of parameter (a11, a12, a21, a22, a3, a4)
are exhibited. Also, a full state feedback stabilization of

this system is studied in [5]. Here, by designating an output

y = x1 and defining a tracking error e = y − F (t) where

F (t) = Am sin(ωt+φ), we will consider a more challenging

control problem of designing an error output feedback con-

trol law such that all the states of the closed-loop system is

bounded and the tracking error e asymptotically approaches

zero. To make the problem more interesting, we allow the

amplitude Am to be an arbitrary positive number and the

phase angle φ an arbitrary real number. We will show that

the above problem can be formulated as the global robust

output regulation problem described in Section II.

In fact, let v = col(v1, v2) and define a linear autonomous

system in the form (2) as follows
[
v̇1

v̇2

]

=

[
0 ω
−ω 0

] [
v1

v2

]

, v0 :=

[
v10

v20

]

. (35)

It can be seen that v1(t) = F (t) if (v10, v20) =
(Am sinφ,Am cos φ). Also, we allow the parameter vector

(a11, a12, a21, a22, a3, a4) to undergo some perturbation. To

be more specific, let

a = (ā11, ā12, ā21, ā22, ā3, ā4) + (w1, · · · , w6)

where (ā11, ā12, ā21, ā22, ā3, ā4) represents the nominal

value of a and (w1, · · · , w6) the uncertainty of a. To

guarantee a11, a3 < 0, we define W as W = {w | w ∈
R

6, ā11 + w1 < 0, ā3 + w5 < 0}.

System (34) is in the form (1) with r = 2 and it cannot

be transformed into the form (4). Therefore, none of existing

results, e.g., the design method in [2], can solve Problem 1.1

for system (34).

It can be easily verified that the regulator equations

associated with (34) and (35) are solvable. In fact, from the

error equation e = x1 − v1, we have

x1(v, w) = v1. (36)

Substituting (36) into the first equation of (34) yields

z1(v, w) = r11v1 + r12v2 (37)

where

r11 = −
a11a12

ω2 + a2
11

, r12 = −
a12ω

ω2 + a2
11

.

Substituting (36) and (37) into the second equation of (34)

gives

z2(v, w) = r21v
2
1 + r22v1v2 + r23v

2
2 (38)

where

r21(w, ω) = −
a2
3r11 − a3ωr12 + 2ω2r11

a3(a2
3 + 4ω2)

r22(w, ω) = −
r12a3 + 2ωr11

a2
3 + 4ω2

, r23(w, ω) =
ω

a3
r22.
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Substituting (36) and (38) into the third equation of (34)

gives

x2(v, w) = ωv2 − a22v1 − a21z1 + z1z2

= r31v1 + r32v2 + r33v
3
1 + r34v

2
1v2

+r35v1v
2
2 + r36v

3
2 (39)

where

r31 = −a22 − a21r11, r32 = ω − a21r12

r33 = r11r21, r34 = r12r21 + r11r22

r35 = r11r23 + r12r22, r36 = r12r23.

Thus x2(v, w) can be put into the following form

x2(v, w) = X21(w)v[1] + X23(w)v[3] (40)

where v[1] = col(v1, v2), v[3] = col(v3
1 , v2

1v2, v1v
2
2 , v3

2),
and X21(w),X23(w) are appropriate row vectors. Finally,

substituting (40) into the fourth equation of (34) gives

u(v, w) =
∑

l=1,3

b−1
∞

X2l(w)A[l]v[l]

−b−1
∞

a4z1(v, w)

= r41v1 + r42v2 + r43v
3
1 + r44v

2
1v2

+r45v1v
2
2 + r46v

3
2 (41)

where

A[1] =

[
0 ω
−ω 0

]

, A[3] =







0 3ω 0 0
−ω 0 2ω 0
0 −2ω 0 ω
0 0 −3ω 0







and

r41(w, ω) = −b−1
∞

(ωr32 + a4r11)

r42(w, ω) = b−1
∞

(ωr31 − a4r12)

r43(w, ω) = −b−1
∞

ωr34

r44(w, ω) = b−1
∞

ω(3r33 − 2r35)

r45(w, ω) = b−1
∞

ω(2r34 − 3r36)

r46(w, ω) = b−1
∞

ωr35.

Therefore, Assumption 1 and Assumption 2 are satisfied.

The steady-state generator described by (6) can be con-

structed as follows

τ(v, w) = col
(
u, LA1vu, L2

A1vu, L3
A1vu

)

Φ =

[
0 I3

−9ω4 0,−10ω2, 0

]

Ψ = [1, 0, 0, 0]. (42)

So we can define the following internal model

η̇ = Mη + Nu (43)

where

M =

[
0 I3

−m1 −m2,−m3,−m4

]

, N = col(0, 0, 0, 1)

and the parameters mi > 0 are such that M is Hurwitz.

Solving the Sylvester equation (7) to obtain the nonsingu-

lar matrix T and performing the transformation (10) gives

˙̄z1 = a11z̄1 + a12e

˙̄z2 = a3z̄2 + (z̄1 + z1)(e + v1) − z1v1

˙̄η = (M + NΨo)η̄ + Nū

˙̄x =

[
0 1
0 0

]

x̄ +

[
ḡ1

Ψoη̄ + ū + ḡ2

]

(44)

where ḡ1 = a21z̄1 + a22e − (z̄1 + z1)(z̄2 + z2) + z1z2 and

ḡ2 = a4z̄1.

To verify Assumption 3, for any fixed compact subset Σ ⊂
R

nv ×W, let Vz̄ = ~

2 z̄2
1 + ~

4 z̄4
1 + 1

2 z̄2
2 for some ~ > 0 which

satisfies along the trajectory of system (44)

V̇z̄ = ~a11z̄
2
1 + ~a12z̄1e + ~a11z̄

4
1 + ~a12z̄

3
1e

+a3z̄
2
2 + z̄2

(
(z̄1 + z1)(e + v1) − z1v1

)

= ~a11z̄
2
1 + ~a12z̄1e + ~a11z̄

4
1 + ~a12z̄

3
1e

+a3z̄
2
2 + z̄2z̄1e + v1z̄2z̄1 + z1z̄2e. (45)

Using Young’s inequality gives, for any ε > 0,

~a12z̄1e ≤
1

2
z̄2
1 +

~
2a2

12

2
e2

~a12z̄
3
1e ≤

3

4
z̄4
1 +

~
4a4

12

4
e4

z̄2z̄1e ≤
ε

2
z̄2
2 +

1

2ε
z̄2
1e2

≤
ε

2
z̄2
2 +

1

4
z̄4
1 +

1

4ε2
e4

v1z̄2z̄1 ≤
1

2ε
z̄2
1 +

εv2
1

2
z̄2
2

z1z̄2e ≤
ε

2
z̄2
2 +

z
2
1

2ε
e2. (46)

Substituting (46) into (45) gives

V̇z̄ ≤
(

~a11 +
1

2
+

1

2ε

)

z̄2
1 +

(

~a11 + 1
)

z̄4
1

+
(

a3 + ε +
εv2

1

2

)

z̄2
2 +

(
~

2a2
12

2
+

z
2
1

2ε

)

e2

+
(

~
4a4

12

4
+

1

4ε2

)

e4. (47)

Since Σ is compact, for all (v, w) ∈ Σ, there exist a

sufficiently small ε > 0, a sufficiently large ~ > 0, and

constant ℓi > 0, i = 1, · · · , 5, such that

a3 + ε +
εv2

1

2
< −ℓ1 (48)

~a11 +
1

2
+

1

2ε
< −ℓ2 < 0, ~a11 + 1 < −ℓ3 < 0 (49)

and
~

2a2
12

2
+

z
2
1

2ε
< ℓ4,

~
4a4

12

4
+

1

4ε2
< ℓ5. (50)

It follows from (47) to (50) that

V̇z̄ ≤ −ℓ2z̄
2
1 − ℓ3z̄

4
1 − ℓ1z̄

2
2 + ℓ4e

2 + ℓ5e
4. (51)

Thus Assumption 3 is satisfied for (z̄1, z̄2) subsystem. By

Theorem 3.1, the global robust output regulation problem for
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Fig. 1. Profile of tracking error e(t) and control input u(t).

this system is solvable. In fact, by choosing

c1 = b−1
∞

MN, c2 = b−1
∞

N, s1 = ΨoN, s2 = ΨoMN

performing the transformations (15) and (18), and incorporat-

ing the observer (23), we can obtain system (25) as follows

˙̄z1 = a11z̄1 + a12e

˙̄z2 = a3z̄2 + (z̄1 + z1)(e + v1) − z1v1

˙̃η = Mη̃ + (Mc1e − c1ḡ1 − c2ḡ2)

˙̃
ξ =

[
−λ1 1
−λ2 0

]

ξ̃ +

[
−λ1(1 − b−1

∞
)e + G1

−λ2(1 − b−1
∞

)e + Ψoη̃ + G2

]

ė = b∞ξ̂2 + b∞ξ̃2 + b∞G1

˙̂
ξ2 = u − Ψoη + λ2(e − ξ̂1) (52)

where G1 = s1e + b−1
∞

ḡ1 and G2 = s2e− b−1
∞

s1ḡ1 + b−1
∞

ḡ1.

According to the design procedure detailed in Section 3, we

can obtain a specific control law in the form (33) with ρ(e) =
3(e6 + 1).

Simulations are performed for the closed-loop system

composed of system (34) and a controller in the form (33).

Various parameters are chosen as follows. λ = col(2, 3);
(m1,m2,m3,m4) = (4, 12, 13, 6); ω = 1; b∞ = 1;

(a11, a12, a21, a22, a3, a4) = (−10, 10, 28,−1,−8/3,−1).
The initial conditions are (z1(0), z2(0), x1(0), x2(0)) =
(−2, 1, 2, 1), v0 = col(1, 0), η(0) = 0, ξ̂(0) = 0, b̂(0) = 0,

and k(0) = 1. The responses of the tracking error, control

input, and the plant state variables are shown in Figures 1

and 2.

V. CONCLUSION

In this paper, we have presented the solvability conditions

for the global robust output regulation problem for nonlinear

system (1) by output feedback control. Since the zero dy-

namics of our system is not linear, the existing approach as

used in [2] is not applicable here. Moreover, our approach

does not assume the sign of high frequency gain is known. It

should be noted that when r = 1, there is no need to design

an observer to estimate e. Therefore, a simpler approach can

be used to handle this case.
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Fig. 2. Plant state responses of (z1, z2, x1, x2).

To illustrate the effectiveness of our approach, we have

applied our approach to the global robust asymptotic tracking

problem of the well known hyperchaotic Lorenz system.
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