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Abstract— In this paper, by applying interval methods, a new
framework for analysis and control of discrete-time hybrid
systems with parameter uncertainty is proposed. In analysis
and control of hybrid systems, there are problem formulations
such that convex polyhedra are computed, but for high-
dimensional systems, it is difficult to solve these problems
within the practical computation time. In this paper, instead
of computing convex polyhedra, an interval method, which is
one of classical methods in verified numerical computation,
is applied to analysis and control of hybrid systems. By
applying an interval method, discrete-time piecewise systems
with parameter uncertainty can be approximately transformed
into a mixed logical dynamical model.

I. INTRODUCTION

In many cases of analysis and control of hybrid systems,
one of the technical difficulties is that the computation
time to solve the analysis/control problems is too long.
For example, in some of the verification problems and the
controllability problems of hybrid systems, it is necessary to
compute convex polyhedra [3], [4], [5]. However, the compu-
tation of convex polyhedra is difficult for high-dimensional
systems, and it will be desirable from the practical viewpoint
to compute an approximation of convex polyhedra.

On the other hand, as well as linear systems and nonlinear
systems, it is important to consider hybrid systems with
parameter uncertainty. For instance, mechanical systems with
friction phenomena are well-known as one of typical exam-
ples of hybrid systems, but it is difficult to precisely identify
friction phenomena. Recent literatures in robust control of
hybrid systems are presented in [13], but these results are
complicate from the theoretical viewpoint, and it will be
desirable to consider a simpler approach from the practical
viewpoint.

In this paper, based on interval methods [9], a new frame-
work for analysis and control of discrete-time hybrid systems
with parameter uncertainty is proposed. An interval method
is based on interval arithmetic, and is well-known as one of
classical techniques in verified numerical computation. By
applying an interval method, a convex polyhedron is approx-
imated as a box (an interval). So an over-approximation of a
convex polyhedron is obtained. Obviously, an approximation
via an interval is conservative, but the computation using
an interval method is relatively easier than the computa-
tion of convex polyhedra. As applications of an interval
method to control theory and theoretical computer science,
the trajectory generation problem [12] and the reachability

K. Kobayashi and K. Hiraishi are with the School of Information Science,
Japan Advanced Institute of Science and Technology, Ishikawa, Japan
{k-kobaya,hira}@jaist.ac.jp

problem [10], [11] have been considered. However, in these
works, an interval of the state at each time is computed
by recursively solving some algorithm. So it is difficult to
extend these approaches to the control problem. In this paper,
by approximately expressing interval arithmetic on matrix
computations, discrete-time piecewise affine systems with
parameter uncertainty is transformed into a mixed logical
dynamical (MLD) model [6]. By using the obtained MLD
model, a kind of the optimal control problem can be solved.
Therefore, by using the proposed method, for example,
a design of controller satisfying state/input constraints for
discrete-time hybrid systems with parameter uncertainty can
be realized. Furthermore, from the result in this paper, we
will give a new potentiality for the MLD model framework.

This paper is organized as follows. In Section II, some
basics of interval arithmetic are explained. In Section III,
we propose the method to approximately transform discrete-
time linear systems with parameter uncertainty into the MLD
model. In Section IV, the result on linear systems is extend
to piecewise affine systems. In Section V, as applications
of the obtained model, the trajectory generation problem,
the controllability problem and the optimal control problem
are considered. In Section VI, numerical examples on a
piecewise linear system are shown. In Section VII, we
conclude this paper.

Notation: Let R express the set of real numbers. Let
{0, 1}m×n express the set of m×n matrices, which consists
of elements 0 and 1. Let In, 0m×n express the n×n identity
matrix, the m × n zero matrix, respectively. The matrix
inequality X ≤ Y denotes that Xij − Yij is nonpositive,
where Xij , Yij is the (i, j)-th element of X , Y , respectively.
For a vector x, let x(i) express the i-th element of x. For
a matrix/vector M , the matrix/vector |M | denotes that each
element of |M | is given by an absolute value of each element
of M . For simplicity of notation, we sometimes use the
symbol 0 instead of 0m×n, and the symbol I instead of In.

II. INTERVAL ARITHMETIC

In this section, some basics of interval arithmetic are
explained. See [9] for further details.

First, an interval is defined as the following bounded set
of real numbers

[x, x] := {x ∈ R | x ≤ x ≤ x}
where x ≤ x ∈ R holds, and x, x are the infimum and
the supremum of the interval, respectively. For simplicity of
notation, we may denote [x, x] as [x].
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Suppose that two intervals [x] and [y] are given. Then four
operations, addition +, multiplication ×, subtraction −, and
division ÷ of [x] and [y] are given as follows:

[x] + [y] = [x + y, x + y], (1)
[x] − [y] = [x − y, x − y],

[x] × [y] =
[
min{xy, xy, xy, xy}, max{xy, xy, xy, xy}] ,

[x] ÷ [y] = [x] ×
[
1
y
,
1
y

]
, 0 �∈ [y].

Next, an interval is extended to an interval matrix (vector).
An interval matrix is defined as

[X] = [X, X] := {X ∈ Rm×n | X ≤ X ≤ X}
where X, X ∈ Rm×n. Also, the center c([X]) and the radius
r([X]) of an interval matrix [X] are defined as

c([X]) := (X + X)/2, r([X]) := (X − X)/2,

respectively. From the definitions of c([X]) and r([X]),

[X, X] = [c([X]) − r([X]), c([X]) + r([X])]

holds. Then we introduce the result on the multiplication of
two interval matrices [X] and [Y ] [9].

Lemma 1: Suppose that interval matrices [X] and [Y ] are
given. Then the following condition holds:

[X] × [Y ] = [c([X]) − r([X]), c([X]) + r([X])]
×[c([Y ]) − r([Y ]), c([Y ]) + r([Y ])]

⊆ [c([X])c([Y ]) − r([X])|c([Y ])|
−|c([X])|r([Y ]) − r([X])r([Y ]),
c([X])c([Y ]) + r([X])|c([Y ])|
+|c([X])|r([Y ]) + r([X])r([Y ])]. (2)

Note here that in Lemma 1, if [X] or [Y ] is given as
some point (r([X]) = 0 or r([Y ]) = 0), then the equality
in (2) holds. Furthermore, (2) is an over-approximation of
[X] × [Y ], but the size of the obtained over-approximation
is less than about 1.5 times of the accurate interval.

By Lemma 1, we can approximately express discrete-time
linear systems with parameter uncertainty as a mixed logical
dynamical (MLD) systems [6]. In Section III, this fact will be
shown. After that, in Section IV, we will extend discrete-time
linear systems to discrete-time piecewise affine (DT-PWA)
systems.

III. MODELING OF DISCRETE-TIME LINEAR SYSTEMS
WITH PARAMETER UNCERTAINTY

In this section, based on Lemma 1, we consider to express
discrete-time linear systems with parameter uncertainty as
the MLD model.

Consider the following discrete-time linear system with
parameter uncertainty

x(k + 1) = Ax(k) + Bu(k) + a, (3)
x(k) ∈ [x(k), x(k)] ,
A ∈ [

A, A
]
, B ∈ [

B, B
]
, a ∈ [a, a]

where x(k), x(k) ∈ Rn, u(k) ∈ Rm, and a is an affine term.
It is remarked that the state x(k) is given by an interval,
because the system (3) has parameter uncertainty, and even
if an initial state x(0) is given by some point (x(0) = x(0)),
x(k) becomes some region. Furthermore, for simplicity of
notation, we denote c([x(k), x(k)]) and r([x(k), x(k)]) as
xc(k) and xr(k), respectively. Then the center xc(k) and
the radius xr(k) of [x(k), x(k)] are given by[

xc(k)
xr(k)

]
=

1
2

[
In In

−In In

] [
x(k)
x(k)

]
, (4)

respectively. Similarly, the center Ac and the radius Ar of
[A, A] and the center Bc and the radius Br of [B, B] are
given by Ac = (A + A)/2, Ar = (A − A)/2, and Bc =
(B + B)/2, Br = (B − B)/2, respectively.

By using Lemma 1, we can approximately calculate the
interval [x(k + 1), x(k + 1)] of the state at time k + 1. The
result is shown by the following lemma.

Lemma 2: Suppose that the system (3) is given. Then the
interval [x(k + 1), x(k + 1)] of the state at time k + 1 is
approximately derived by

[x(k + 1), x̄(k + 1)]
= [Ac − Ar, Ac + Ar][xc(k) − xr(k), xc(k) + xr(k)]

+ [Bc − Br, Bc + Br]u(k) + [a, a]
⊆ [Acxc(k) − Ar|xc(k)| − |Ac|xr(k) − Arxr(k)

+ Bcu(k) − Br|u(k)| + a,

Acxc(k) + Ar|xc(k)| + |Ac|xr(k) + Arxr(k)
+ Bcu(k) + Br|u(k)| + a]

=: [x′(k + 1), x′(k + 1)]. (5)
Proof: From Lemma 1 and (1), we can obtain Lemma

2 straightforwardly.
By using Lemma 2, for a given interval of initial state

[x(0), x(0)] and a given input sequence u(0), u(1), . . ., an
approximate interval of the state at each time can be
calculated as [x′(1), x′(1)], [x′(2), x′(2)], . . .. In this paper,
we use [x′(k + 1), x′(k + 1)] of (5) as an approximate
interval of [x(k + 1), x(k + 1)], and consider the relation
between [x′(k), x′(k)] and [x′(k + 1), x′(k + 1)] for a given
[x(0), x(0)]. For simplicity of discussion, we omit “ ′ ” (dash)
in [x′(k), x′(k)] hereafter. Then from (5), we obtain

x(k + 1) = −Ar|xc(k)| − (|Ac| + Ar)xr(k)
−Br|u(k)| + Acxc(k) + Bcu(k) + a, (6)

x(k + 1) = Ar|xc(k)| + (|Ac| + Ar)xr(k)
+Br|u(k)| + Acxc(k) + Bcu(k) + a. (7)

|xc(k)| and |u(k)| is transformed into a linear form with
continuous variables and binary variables by applying the
following lemma.

Lemma 3: For a given vector w ∈ Rn, |w| is rewritten as

|w| = 2z − w,

z(i) = δ(i)w(i), i = 1, 2, . . . , n, (8)[
δ(i) = 1

]
↔

[
w(i) ≥ 0

]
, i = 1, 2, . . . , n (9)
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where z ∈ Rn, δ ∈ {0, 1}n are auxiliary continuous
variables and auxiliary binary variables, respectively. Further,
(9) is a logical formula, and “↔” denotes logical equivalence.

Proof: From (8) and (9), if w(i) ≥ 0 then, z(i) = w(i)

and 2z(i) −w(i) = w(i) hold, and if w(i) < 0 then, z(i) = 0
and 2z(i) − w(i) = −w(i) hold. So 2z(i) − w(i) = |w(i)|
holds.

Note that (8) and (9) can be expressed as linear inequali-
ties. See [6] for further details. Therefore, |xc(k)| and |u(k)|
can be transformed into some linear form with continuous
variables and binary variables.

Thus we obtain the following theorem.
Theorem 1: Suppose that the discrete-time linear system

with parameter uncertainty (3) is given. Then (3) is approx-
imately expressed by the following representation{

x̂(k + 1) = Âx̂(k) + B̂v̂(k) + â,

Ĉx̂(k) + D̂v̂(k) ≤ Ê
(10)

where

x̂(k) =
[

x(k)
x(k)

]
, v̂(k) =

⎡
⎣ u(k)

ẑ(k)
δ̂(k)

⎤
⎦

and ẑ(k) ∈ Rn+m, δ̂(k) ∈ {0, 1}n+m. Â, B̂, â, Ĉ, D̂ and
Ê are some matrices/vectors.

Proof: By applying Lemma 3 to (6) and (7), and by
transforming xc(k), xr(k) into x(k), x(k) via (4), we obtain
(10).

Since from Theorem 1, (10) is equivalent to the MLD
model, we see that discrete-time linear systems with param-
eter uncertainty can be approximately represented as a kind
of hybrid systems. Also, for (10), suppose that x̂(0) and
the input sequence u(0), u(1), . . . , u(f − 1) are given. Then
the problem to find the state sequence x̂(1), x̂(2), . . . , x̂(f)
can be rewritten as a mixed integer feasibility test (MIFT)
problem with continuous variables ẑ(k) and binary variables
δ̂(k). The MIFT problem can be solved by using a suitable
solver, e.g. ILOG CPLEX [14].

IV. MODELING OF DISCRETE-TIME PIECEWISE AFFINE
SYSTEMS WITH PARAMETER UNCERTAINTY

In this section, the result on discrete-time linear systems is
extended to DT-PWA systems, and as well as discrete-time
linear systems, DT-PWA system with parameter uncertainty
is transformed into the MLD model.

Consider the following DT-PWA system with parameter
uncertainty{

x(k + 1) = AI(k)x(k) + BI(k)u(k) + aI(k),
I(k + 1) = I+, if x(k + 1) ∈ SI+

(11)

where

x(k) ∈ [x(k), x̄(k)] , x(k), x̄(k) ∈ X ⊂ Rn,

u(k) ∈ U ⊂ Rm,

AI(k) ∈
[
AI(k), AI(k)

]
, BI(k) ∈

[
BI(k), BI(k)

]
,

aI(k) ∈
[
aI(k), aI(k)

]

and I(k) ∈ M := {1, 2, . . . , M} is the mode of system, M
is the number of modes, X , U are closed and bounded convex
sets. Also, SI , I = 1, 2, . . . , M is the bounded convex
polyhedron satisfying

⋃
I∈M SI = X and SI

⋂SJ = ∅ for
all I �= J ∈ M. For simplicity of discussion, the following
assumption is made for X and SI :

Assumption 1: X and SI , I = 1, 2, . . . , M are expressed
by an interval.

Consider to express the system (11) as the MLD model.
First, a binary variable δi(k) ∈ {0, 1}, i = 1, 2, . . . , M
is assigned to each mode, i.e., we assign δi(k) such as
[δi(k) = 1] ↔ [x(k) ∈ Si]. By using auxiliary binary
variables, this condition can be expressed as a set of linear
inequalities [6]. In the standard DT-PWA systems without
parameter uncertainty, the equality constraint

∑M
i=1 δi(k) =

1 is imposed for guaranteeing the uniqueness of a mode
sequence. However, since the DT-PWA system (11) has
parameter uncertainty, more than one mode may be active.
So in this paper,

∑M
i=1 δi(k) = 1 is not imposed. By using

(10) and δi(k), as an expression to approximately represent
(11), we obtain⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x̂(k + 1) =
M+N∑
I=1

δI(k)
{

ÂI x̂(k) + B̂I v̂I(k) + âI

}
,

M+N∑
I=1

δI(k)
{
ĈI x̂(k) + D̂I v̂I(k)

}
≤

M+N∑
I=1

δI(k)ÊI

(12)

where v̂1(k) = v̂2(k) = · · · = v̂M (k)(= v̂(k)) and v̂I(k) =
[ v̂T (k) ŵT (k) ]T , I = M +1, M +2, . . . , M +N , ŵ(k) is
auxiliary continuous and binary variables. In addition, x̂(k+
1) = ÂI x̂(k) + B̂I v̂I(k) + âI , ĈI x̂(k) + D̂I v̂I(k) ≤ ÊI ,
I = M + 1, M + 2, . . . , N is the state equation in the case
that multiple modes are active simultaneously, and can be
derived by simple calculations (The state interval for each
mode is used). Since [x(k), x(k)] is in general included in
more than one SI(k), it is necessary to derive such a state
equation.

Furthermore, since (12) can be expressed by a linear
state equation and a linear inequality [6], DT-PWA system
with parameter uncertainty of (11) can be approximately
expressed as the following form, i.e., the MLD model{

x(k + 1) = Ax(k) + Bv(k),
Cx(k) + Dv(k) ≤ E

(13)

where x(k) = [xT (k) xT (k)]T ∈ R2n is a vector consisting
the infimum and the supremum of an interval of the state
x(k), and v(k) is given by v(k) = [ uT (k) zT (k) δT (k) ]T ,
u(k) ∈ Rm is the control input, and z(k) ∈ Rm1 , δ(k) ∈
{0, 1}m2 are auxiliary continuous and binary variables, re-
spectively. A, B, C, D, and E are some vector/matrices.

From the above discussion, we see that DT-PWA systems
with parameter uncertainty can be expressed by the MLD
model as well as the standard DT-PWA systems without
parameter uncertainty. Therefore, the controllability problem
and the optimal control problem can be solved in the
framework of the MLD model.

3634



Remark 1: In [12], continuous-time piecewise affine sys-
tems with parameter uncertainty are discretized with respect
to time, using mode transitions in each interval between
sampling points. In this paper, we consider the DT-PWA
system (11) at first. It is one of future works to consider
the case of time-discretized systems.

V. APPLICATION TO ANALYSIS AND CONTROL

In this section, using the obtained model of (13), the
trajectory generation problem, the controllability problem,
and the optimal control problem are discussed.

A. Preliminaries
As a preparation, some matrices are defined. Suppose that

the MLD model (13) and the finite time f are given. First,
a state sequence and an input sequence are denoted by

x̄ := [ xT (0) xT (1) · · · xT (f) ]T ,

v̄ := [ vT (0) vT (1) · · · vT (f − 1) ]T .

Then from the state equation of (13), we obtain

x̄ = Āx(0) + B̄v̄ (14)

where

Ā =

⎡
⎢⎢⎢⎢⎢⎣

I
A
A2

...
Af

⎤
⎥⎥⎥⎥⎥⎦

, B̄ =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 · · · · · · 0
B 0 · · · 0

AB
. . . . . .

...
...

. . . . . . 0
Af−1B · · · AB B

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Note here that these matrices are different to A and B of (3).
Also, B̃ :=

[
Af−1B Af−2 · · · B

]
are defined. Next,

from the linear inequality of (13), we obtain

C̄x̄ + D̄v̄ ≤ Ē

where

C̄ =

⎡
⎢⎣

C 0
. . .

0 C

⎤
⎥⎦ , D̄ =

⎡
⎢⎢⎢⎣

D 0
. . .

0 D
0 · · · 0

⎤
⎥⎥⎥⎦ ,

Ē =
[

ET · · · ET
]T

.

B. Trajectory Generation Problem

Consider the following trajectory generation problem.
Problem 1: Consider the DT-PWA system with parameter

uncertainty (11). Suppose that the terminal time f , the
interval of the initial state X0 = [x0, x0] ⊆ X , and the input
sequence u(0), u(1), . . . , u(f − 1) are given. Then find an
over-approximation of the interval of the state at each time
[x(k), x(k)], k = 1, 2, . . . , f .

This problem can be solved by using the MLD model (13),
i.e., this problem can be transformed into the following MIFT
problem

given x0, u(0), u(1), . . . , u(f − 1)
find v̄

subject to (D̄ + C̄B̄)v̄ ≤ Ē − C̄Āx0

where x0 := [ xT
0 xT

0 ]T . By solving this MIFT problem,
z(k), δ(k), k = 0, 1, . . . , f − 1 are obtained. Furthermore,
from (14), we obtain x̄ as an over-approximation of the
interval of the state.

C. Controllability Problem

Based on [5], [7], we give the definition of controllability.
Definition 1: Suppose that for the system of (11), the

terminal time f , the interval of the initial state X0 =
[x0, x0] ⊆ X , and the interval of the terminal state Xf =
[xf , xf ] ⊆ X are given. Then the system (11) is said to
be (f,X0,Xf )-controllable, if for every x(0) ∈ X0, there
exists an input sequence u(0), u(1), . . . , u(f − 1) such that
[x(f), x(f)] ⊆ [xf , xf ].

In general, X0,Xf are given as convex polyhedra, but in
this paper, for simplicity of discussion, X0,Xf are given as
intervals.

By using the MLD model (13), we can derive a sufficient
condition for the system (11) to be (f,X0,Xf )-controllable.
The result is shown as the following theorem.

Theorem 2: Suppose that the MLD model (13), which
approximately expresses the system (11), is given. Then
the system (11) is (f,X0,Xf )-controllable, if the following
MIFT problem

find v̄

subject to (D̄ + C̄B̄)v̄ ≤ Ē − C̄Āx0[ −I 0
0 I

]
B̃v̄ ≤

[ −xf

xf

]

−
[ −I 0

0 I

]
Afx0

is feasible, where x0 := [ xT
0 xT

0 ]T .
Proof: In Definition 1, the condition [x(f), x(f)] ⊆

[xf , xf ] is equivalent to xf ≤ x(f) and x(f) ≤ xf . Since

x(f) =
[

x(f)
x(f)

]
= Afx(0) + B̃v̄

holds, the second inequality condition of the MIFT problem
is obtained. The first inequality condition corresponds to
the inequality of the MLD model (13). Thus we obtain the
MIFT problem. If the MIFT problem is infeasible, then there
does not exist an input sequence u(0), u(1), . . . , u(f − 1)
satisfying [x(f), x(f)] ⊆ [xf , xf ], i.e., the system (11) is
not (f,X0,Xf )-controllable. This completes the proof.

By solving the MIFT problem in Theorem 2, we can check
the controllability of the system (11).

D. Optimal Control Problem

Since the DT-PWA system with parameter uncertainty
(11) can be expressed as the MLD model (13), we can
consider control problems. For example, we can derive a
controller satisfying a kind of temporal logic constraints, e.g.
time-varying state/input constraints. Such constraints can be
embedded in the MLD model (13). The obtained MLD model
is also time-varying, but this complexity does not produce
any difficulty. On the other hand, in this paper, we consider
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a kind of the optimal control problem with time-invariant
state/input constraints as one of simple control problems.

Consider the following problem.
Problem 2: Consider the MLD model of (13), which ap-

proximately represents the DT-PWA system with parameter
uncertainty (11). Suppose that the initial state x(0) = x0 is
given. Then find v∗(k), k = 0, 1, . . . , f − 1, minimizing the
cost function

J =
f−1∑
i=0

{
xT (i)Qx(i) + vT (i)Rv(i)

}
+ xT (f)Qfx(f)

where Q, Qf are semi-positive matrices, and R is a positive
matrix.

In Problem 2, as one of methods to give weight matrices
Q, Qf and R, we can consider to minimize a weighted sum
of xc(k) and xr(k), which are the center and the radius of
the interval of the state (see (4)). Then the cost function is
given by

J =
f−1∑
i=0

{
xT

c (i)Qcxc(i) + xT
r (i)Qrxr(i) + vT (i)Rv(i)

}

+xT
c (f)Qcfxc(f) + xT

r (f)Qrfxr(f) (15)

=
f−1∑
i=0

{
xT (i)

[
(Qc + Qr)/4 (Qc − Qr)/4
(Qc − Qr)/4 (Qc + Qr)/4

]
x(i)

+vT (i)Rv(i)
}

+xT (f)
[

(Qcf + Qrf )/4 (Qcf − Qrf )/4
(Qcf − Qrf )/4 (Qcf + Qrf )/4

]
x(f)

where Qc, Qcf , Qr, and Qrf are semi-positive matrices,
respectively.

Problem 2 can be transformed into the following mixed
integer quadratic programming (MIQP) problem

min
v̄∈V

v̄T M1v̄ + v̄T M2x0

subject to L1v̄ ≤ L2x0 + L3

where the input set V is a set of (Rm ×Rm1 ×{0, 1}m2)f ,
and M1, M2, L1, L2, L3 are some matrices/vectors.

Remark 2: The MIFT problem and the MIQP problem can
be solved by using a suitable solver, e.g. ILOG CPLEX.
Unfortunately, solving the MIFT problem and the MIQP
problem for large f becomes prohibitive. So it is one of
significant works to decrease the computation time to solve
these problems.

VI. NUMERICAL EXAMPLE

A. Plant

As a numerical example, consider the following piecewise
linear (PWL) system

x(k + 1) = α(k)
[

cos β(k) − sin β(k)
sin β(k) cos β(k)

]
x(k) +

[
0
1

]
u(k)

where α(k) is a uncertain parameter given by α(k) ∈
[0.50, 0.60], and β(k) is given by

β(k) =
{ −π/3, if [ 1 0 ]x(k) < 0,

+π/3, if [ 1 0 ]x(k) ≥ 0,

and state and input constraints are given by[ −10
−10

]
≤ x(k) ≤

[
+10
+10

]
, − 1 ≤ u(k) ≤ +1.

Using the result of Section IV, this PWL system is trans-
formed into the MLD model (13) with n = 2, m = 1,
m1 = 25, m2 = 10. For the obtained MLD system, we will
consider the trajectory generation problem and the optima
control problem.

B. Example 1: Trajectory Generation Problem

First, consider the trajectory generation problem. Suppose
that the terminal time, the interval of the initial state and the
input sequence are given by f = 5,

x0 =
[

x0

x0

]
=

⎡
⎢⎢⎣

−1.05
+0.95
−0.95
+1.05

⎤
⎥⎥⎦ , (16)

and u(0) = u(1) = · · · = u(f − 1) = 0, respectively. Note
here that the initial state is given as an interval, not a point.
Of course, the initial state may be given as a point. The
obtained state trajectory is given by Fig. 1, where we used
ILOG CPLEX 11.0 on the computer with the Intel Core
2 Duo 3.0GHz processor and the 4GB memory. Also, the
computation time to solve this trajectory generation problem
was 0.02 [sec]. From Fig. 1, we see that the state trajectory
converges to a neighborhood of the origin. On the other
hand, in the proposed method, an over-approximation of an
interval is computed by using Lemma 1. Here, comparing
between the obtained approximate trajectory and the accurate
trajectory, the error of the infimum and the supremum of the
state at each time is less than 10−4. So we see that in this
example, the obtained over-approximation is very tight.

C. Example 2: Optimal Control Problem

Next, consider the optimal control problem. In this exam-
ple, we use a cost function (15), and consider the following
two cases, i.e.,

Case 1: Qc = Qcf = 100I2, Qr = Qrf = 02×2,
Case 2: Qc = Qcf = 02×2, Qr = Qrf = 100I2.

In both cases, suppose that the terminal time, the initial state
and the input weighting matrix are given by f = 10, (16)
and R = block-diag(1, 035×35), respectively.

Fig. 2 shows the state trajectory in Case 1, where the box at
each time is suitably omitted. The computation time to solve
the optimal control problem was 2.36 [sec]. From Fig. 2, we
see that the state trajectory converges to a neighborhood of
the origin faster than that in the case of u(0) = u(1) = · · · =
u(f − 1) = 0.

Fig. 3 shows the state trajectory in Case 2, where the box at
each time is suitably omitted. The computation time to solve
the optimal control problem was 20.01 [sec]. Comparing
between Fig. 2 and Fig. 3, it seems that the difference is
small. Note that the cost function of Case 2 is given for
minimizing the radius of an interval of the state at each time.
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Fig. 1. State trajectory for u(k) = 0

Here, a sum of an area of the state interval at each time is
derived as

κ =
f∑

k=0

n∏
i=1

2x(i)
r (k), xr(k) =

1
2
(−x(k) + x(k)).

Then for each case, κ is calculated as follows:
Case of u(k) = 0: κ = 0.1789,
Case 1: κ = 0.1226,
Case 2: κ = 0.0799.

Therefore, we see that in Case 2, the expansion of an area
at each time is restrained.

VII. CONCLUSION

In this paper, for discrete-time piecewise affine systems
with parameter uncertainty, applying of interval methods has
been proposed. By approximately using interval arithmetic,
discrete-time uncertain hybrid systems can be expressed as
the MLD model. From the result of this paper, we will give
a new viewpoint for the MLD model framework.

Some of future works have been already explained (see
Remarks 1 and 2). As other future works, it is one of
interesting works to clarify the relation between the proposed
method and predicate abstraction techniques [4], which are
one of discrete abstraction techniques of hybrid systems [3].
Furthermore, the relation to the concept of box invariance
[1], [2] is also interesting.
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