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Abstract— This paper investigates the problem of H∞ static
output feedback (SOF) control for discrete-time switched linear
systems with average dwell time switching. By using the mul-
tiple Lyapunov function technique, a switched SOF controller
is designed such that the closed-loop system is exponentially
stable and achieves a weighted L2-gain. Sufficient conditions
for SOF control are derived and formulated in terms of linear
matrix inequalities (LMIs). The minimal average dwell time
and the corresponding SOF controller are obtained from the
LMI conditions for a given system decay degree. Additionally,
based on Finsler’s lemma, two sets of slack variables with
special structure are introduced to provide extra freedom in
the LMI optimization problem, which leads to reduction of
the conservatism and improvement of the performance. A
numerical example is given to illustrate the effectiveness of
the proposed method.

I. INTRODUCTION

As an important class of hybrid systems, switched systems

consist of a finite number of subsystems and a logical rule

that orchestrates switching between these subsystems. In

recent years, switched systems have received a great deal of

attention, see [1]-[5] and references therein. The motivation

for studying switched systems comes partly from the fact that

switched systems and switched multi-controller systems have

numerous applications in control of mechanical systems,

process control, automotive industry, power systems, aircraft

and traffic control, and many other fields. The problems

encountered in switched systems can be classified into three

categories [1]. The first one is to find conditions which

guarantee that switched systems are asymptotically stable

under any switching signal. The second one is to construct a

switching signal that makes switched systems asymptotically

stable. And the third one, which is of interest in this paper,

is to identify certain useful classes of switching signals for

which switched systems are asymptotically stable. In the

study of switched systems, several approaches have been
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used such as multiple Lyapunov function approach [6]-

[9], dwell time (average dwell time) approach [11]-[15],

switched quadratic Lyapunov function approach [23] and so

on. Among them, the multiple Lyapunov function technique

which was proposed in [6] and later generalized in [7]-[9],

has proved to be a powerful and effective tool for stability

analysis and synthesis of switched systems. Meanwhile,

switched systems with dwell time (or average dwell time)

are also called slowly switched systems. And the average

dwell time appproach is recognized to be more flexible and

efficient in stability analysis of switched systems [11][13].

It is also well-known that SOF control is very useful

and more realistic, since it can be easily implemented with

low cost. The problem has been extensively studied in the

past decades and for the SOF control problem of linear

systems, there are various approaches to deal with it, see

for example [16]-[22] and references therein. The problem

of SOF control for discrete-time switched linear systems

under arbitrary switching has been studied in [23]-[25] and

sufficient existence conditions are obtained in terms of LMIs

via the switched quadratic Lyapunov function approach.

However, the switched quadratic Lyapunov function ap-

proach is not suitable to analyze the slowly switched systems

(i.e., switched systems with average dwell time switching)

due to the stricter requirements on the Lyapunov values at

each switching time. Therefore, the existing methods in [23]-

[25] cannot be applied to design SOF controllers for slowly

switched linear systems. To the best of our knowledge,

few results are available in the open literature to solve this

problem.

In this paper, we investigates the problem of H∞ SOF con-

trol for discrete-time switched linear systems with average

dwell time switching. By using the multiple Lyapunov func-

tion technique combined with average dwell time approach,

a switched SOF controller is designed such that the closed-

loop switched system is exponentially stable and achieves a

weighted L2-gain. Sufficient conditions for SOF control are

derived and formulated in terms of LMIs. And consequently

the minimal average dwell time and the corresponding SOF

controller gains are obtained from the LMI conditions for

a given decay degree. In addition, by Finsler’s lemma, two

sets of slack variables with special structure are introduced

to provide extra freedom in the LMI optimization problem,

which lead to reducing the conservatism and improving the

performance. A numerical example is given to illustrate the

effectiveness of the proposed method.

The rest of the paper is organized as follows. Section 2

gives preliminaries and the problem statement. Section 3 is
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the main result of the paper. First, several essential lemmas

are given. Then, based on these lemmas, an SOF controller

and the minimal average dwell time are obtained in terms of

LMIs. Section 4 gives a numerical example to illustrate the

effectiveness of the proposed method. Finally, conclusions

are given in Section 5.

Notations: We use standard notations throughout this

paper. MT is the transpose of the matrix M . M > 0(M <
0) means that M is positive definite (negative definite).

The symbol ∗ will be used in some matrix expressions to

induce a symmetric structure. The Hermitian part of a square

matrix M is denoted by He(M) := M + MT . ℓ2 is the

Lebesgue space consisting of all discrete-time vector-valued

functions that are square-summable over [0, 1, 2, . . . ,∞).
The ℓ2-norm of a causal vector signal x(k) with bounded-

energy is ‖x(k)‖2 = (
∞
∑

k=0

‖x(k)‖
2
)1/2. N represents the set

of nonnegative integers.

II. PRELIMINARIES AND PROBLEM STATEMENT

Consider the following discrete-time switched linear sys-

tem

x(k + 1) = Aσ(k)x(k) + Bσ(k)u(k) + Bw
σ(k)w(k)

z(k) = Cz
σ(k)x(k) + Dσ(k)u(k) + Dw

σ(k)w(k) (1)

y(k) = Cσ(k)x(k)

where x(k) ∈ R
n is the state, u(k) ∈ R

p is the control

input, w(k) ∈ R
m is the disturbance input which belongs to

ℓ2[0,∞), y(k) ∈ R
r is the measurement, and z(k) ∈ R

q is

the controlled output. σ(k) : [0,∞) → I = {1, . . . , N} is

the switching signal which is assumed to be a piecewise

continuous function depending on time or state or both.

N > 1 is the number of subsystems. The ith subsystem

is denoted by constant matrices Ai, Bi, B
w
i , Cz

i , Di, D
w
i , Ci

with the appropriate dimensions. For the switching time

sequence k0 < k1 < k2 < . . . of switching signal σ,

the holding time [kl, kl+1) is called the dwell time of the

currently engaged subsystem, where l ∈ N.

Without loss of generality, we assume that Ci, i ∈ I are

of full row rank, then there exist nonsingular transformation

matrices Ti such that

CiTi =
[

I 0
]

(2)

Note that for given Ci, the corresponding Ti are generally

not unique. Special Ti can be obtained as follows:

Ti =
[

CT
i (CiC

T
i )−1 C⊥

i

]

(3)

where C⊥

i denotes an orthogonal basis for the null space of

Ci.

Definition 1: The equilibrium x = 0 of system (1) is

said to be exponentially stable under switching signal σ(k),
if there exist constants K > 0, 0 < β < 1 such that the

solution x(k) of system (1) with w = 0 satisfies ‖x(k)‖ ≤
Kβk−k0 ‖x(k0)‖, ∀k ≥ k0.

Definition 2 [13] [15]: For γ > 0 and 0 < α < 1, system

(1) is said to have a weighted L2-gain, if under zero initial

condition x = 0, it holds that

∞
∑

s=k0

(1 − α)szT (s)z(s) ≤

∞
∑

s=k0

γ2wT (s)w(s) (4)

for all nonzero w(k) ∈ l2[0,∞).
Definition 3 [11]: For any k0 < ks < kv , let Nσ(k)(ks, kv)

denotes the switching number of σ(k) over (ks, kv). If

Nσ(k)(ks, kv) ≤ N0 + (kv − ks)/τa for τa > 0, N0 ≥ 0,

then τa is called average dwell time.

In this paper, we are interested in designing a switched

SOF controller

u(k) = Kiy(k) (5)

where Ki, i ∈ I are to be determined. The SOF controller (5)

is assumed to be switched synchronously by the switching

signal σ in system (1).

Under the controller (5), the closed-loop switched system

becomes

x(k + 1) = Aclix(k) + Bcliw(k)

z(k) = Cclix(k) + Dcliw(k), i ∈ I (6)

where

Acli = Ai + BiKiCi

Bcli = Bw
i

Ccli = Cz
i + DiKiCi

Dcli = Dw
i (7)

Then, the problem of H∞ SOF control to be addressed in

this paper is formulated as follows. Given a switched system

(1) and a prescribed level of disturbance attenuation γ > 0,

design a switched SOF controller (5) and find out admissible

switching signals with the minimal average dwell time such

that the closed-loop system (6) is exponentially stable and

achieve a prescribed weighted L2-gain.

The following multiple Lyapunov function with the form

V (xk) , xT
k Pσ(k)xk, σ(k) ∈ I (8)

will be used in the sequel.

III. MAIN RESULTS

This section gives the main result of the paper. First,

several lemmas are given which are essential for later de-

velopment.

Lemma 1: (Finsler’s Lemma) Let that ξ ∈ R
n,P = PT ∈

R
n×n, and H ∈ R

m×n such that rank(H) = r < n, then

the following statements are equivalent:

i) ξTPξ < 0, for all ξ 6= 0,Hξ = 0;

ii) ∃X ∈ R
n×m such that P + XH + HTX T < 0.

Remark 1: Note that the condition ii) remains sufficient

for i) to hold even arbitrary constraints are imposed to the

scaling matrices X .

Lemma 2 [2][15]: Consider the discrete-time switched

system xk+1 = fσ(xk), σ ∈ I and let 0 < α < 1, µ > 1
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be given constants. Suppose that there exists a Lyapunov

function candidate V (x) = {Vσ(x)}, σ ∈ I satisfying the

following properties:

∆Vσ(k)(xk) , Vσ(k)(xk+1) − Vσ(k)(xk) ≤ −αVσ(k)(xk),

∀k ∈ [kl, kl+1)
(9)

Vσ(kl)(xkl
) ≤ µVσ(kl−1)(xkl

)
(10)

then the system is exponentially stable for any switching

signal with the average dwell time

τa ≥ τ∗

a = ceil

[

−
lnµ

ln(1 − α)

]

(11)

where function ceil(v) represents rounding real number v to

the nearest integer greater than or equal to v.

Lemma 3: Let 0 < α < 1, γ > 0 and µ > 1 be given

constants. If the following inequalities are satisfied

∆Vσ(k)(k) + αVσ(k)(k) + zT (k)z(k) − γ2wT (k)w(k) < 0,

∀k ∈ [kl, kl+1)
(12)

Vσ(kl)(kl) − µVσ(kl−1)(kl) ≤ 0
(13)

then the system (6) has a weighted L2-gain for any switching

signal with the average dwell time satisfying (11).

Proof: Due to the limit of the space, it is omitted.

Based on Lemmas 1-3, the following theorem is given to

solve the H∞ SOF control problem.

Theorem 1: Let α > 0, γ > 0 and µ > 1 be given

constants. If there exist symmetric matrices Pi ∈ R
n×n,

scalar λ and matrices Gi ∈ R
n×n, Fi ∈ R

n×n, Li ∈ R
m×n,

∀i ∈ I with the following structure

Gi =

[

Gi11 0
Gi21 Gi22

]

, Fi =

[

λGi11 0
Fi21 Fi22

]

,

Li =
[

Li1 0
]

(14)

satisfying the following inequalities








Ξ11 ∗ ∗ ∗
0 −I ∗ ∗

Ξ31 T−1
i Bw

i Ξ33 ∗
Ξ41 Dw

i Ξ43 −γ2I









< 0 (15)

Pi − µPj ≤ 0 (16)

where

Ξ11 = T−1
i PiT

−T
i − Gi − GT

i

Ξ31 = T−1
i AiTiGi + T−1

i BiLi − FT
i

Ξ33 = He{(T−1
i AiTiFi + λT−1

i BiLi)}

− (1 − α)T−1
i PiT

−T
i

Ξ41 = Cz
i TiGi + DiLi

Ξ43 = Cz
i TiFi + λDiLi

and Ti are given by (3), then the closed-loop system (6)

is exponentially stable and has a weighted L2-gain for any

switching signal with the average dwell time satisfying (11).

Moreover, if (15)-(24) are feasible, then the switched SOF

controller can be given by

Ki = Li1G
−1
i11 (17)

Proof: Firstly, we establish the exponential stability of

system (6). Pre- and post-multiplying








Ti 0 0 0
0 I 0 0
0 0 Ti 0
0 0 0 I









(18)

and its transpose to (15) obtains








Λ11 ∗ ∗ ∗
0 −I ∗ ∗

Λ31 Bw
i Λ33 ∗

Λ41 Dw
i Λ43 −γ2I









< 0 (19)

where

Λ11 = Pi − TiGiT
T
i − TiG

T
i TT

i

Λ31 = AiTiGiT
T
i + BiLiT

T
i − TiF

T
i TT

i

Λ33 = He{AiTiFiT
T
i + λBiLiT

T
i } − (1 − α)Pi

Λ41 = Cz
i TiGiT

T
i + DiLiT

T
i

Λ43 = Cz
i TiFiT

T
i + λDiLiT

T
i

It follows from (7), (14) and (17) that

AiTiGiT
T
i + BiLiT

T
i

= AiTiGiT
T
i + Bi

[

Li1 0
]

TT
i

= AiTiGiT
T
i + Bi

[

KiGi11 0
]

TT
i

= AiTiGiT
T
i + Bi

[

Ki 0
]

[

Gi11 0
Gi21 Gi22

]

TT
i

= AiTiGiT
T
i + BiKi

[

I 0
]

GiT
T
i

= AiTiGiT
T
i + BiKiCiTiGiT

T
i

= (Ai + BiKiCi)TiGiT
T
i

= AcliTiGiT
T
i (20)

In the same way, we can obtain

AiTiFiT
T
i + λBiLiT

T
i = AcliTiFiT

T
i (21)

Cz
i TiGiT

T
i + DiLiT

T
i = CcliTiGiT

T
i (22)

Cz
i TiFiT

T
i + λDiLiT

T
i = CcliTiFiT

T
i (23)

Substituting (20)-(23) into (19) obtains








Υ11 ∗ ∗ ∗
0 −I ∗ ∗

Υ31 Bcl,i Υ33 ∗
CcliTiGiT

T
i Dcli CcliTiFiT

T
i −γ2I









< 0 (24)

where

Υ11 = Pi − TiGiT
T
i − TiG

T
i TT

i

Υ31 = AcliTiGiT
T
i − TiF

T
i TT

i

Υ33 = He{AcliTiFiT
T
i } − (1 − α)Pi

2358



Pre- and post-multiplying








I 0 0 0
0 0 I 0
0 I 0 0
0 0 0 I









and its transpose to (24) obtains








Υ11 ∗ ∗ ∗
Υ31 Υ33 ∗ ∗
0 BT

cl,i −I ∗

CcliTiGiT
T
i CcliTiFiT

T
i Dcli −γ2I









< 0 (25)

From (25) we have
[

Υ11 ∗
Υ31 Υ33

]

< 0 (26)

which can be rewritten as follows
[

Pi 0
0 −(1 − α)Pi

]

+ He{

[

TiG
T
i TT

i

TiF
T
i TT

i

]

[

−I AT
cli

]

}

< 0
(27)

Consider the dual system of (6) with w = 0

x(k + 1) = AT
clix(k) (28)

and rewrite it in the form

[

−I AT
cli

]

[

x(k + 1)
x(k)

]

= 0 (29)

Based on Finsler’s lemma, if (27) holds then the following

inequality holds
[

x(k + 1)
x(k)

]T [

Pi 0
0 −(1 − α)Pi

] [

x(k + 1)
x(k)

]

< 0

(30)

which is equivalent to

x(k + 1)T Pix(k + 1) − x(k)T Pix(k) < −αx(k)T Pix(k)
(31)

then (9) is satisfied. In addition, it follows from (24) that (10)

is satisfied. From Lemma 2, the closed-loop system without

disturbances is exponentially stable for any switching signal

with the average dwell time satisfying (11).

Now we consider the weighted L2-gain of system (6).

The inequality (24) can be rewritten as follows

P + XH + HTX T < 0 (32)

where

P =









Pi 0 0 0
0 I 0 0
0 0 −(1 − α)Pi 0
0 0 0 −γ2I









,

X =









TiG
T
i TT

i 0
0 I

TiF
T
i TT

i 0
0 0









,

H =

[

−I 0 AT
cli CT

cli

0 −I BT
cli DT

cli

]

(33)

Consider the dual system of (6)

x(k + 1) = AT
clix(k) + CT

cliw(k)

z(k) = BT
clix(k) + DT

cliw(k) (34)

and define the augmented signal ξ as

ξ =









x(k + 1)
z(k)
x(k)
w(k)









(35)

then, (34) can be rewritten in the form

Hξ = 0 (36)

By Finsler’s lemma, if (32) holds then the following inequal-

ity holds

ξTPξ < 0 (37)

Substituting (33) into (37), we have

x(k + 1)T Pix(k + 1) − (1 − α)x(k)T Pix(k)

+z(k)T z(k) − γ2w(k)T w(k) < 0 (38)

which is nothing but (12). Additionally, (13) is satisfied due

to (24). Based on Lemma 3, the system has a weighted L2-

gain γ. And thus the proof is completed.

Letting Fi = 0, Theorem 1 reduces to the following

corollary:

Corollary 1: If there exist symmetric matrices Pi ∈
R

n×n, and matrices Gi ∈ R
n×n, Li ∈ R

m×n, i ∈ I with

the following structure

Gi =

[

Gi11 0
Gi21 Gi22

]

, Li =
[

Li1 0
]

(39)

satisfying the following inequalities








Γ11 ∗ ∗ ∗
0 −I ∗ ∗

Γ31 T−1
i Bw

i −T−1
i PiT

−T
i ∗

Γ41 Dw
i 0 −γ2I









< 0 (40)

Pi − µPj ≤ 0 (41)

where

Γ11 = T−1
i PiT

−T
i − Gi − GT

i

Γ31 = T−1
i AiTiGi + T−1

i BiLi

Γ41 = Cz
i TiGi + DiLi

and Ti are given by (3), then the closed-loop system (6)

is exponentially stable and has a weighted L2-gain for any

switching signal with the average dwell time satisfying (11).

Moreover, if (40)-(49) are feasible, then the switched SOF

controller can be given by Ki = Li1G
−1
i11.

Proof: The proof of this corollary can be done using the

same technique and arguments as in the proof of Theorem

1. Thus it is omitted here.

Remark 2: When λ in Fi is set to be fixed parameter,

the condition in Theorem 1 becomes convex and can be

solved by LMI Control Toolbox [27]. In Theorem 1, by
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using the multiple Lyapunov function technique combined

with Finsler’s lemma, two sets of slack variables Gi, Fi with

special structure are introduced to provide extra free dimen-

sions in the solution space. This directly leads to reduction of

the conservativeness of the solutions and improvement of the

performance. Compared to Theorem 1, Corollary 1 is more

conservative since only one set of variables are introduced.

IV. NUMERICAL EXAMPLE

In this section, an example is given to illustrate the

effectiveness of the proposed method.

Consider a discrete-time switched linear system consisting

of three subsystems described as follows

A1 =





−0.5871 −0.8441 −0.0092
−0.6865 −0.5090 −0.8561
0.0974 0.4523 −0.2280



 ,

B1 =





0.1930 −0.4204
−0.7359 0.0346
0.5073 −0.9077



 , Bw
1 =





0
1
0



 ,

Cz
1 =





1 0 1
0 1 0
0 0 1



 , D1 =





0 0
0 1
0 1



 ,

Dw
1 =





1
1
0



 , C1 =
[

1 0 1
]

;

A2 =





0.1089 0.2458 −0.9035
0.3998 −0.9213 −0.4161
0.6745 −0.5750 0.7138



 ,

B2 =





−0.4164 0.0244
0.8297 −0.4366
−0.0900 −0.8416



 , Bw
2 =





1
1
0



 ,

Cz
2 =





1 0 0
1 1 0
0 0 1



 , D2 =





0 0
0 1
1 1



 ,

Dw
2 =





1
0
1



 , C2 =
[

0 1 1
]

;

A3 =





0.3049 0.4247 0.8979
0.8848 0.2485 −0.4161
0.6981 0.1034 0.2403



 ,

B3 =





0.2458 0.7409
0.2501 0.1580
0.1709 0.7205



 , Bw
3 =





0
0
1



 ,

Cz
3 =





1 0 0
0 1 0
1 0 1



 , D3 =





1 0
0 1
0 1



 ,

Dw
3 =





1
0
1



 , C3 =
[

0 1 1
]

.

Note that A1-A3 are all unstable. Let µ = 2, α = 0.5, then

we obtain τ∗
a = 1. By using Theorem 1, the following control

gains are obtained

K1 =

[

−1.1519
−0.8379

]

,K2 =

[

0.4797
0.2214

]

,K3 =

[

0.5627
−0.7362

]

and the optimal weighted L2-gain γmin = 4.0200. The

closed-loop state response with initial states chosen as

x(0) = [−4 3 5]T and the disturbance chosen as w(k) =
1/(20k + 1) is shown in Fig. 2. It is clear that the switched

system has been stabilized by the SOF Controller under the

switching signal shown in Fig. 1. In addition, the condition

in Corollary 1 gives the following control gains

K1 =

[

−1.1467
−0.6949

]

,K2 =

[

0.4487
0.2693

]

,K3 =

[

0.6375
−0.7068

]

and the optimal weighted L2-gain γmin = 4.2310 > 4.0200.

This shows that Theorem 1 is less conservative than Corol-

lary 1 due to the fact that slack variables Fi21, Fi22 in Fi

provides extra freedom in the LMI optimization problem in

Theorem 1.

0 50 100 150 200
0

0.5

1

1.5

2

2.5

3

3.5

4

Fig. 1. Switching signal
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Fig. 2. Response of the closed-loop system
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V. CONCLUSIONS

This paper considers the problem of H∞ SOF control

for discrete-time switched linear systems with average dwell

time switching. By the aid of the multiple Lyapunov function

technique combined with Finsler’s lemma, a switched SOF

controller has been designed. An example has also been

given to illustrate the effectiveness of the proposed method.

REFERENCES

[1] D. Liberzon and A. S. Morse, “Basic problems in stability and design
of switched systems,” IEEE Contrl. Syst. Mag., vol. 19, no. 5, pp.59-
70, 1999.

[2] D. Liberzon, Switching in Systems and Control, Birkhauser, Boston,
2003.

[3] R. A. Decarlo, M. S. Branicky, S. Pettersson, and B. Lennartson,
“Perspectives and results on the stability and stabilizability of hybrid
systems,” Proceedings of the IEEE, Special issue on Hybrid Systems,
P. J. Antsaklis Ed., vol. 88, no. 7, pp. 1069-1082, 2000.

[4] Z. Sun and S. S. Ge, “Analysis and synthesis of switched linear control
systems,” Automatica, vol. 41, pp. 181-195, 2005.

[5] Z. Sun and S. S. Ge, Switched Linear Systems: Control and Design,
Springer-Verlag, 2005.

[6] P. Peleties and R. A. Decarlo, “Asymptotic stability of m-switched
systems using Lyapunov-like functions”. In Proceedings of American

control conference, pp. 1679-1684, 1991.

[7] M. S. Branicky, “Multiple Lyapunov functions and other analysis tools
for switched and hybrid systems,”IEEE Trans. Autmat. Contr., vol. 43,
no. 4, pp. 475-482, 1998.

[8] H. Ye, A. N. Michel and L. Hou, “ Stability theory for hybrid
dynamical systems,” IEEE Trans. Autmat. Contr., vol. 43, no. 4, pp.
461-474, 1998.

[9] J. Zhao and David J. Hill, “ On stability, L2-gain and H∞ control
for switched systems,”Automatica, Vol. 44, pp. 1220-1232 , 2008.

[10] A. S. Morse, “Supervisory control of families of linear set-point
controllers, part I: exact matching,” IEEE Trans. Autmat. Contr., vol.
41, pp. 1413-1431, 1996.

[11] J. P. Hespanha and A. S. Morse, “ Stability of switched systems with
average dwell-time,” Proceeding of the 38th Conference on Decision
and Control, Phoenix, AZ, pp. 2655-2660, 1999.

[12] J. P. Hespanha, “Uniform stability of switched linear systems: exten-
sions of LaSalle’s invariance principle,”IEEE Trans. Autmat. Contr.,
vol. 49, no. 4, pp. 470-482, 2004.

[13] G. Zhai, B. Hu, K. Yasuda and A. N. Michel, “Disturbance attenuation
properties of time-controlled switched systems”, Journal of Franklin

Institute, 338, pp. 765-779.

[14] X.-M. Sun, J. Zhao and David J. Hill, “Stability and L2-gain analysis
for switched delay systems: A delay-dependent method,” Automatica,
Vol. 42, pp. 1769-1774, 2006.

[15] L. Zhang, E. K. Boukas and P. Shi, “Exponential H∞ filtering for
uncertain discrete-time switched linear systems with average dwell
time: A µ-dependent approach”, Int. J. Robust Nonlinear control, vol.
18, pp. 1188-1207, 2008.

[16] V. L. Syrmos, C. T. Abdallah, P. Dorato and K. Grigoriadis, “Static
output feedback–A survey,” Automatica, Vol. 33, no. 2, pp. 125-137,
1997.

[17] J. C. Geromel, C. C. deSouza and R. E. Skelton, “Static output
feedback controllers: Stability and convexity,” IEEE Trans. Autmat.

Contr., vol. 43, pp. 120-125, 1998.

[18] C. A. R. Crusius and A. Trofino, “Sufficient LMI conditions for output
feedback control problems,” IEEE Trans. Autmat. Contr., vol. 44, pp.
1053-1057, 1999.

[19] M. C. de Oliveira, J. C. Geromel and J. Bernussou, “Extended H2 and
H∞ characterizations and controller parameterizations for discrete-
time systems,” Int. J. Control, vol. 75, no. 9, pp.1131-1134, 2002.

[20] K. H. Lee, J. H. Lee and W. H. Kwon , “Sufficient LMI conditions
for H∞ output feedback stabilization of linear discrete-time systems,”
IEEE Transactions on Automatic Control, vol. 51, no. 4, pp. 675-680,
2006.

[21] J. Dong and G.-H. Yang,“Static output feedback control synthesis
for linear systems with time-invariant parametric uncertainties,” IEEE

Trans. Autmat. Contr., vol. 52, no. 10, pp. 1930-1936, 2007.

[22] J. Dong and G.-H. Yang, “Robust static output feedback control for
linear discrete-time systems with time-varying uncertainties”, Systems

Control Letters, Vol. 57, no. 2, pp. 123-131, 2008.
[23] J. Daafouz, P. Riedinger and C. Iung, “Stability analysis and control

synthesis for switched systems: a switched Lyapunov function ap-
proach,” IEEE Trans. Automat. Contr., Vol. 47, pp. 1883-1887, 2002.

[24] G. I. Bara and M. Boutyeb, “Switched output feedback stabilization
of discrete-time switched systems,” presented at the Conf. Decision

Control, San Diego, USA, Dec. 12-15, 2006.
[25] G. I. Bara, “Robust switched output feedback control for discrete-time

switched linear systems,” presented at the Conf. Decision Control, New
Orleans, USA, Dec. 12-14, 2007.

[26] S. Boyd, L. Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix

Inequalities in Systems and Control Theory. Philadelphia, PA: SIAM,
1994.

[27] P. Gahinet, A. Nemirovski, A. Laub and M. Chilali, The LMI Control

Toolbox. Natick, MA: Mathworks, 1995.

2361


