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Abstract— This paper investigates the problem of H∞ filter-
ing for discrete-time switched linear systems under arbitrary
switching laws. New LMI-based conditions for the solvability
of the problem are given via switched quadratic Lyapunov
functions. By Finsler’s Lemma, two sets of slack variables
with special structure are introduced to provide extra degrees
of freedom in optimizing the guaranteed H∞ performance.
Compared with the existing methods, the proposed method has
better performances and less conservatism. An example is given
to illustrate the effectiveness of the method.

I. INTRODUCTION

A switched system is a hybrid dynamical system con-

sisting of a finite number of subsystems and a logical

rule that orchestrates switching between these subsystems

[1]. Switched systems have received a great deal of atten-

tion in recent years, see [1]-[10] and references therein.

The motivation for studying switched systems comes partly

from the fact that switched systems and switched multi-

controller systems have numerous applications in control of

mechanical systems, process control, automotive industry,

power systems, aircraft and traffic control, and many other

fields. The problems encountered in switched systems can

be classified into three categories [1]. The first one is to

construct a switching signal that makes the switched systems

asymptotically stable. The second one is to identify certain

useful classes of switching signals for which the switched

system is asymptotically stable. And the third one, which is

interested in this paper, is to find conditions that guarantee

that the switched systems are asymptotically stable under any

switching signal.

On the other hand, state estimation has been widely

studied and has found many practical applications over the

past decades. When a priori statistical information on the

external disturbance signals is not known, Kalman filtering

cannot be employed. To address this issue, H∞ filtering

was introduced, in which the external disturbance signal is

assumed to be energy bounded and the main objective is
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to minimized the H∞ norm of the filtering error system.

Compared to H2 filtering, the advantages of H∞ filtering

are twofold. First, the assumption of boundness of the noise

variance is loosened. Second, the H∞ filter tends to be more

robust when there exist additional uncertainties in systems,

such as quantization errors, delays, and unmodeled dynamics

[11]. Broadly, there are two approaches to H∞ filtering:

one is the frequency-domain approach [12]-[14]; the other

is the state-space approach [15]-[19]. Particularly, the LMI

approach to robust H∞ filtering in state-space formulation

is more powerful in numerical computations and suitable for

handling the optimization problems with multiple constraints

[15]-[19].

This paper investigates the H∞ filtering problem for

discrete-time switched linear systems under arbitrary switch-

ing laws. New LMI-based conditions for the solvability of

the problem are given via switched quadratic Lyapunov

functions. More importantly, based on Finsler’s Lemma, two

sets of slack variables with special structure are introduced

to facilitate the filtering design and to provide extra degrees

of freedom in optimizing the guaranteed H∞ performance.

Compared to the existing methods, the proposed method has

better performances and less conservatism.

The rest of the paper is organized as follows. Section 2

gives the problem statement. Section 3 presents a new H∞

filtering design approach to discrete-time switched linear

systems. In Section 4, the proposed method is compared

with the existing methods. In Section 5, an example is given

to illustrate effectiveness of the proposed method. Finally,

Section 6 gives some concluding remarks.

Notations: We use standard notations throughout this

paper. MT is the transpose of the matrix M . M > 0
(M < 0) means that M is positive definite (negative

definite). The symbol ∗ within a matrix represents the

symmetric entries. The Hermitian part of a square matrix M
is denoted by He(M) := M +MT . l2 is the Lebesgue space

consisting of all discrete-time vector-valued functions that

are square-summable over [0, 1, 2, . . . ,∞). The l2-norm of a

causal vector signal x(k) with bounded-energy is ‖x(k)‖2 =

(
∞
∑

k=0

‖x(k)‖
2
)1/2.

II. PRELIMINARIES AND PROBLEM STATEMENT

Consider the following discrete-time switched system






x(k + 1) = Aσ(k)x(k) + Bσ(k)w(k))
y(k) = Cσ(k)x(k) + Dσ(k)w(k)
z(k) = Lσ(k)x(k)

(1)

where x(k) ∈ R
n is the system state, y(k) ∈ R

q is the

measurement, z(k) ∈ R
p is the signal to be estimated,
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w(k) ∈ R
m is the noise input which is assumed to l2[0,∞).

The switching rule σ(k) takes values in the finite set I =
{1, . . . , N} and it changes its value at an arbitrary discrete

time. The switched system can be described by the set of

modes

{(Ai, Bi, Ci, Di, Li)|i ∈ I}

and the evolution of σ(k) gives the switching sequence

among these modes. As in [21], it is assumed here that the

switching rule σ(k) is not known a priori, but its value is

real-time available.

Define the indicator functions

µ(k) = [µ1(k), . . . , µN (k)]T (2)

with

µi(k) =

{

1, σ(k) = i
0, otherwise

then (1) can be written in the form (
∑

p):































x(k + 1) =
N
∑

i=1

µi(k)Aix(k) +
N
∑

i=1

µi(k)Biw(k)

y(k) =
N
∑

i=1

µi(k)Cix(k) +
N
∑

i=1

µi(k)Diw(k)

z(k) =
N
∑

i=1

µi(k)Lix(k)

(3)

Here, we are interested in designing a filter described by

(
∑

f ):

x̂(k + 1) =
N

∑

i=1

µi(k)Âix̂(k) +
N

∑

i=1

µi(k)B̂iy(k)

ẑ(k) =
N

∑

i=1

µi(k)L̂ix̂(k) +
N

∑

i=1

µi(k)D̂iy(k) (4)

where x̂(k) ∈ R
n and ẑ(k) ∈ R

p and the matrices Âi, B̂i, L̂i

and D̂i are to be determined.

Combining (3) with (4), we obtain the following filter error

system (
∑

e):

ξ(k + 1) =

N
∑

i=1

µi(k)Acl,iξ(k) +

N
∑

i=1

µi(k)Bcl,iw(k)

z̃(k) =
N

∑

i=1

µi(k)Ccl,iξ(k) +
N

∑

i=1

µi(k)Dcl,iw(k) (5)

where ξ(k) = [x(k)T , x̂(k)T ]T , z̃(k) = z(k) − ẑ(k), and

Acl,i =

[

Ai 0

B̂iCi Âi

]

, Bcl,i =

[

Bi

B̂iDi

]

Ccl,i =
[

Li − D̂iCi −L̂i

]

, Dcl,i = −D̂iDi (6)

The H∞ filtering problem in this paper can be formu-

lated as follows: given a discrete-time switched system
∑

p,

design a filter
∑

f such that the filter error system
∑

e is

asymptotically stable and satisfies the H∞ performance

‖z̃(k)‖2 < γ ‖w(k)‖2 (7)

for all nonzero w(k) ∈ l2[0,∞) and a given positive constant

γ.

In the following, we investigate the filtering problem using

the switched quadratic Lyapunov function defined as follows

[21]

V (k, ξ(k)) = ξ(k)T Pσ(k)ξ(k) = ξ(k)T (
N

∑

i=1

µi(k)Pi)ξ(k)

(8)

where Pi, i = 1, . . . , N are symmetric positive-definite

matrices. For the filter error system
∑

e without disturbances,

if such a positive-definite Lyapunov function exists and

∆V (k, ξ(k)) = V (k + 1, ξ(k + 1)) − V (k, ξ(k)) (9)

is negative definite along all possible trajectories of the

system, then it is asymptotically stable.

The following lemma is useful throughout the paper.

Lemma 1 [23]: (Finsler’s Lemma) Let that ξ ∈ R
n,P =

PT ∈ R
n×n, and H ∈ R

m×n such that rank(H) = r < n,

then the following statements are equivalent:

i) ξTPξ < 0, for all ξ 6= 0,Hξ = 0;

ii) ∃X ∈ R
n×m such that P + XH + HTX T < 0.

Note that the condition ii) remain sufficient for i) to hold

even arbitrary constraints are imposed to the scaling matrices

X .

III. H∞ FILTERING DESIGN

In this section, we will present a new H∞ filtering ap-

proach to discrete-time switched linear systems
∑

p. Firstly,

based on switched quadratic Lyapunov function and Finsler’s

lemma, the following lemma is obtained.

Lemma 2: Given a constant γ > 0, the filter error system
∑

e is asymptotically stable with H∞ performance γ, if there

exist symmetric positive definite matrices Pi, and matrices

Gi, Fi, i ∈ I such that the following inequalities are satisfied








Pj − Gi − GT
i 0 GiAcl,i − FT

i GiBcl,i

∗ −I Ccl,i Dcl,i

∗ ∗ −Pi + He{FiAcl,i} FiBcl,i

∗ ∗ ∗ −γ2I









< 0, ∀(i, j) ∈ I × I
(10)

Proof: First, we establish the stability of filter error

system
∑

e. When w(k) = 0, the first equality of (5)

becomes

ξ(k + 1) = Acl,iξ(k), i ∈ I (11)

which can be written in the form
[

−I Acl,i

]

[

ξ(k + 1)
ξ(k)

]

= 0, i ∈ I (12)

By simple congruence transformation on (10), we obtain








−I 0 Ccl,i Dcl,i

∗ Pj − Gi − GT
i GiAcl,i − FT

i GiBcl,i

∗ ∗ −Pi + He{FiAcl,i} FiBcl,i

∗ ∗ ∗ −γ2I









< 0, ∀(i, j) ∈ I × I
(13)
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From (13), we have
[

Pj − Gi − GT
i GiAcl,i − FT

i

∗ −Pi + FiAcl,i + AT
cl,iF

T
i

]

< 0

∀(i, j) ∈ I × I (14)

The inequalities (14) are rewritten as
[

Pj 0
0 −Pi

]

+ He{

[

Gi

Fi

]

[

−I Acl,i

]

} < 0

∀(i, j) ∈ I × I (15)

Based on Finsler’s lemma, (15) are equivalent to

[

ξ(k + 1)
ξ(k)

]T [

Pj 0
0 −Pi

] [

ξ(k + 1)
ξ(k)

]

< 0,

∀(i, j) ∈ I × I (16)

that is

ξ(k + 1)T Pjξ(k + 1) − ξ(k)T Piξ(k) < 0 (17)

Multiply (17) by µi(k) and µi(k + 1) = µj(k) and sum

them over the indices i and j ranging from 1 to N . As
∑N

i=1 µi(k) =
∑N

j=1 µj(k) = 1, we have

V (k + 1, ξ(k + 1)) − V (k, ξ(k)) < 0, ∀(i, j) ∈ I × I
(18)

which establishes the stability of the system
∑

e.

Then, we consider the H∞ performance. The inequalities

(10) can be written in the following form

Pij + XiHi + HT
i X

T
i < 0, ∀(i, j) ∈ I × I (19)

where

Pij =









Pj 0 0 0
0 I 0 0
0 0 −Pi 0
0 0 0 −γ2I









,

Xi =









Gi 0
0 I
Fi 0
0 0









,

Hi =

[

−I 0 Acl,i Bcl,i

0 −I Ccl,i Dcl,i

]

(20)

Define the augmented signal

η(k) =









ξ(k + 1)
z̃(k)
ξ(k)
w(k)









(21)

then the system
∑

e can be written as follows

Hiη(k) = 0 (22)

Based on Finsler’s lemma, if (19) hold then the following

inequalities hold

η(k)TPijη(k) < 0, ∀(i, j) ∈ I × I (23)

Substituting (20) and (21) into (23) obtains

ξ(k + 1)T Pjξ(k + 1) − ξ(k)T Piξ(k)

< γ2w(k)T w(k) − z̃(k)T z̃(k), ∀(i, j) ∈ I × I (24)

Multiplying (24) by µi(k) and µi(k + 1) = µj(k) and

summing them over the indices i and j ranging from 1 to

N , we have

V (k + 1, ξ(k + 1)) − V (k, ξ(k))

< γ2w(k)T w(k) − z̃(k)T z̃(k), ∀(i, j) ∈ I × I (25)

Summing over the index k ranging from 0 to ∞, it follows

that 0 < V (∞) < γ2 ‖w(k)‖
2
2 − ‖z̃(k)‖

2
2 for all nonzero

w(k) ∈ ℓ2 and ξ(0) = 0. Therefore ‖z̃(k)‖2 < γ ‖w(k)‖2.

And thus we complete the proof.

Remark 1: In Lemma 2, by the aid of Finsler’s lemma,

two sets of slack variables Gi, Fi, i ∈ I are introduced to

separate Lyapunov matrices Pi from system matrices Acl,i

and to provide extra degrees of freedom in optimizing the

guaranteed H∞ performance. This leads to performance im-

provement and reduction of conservatism in filtering design.

In addition, switched quadratic Lyapunov functions instead

of common quadratic Lyapunov functions are used to reduce

the conservatism further. Note that the method of introducing

two slack variables to reduce the conservativeness of robust

stability and filtering problems for linear systems was first

introduced in [24] and [17], respectively.

Now we partition Lyapunov matrices Pi, i ∈ I in the

following blocked matrices

Pi =

[

Pi11 Pi12

PT
i12 Pi22

]

(26)

where Pi11 = PT
i11 > 0, Pi22 = PT

i22 > 0, and the

dimensions of Pi11 and Pi22 are consistent with those of Ai

and Âi, respectively. Motivated by [17], let slack variables

Gi and Fi, i ∈ I have the following structure

Gi =

[

Gi11 Gi2

Gi21 Gi2

]

, Fi =

[

Fi11 λ1Gi2

Fi21 λ2Gi2

]

(27)

where λ1, λ2 are scalar parameters and the dimensions of

Gi11, Fi11 and Gi2 are consistent with those of Ai and Âi

respectively.

Based on Lemma 2 and (26), (27), we have the following

theorem to solve the H∞ filtering problem.

Theorem 1: The filter error system
∑

e is asymptoti-

cally stable with H∞ performance γ, if for some scalars

λ1, λ2, there exist symmetric matrices Pi11, Pi22 and matri-

ces Pi12, Gi11, Gi21, Gi2, Fi11, Fi21, Ti1, Ti2, Ti3, Ti4, i ∈ I
such that
















Ξ11 Ξ12 0 Ξ14 Ξ15 Gi11Bi + Ti2Di

∗ Ξ22 0 Ξ24 Ξ25 Gi21Bi + Ti2Di

∗ ∗ −I Ξ34 −Ti3 −Ti4Di

∗ ∗ ∗ Ξ44 Ξ45 Fi11Bi + λ1Ti2Di

∗ ∗ ∗ ∗ Ξ55 Fi21Bi + λ2Ti2Di

∗ ∗ ∗ ∗ ∗ −γ2I

















< 0

∀(i, j) ∈ I × I
(28)
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where

Ξ11 = Pj11 − Gi11 − GT
i11

Ξ12 = Pj12 − Gi2 − GT
i21

Ξ14 = Gi11Ai + Ti2Ci − FT
i11

Ξ15 = Si1 − FT
i21

Ξ22 = Pj22 − Gi2 − GT
i2

Ξ24 = Gi21Ai + Ti2Ci − λ1G
T
i2

Ξ25 = Si1 − λ2G
T
i2

Ξ34 = Li − Ti4Ci

Ξ44 = −Pi11 + He{Fi11Ai + λ1Ti2Ci}

Ξ45 = −Pi12 + λ1Ti1 + AT
i FT

i21 + λ2C
T
i TT

i2

Ξ55 = −Pi22 + λ2Ti1 + λ2T
T
i1

The filter is given by

Âi = G−1
i2 Ti1, B̂i = G−1

i2 Ti2, L̂i = Ti3, D̂i = Ti4

Proof: Let Gi2Âi = Ti1, Gi2B̂i = Ti2, L̂i = Ti3 and

D̂i = Ti4. Substituting (27) into (10) immediately obtains

(28).

Remark 2: The special structure of (27) was firstly

introduced in [17] to design robust filtering for uncertain

linear systems. It simplified the filtering design and reduced

the conservatism.

Letting Fi = 0, Theorem 1 reduces to the following

corollary.

Corollary 1: The filter error system
∑

e is

asymptotically stable with H∞ performance γ, if

there exist symmetric matrices Pi11, Pi22 and matrices

Pi12, Gi11, Gi21, Gi2, Ti1, Ti2, Ti3, Ti4, i ∈ I satisfying the

following LMIs
















Ω11 Ω12 0 Ω14 Ti1 Ω16

∗ Ω22 0 Ω24 Ti1 Ω26

∗ ∗ −I Ω34 −Ti3 −Ti4Di

∗ ∗ ∗ −Pi11 −Pi12 0
∗ ∗ ∗ ∗ −Pi22 0
∗ ∗ ∗ ∗ ∗ −γ2I

















< 0

∀(i, j) ∈ I × I
(29)

where

Ω11 = Pj11 − Gi11 − GT
i11

Ω12 = Pj12 − Gi2 − GT
i21

Ω14 = Gi11Ai + Ti2Ci

Ω16 = Gi11Bi + Ti2Di

Ω22 = Pj22 − Gi2 − GT
i2

Ω24 = Gi21Ai + Ti2Ci

Ω26 = Gi21Bi + Ti2Di

Ω34 = Li − Ti4Ci

The filter is given by

Âi = G−1
i2 Ti1, B̂i = G−1

i2 Ti2, L̂i = Ti3, D̂i = Ti4.

Remark 3: Corollary 1 can also be deduced form Theorem

1 in [20] without considering uncertainties. Due to the fact

that only one set of slack variables are introduced, Corollary

1 is more conservative than Theorem 1.

IV. COMPARISON WITH THE EXISTING METHODS

Using the methods in [18], [19] and [22], we can easily

obtain the following lemmas to solve the H∞ filtering

problem, respectively.

Lemma 3 [18]: The filter error system
∑

e is asymptot-

ically stable with H∞ performance γ, if there symmetric

matrices Y, Z and matrices Q,G, F satisfying the following

LMIs:
















Z Z ZAi ZAi ZBi 0
∗ Y Λ23 Λ24 Λ25 0
∗ ∗ Z Z 0 LT

i − GT

∗ ∗ ∗ Y 0 LT
i

∗ ∗ ∗ ∗ I 0
∗ ∗ ∗ ∗ ∗ γ2I

















> 0, ∀i ∈ I

(30)

where

Λ23 = Y Ai + FCi + Q

Λ24 = Y Ai + FCi

Λ25 = Y Bi + FDi

and the filter is given by

Âi = −Y −1Q(I − Y −1Z)−1,

B̂i = −Y −1F,

L̂i = G(I − Y −1Z)−1,

D̂i = 0.

Lemma 4 [19]: The filter error system
∑

e is asymptot-

ically stable with H∞ performance γ, if there symmetric

matrices Ri11, Ri22 and matrices Ri12,Mi, Ei,Hi, i ∈ I and

X, Y, S satisfying the following LMIs:
















−Rj11 −RT
j12 AiX Ai Bi 0

∗ −Rj22 Mi Υ24 Υ25 0
∗ ∗ Υ33 Υ34 0 Υ36

∗ ∗ ∗ Υ44 0 LT
i

∗ ∗ ∗ ∗ −γ2I 0
∗ ∗ ∗ ∗ ∗ −I

















< 0

∀(i, j) ∈ I × I
(31)

where

Υ24 = Y Ai + EiCi

Υ25 = Y Bi + EiDi

Υ33 = Ri11 − (X + XT )

Υ34 = RT
i12 − (I + ST )

Υ36 = (LiX − Hi)
T

Υ44 = Ri22 − (Y + Y T )
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and the filter is given by

Âi = V −1[Mi − Y AiX − EiCiX]U−1

B̂i = V −1Ei

L̂i = HiU
−1

D̂i = 0

V U = S − Y X

Lemma 5 [22]: The filter error system
∑

e is asymptot-

ically stable with H∞ performance γ, if there symmetric

matrices Si, Ni and matrices Mi,Hi, Ei, Qi, Ri, i ∈ I and

X, Y,W, satisfying the following LMIs:
















Γ11 ∗ ∗ ∗ ∗ ∗
Γ21 Γ22 ∗ ∗ ∗ ∗
0 0 γI ∗ ∗ ∗

AiX Ai Bi Sj ∗ ∗
Qi Γ52 EiDi + Y Bi Mj Nj ∗
Γ61 Γ62 −RiDi 0 0 γI

















> 0

∀(i, j) ∈ I × I (32)

where

Γ11 = X + XT − Si

Γ21 = I + W − Mi

Γ22 = Y + Y T − Ni

Γ52 = Y Ai + EiCi

Γ61 = LiX − Hi

Γ62 = Li − RiCi

and the filter is given by

Âi = V −1[Qi − Y AiX]U−1

B̂i = V −1Ei

L̂i = (Hi − RiCiX)U−1

D̂i = Ri

V U = W − Y X

Remark 4: Lemma 3 is Theorem 5 in [18], which can

be used to design H∞ filtering for discrete-time switched

systems. Lemma 4 is deduced from Theorem 3 in [19]

without considering time delay. And Lemma 5 is deduced

from Theorem 5 in [22]. The deduction of these lemmas is

straightforward, so the proofs are omitted here.

Remark 5: Note that Lemma 3 is based on common

quadratic Lyapunov functions, while Lemmas 4-5, Corollary

1, and Theorem 1 are based on switched quadratic Lyapunov

functions. So the latter are less conservative than the former.

In Lemmas 4-5, only one slack variable is introduced to

facilitate the filtering design. In Corollary 1, one set of

slack variables Gi are introduced. However, in Theorem

1, two set of slack variables Gi and Fi are introduced,

which enlarge the solution space for the H∞ optimization

and thus can reduce the conservatism of filtering design and

improve the H∞ performance. Therefore, Theorem 1 is the

least conservative among all the above methods. A numerical

example will be given to compare the conservatism of these

methods in the following section.

V. EXAMPLE

In this section, an example is presented to illustrate the

effectiveness of the proposed method.

Consider the switched system
∑

p with N = 3 and

A1 =

[

0.6 0.15
0.3 −0.4

]

, B1 =

[

−0.4
0.5

]

,

C1 =
[

0.35 −0.5
]

, D1 = 0.04, L1 =
[

2.4 −1.3
]

,

A2 =

[

0.3 −0.1
0.2 −0.16

]

, B2 =

[

1.5
0.1

]

,

C2 =
[

1.2 0.7
]

, D2 = 0.15, L2 =
[

0.2 0.5
]

,

A3 =

[

0.5 −0.2
1 0.3

]

, B3 =

[

−0.2
0.5

]

,

C3 =
[

0.2 0.5
]

, D3 = −0.025, L3 =
[

0.4 0.33
]

.

The purpose here is to design an H∞ filter for the switched

system above. By Theorem 1 with λ1 = −0.4, λ2 = −0.3,

a filter in the form
∑

f is obtained as follows:

Â1 =

[

0.0532 0.1207
−0.0493 −0.1086

]

, B̂1 =

[

−0.2074
−1.0160

]

,

L̂1 =
[

0.0346 0.5214
]

, D̂1 = 3.1807

Â2 =

[

−0.1187 0.1008
−0.0231 −0.2330

]

, B̂2 =

[

0.1687
−0.1748

]

,

L̂2 =
[

0.1713 0.1188
]

, D̂2 = 0.3466,

Â3 =

[

−0.1541 −0.3065
−0.1099 −0.2219

]

, B̂3 =

[

−16.1838
−10.2806

]

,

L̂3 =
[

0.0346 0.5214
]

, D̂3 = 3.1807.

and the optimal H∞ norm γmin = 1.4022. The switching

signal is generated randomly and shown in Fig. 1. Given

the initial conditions x(0) =
[

−0.2 0.3
]T

and x̂(0) =
[

0 0
]T

, and the noise signal is chosen as w(k) =
1/(10k + 1), which belongs to l2[0,∞). Then, the state

responses of the plant and the filter are shown in Fig. 2 and

Fig. 3, respectively. And the filter error response is shown

in Fig. 4. From Figs. 2-4, we know that the H∞ filter meets

the specified requirements and works well.

0 50 100 150 200
0

0.5

1

1.5

2

2.5

3

3.5

4

Fig. 1. Switching signal

According to Lemmas 3-5, Corollary 1, and Theorem 1,

the optimal H∞ performances, γmin, are listed in Table 1.

It is clear that Theorem 1 is the least conservative.
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Fig. 2. State response of x(k)
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Fig. 3. State response of x̂(k)

Table 3 H∞ performance index

Methods Lem. 3 Lem. 4 Lem. 5 Cor. 1 Thm. 1

γmin 4.2332 3.4347 2.1276 1.7705 1.4022

VI. CONCLUSION

This paper is concerned with the problem of H∞ filtering

for a class of discrete-time switched linear systems. New

LMI-based conditions for the solvability of the problem

have been given via switched quadratic Lyapunov functions

combined with Finsler’s lemma. Compared to the existing

methods, the proposed one has better performances and less

conservatism. An example has also been given to illustrate

the effectiveness of the method.
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