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Abstract—In this paper, a new fuzzy adaptive control 
approach is developed for a class of SISO nonlinear systems 
with unmeasured states. Using fuzzy logic systems to 
approximate the unknown nonlinear functions, a fuzzy adaptive 
observer based on filters is introduced for state estimation as 
well as system identification. Under the framework of the 
backstepping design, fuzzy adaptive output feedback control is 
constructed recursively. By theoretical analysis, all the 
closed-loop signals are semi-globally uniformly ultimately 
bounded, and the tracking errors are proved to converge to a 
small residual set around the origin. 

I. INTRODUCTION 
UZZY/NEURAL network control methodology has emerged 
in recent years as a promising way to deal with the control 

problems of nonlinear systems containing highly uncertain 
nonlinear functions. It has been shown that fuzzy logic 
systems/neural network can be used to approximate any 
nonlinear function over a convex compact region [1]. Based 
on this theorem, various adaptive fuzzy control approaches 
have been introduced for controlling nonlinear systems [3-6]. 
All the results mentioned above show that unknown nonlinear 
functions need satisfy the matching conditions. However, in 
practice, a large class of physical systems may be subject to 
some unknown nonlinear functions which do not satisfy the 
matching conditions.  

Backstepping, which is based on the nonlinear stabilization 
technique of ‘adding an integrator” introduced in [8], and was 
first used in nonlinear adaptive control in [7], leads to the 
discovery of a structural strict feedback condition under 
which the systematic construction of robust control 
Lyapunov function is always possible. With the development 
of adaptive backstepping designs in nonlinear systems, many 
fuzzy/neural network adaptive control schemes have been 
developed for unknown nonlinear systems without the 
requirement of matching conditions. In [9], [10], and [12] 
stable fuzzy/neural network adaptive backstepping controller 
design schemes were proposed for unknown nonlinear SISO 
systems. Some further results on fuzzy/neural network 
adaptive backstepping control approaches were reported by 

[3-4] for a class of MIMO nonlinear systems. However, the 
existing fuzzy/neural network adaptive backstepping 
controllers are all based on the assumption that the states of 
the systems are measured directly, there are few results on the 
fuzzy/neural network adaptive output feedback backstepping 
controllers. Recently, adaptive observer backstepping control 
approach using neural networks is proposed for a class of 
nonlinear systems [11], in which it utilized the separation 
principle to design a state observer and output feedback 
controller. By assuming that the observer errors are bounded, 
the stability of control systems is given. As pointed out in [11], 
the separation principle does not hold for nonlinear systems, 
and the stabilities of the state observer and control system can 
not ensure the stability of the whole closed-loop system, 
either. 
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Motivated by [11], in this paper, a new adaptive fuzzy 
observer based control design scheme is studied for a class of 
nonlinear uncertain systems by using the backstepping 
technique. It is proved that the proposed design scheme can 
achieve semi-global uniform ultimate boundedness of all the 
signals in the closed-loop systems, and the tracking errors 
converge to a small neighborhood of the origin. 

II. SYSTEMS DESCRIPTION AND PROBLEM FORMULATION 
We consider systems in the output feedback form: 
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where is the state, is the control 
input, 

n
n Rxxx ∈= ],,[ 1 " Ru ∈

Ry ∈  is the output, , , and0,if ni ≤≤1 σ are known 

smooth nonlinear functions, and ,)(yfi ni ≤≤1 is unknown 

smooth nonlinear functions,  T
m bbb ],,[ 0"= 1+∈ mR  are 

vectors of known constant parameters. Only, the  is 
available for measurement. We rewrite (1) as 
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 K  is chosen such that A  is a strict Hurwitz matrix. Thus, 
given a , there exists a positive matrix  satisfying  0>Q 0>P

QPAPAT 2−=+                            (3) 
The control objective is to design an adaptive fuzzy controller 
to track a given reference signal , while keeping all the 
signals in the closed-loop system globally bounded.  

)(tyr

Lemma 1[1].  Let  be a continuous function defined on a 
compact set .Then for any constant

)(xf
Ω 0>ε , there exists a 

fuzzy logic system such as  
εθϕ ≤−

Ω∈
)()(sup xxf T

x
                    (4) 

By Lemma 1, fuzzy logic systems are universal 
approximation, i.e., they can approximate any smooth 
functions on a compact space. Due to this approximation 
capability, we can assume that the nonlinear terms  )(yfi
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T
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T
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where ,ni ≤≤1 iii θθθ −= ∗~
. 

Define the optimal parameter vectors as *
iθ

])()(ˆ[supminarg* yfyf iiiUyi −= ∈Ω∈ θθ θ         (6) 

where  and  are compact regions for Ω U iθ  and  
respectively. The fuzzy logic system minimum 
approximation errors is defined as 

y

)(ˆ)()( *
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Design fuzzy state observer as 
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where the  is defined by the following ifmn
i R ×
∈ζ ifmn×  

matrix differential equation:  
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Let  be observer error, then from (2) and (9) we 
have the observer error equation. 
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Note that ii θθ �� −=
~

. Multiplying on the right by iθ
~

 and 
rearranging (10), we obtain 
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Using (12) and (13),  (11) becomes 
)(yA εξξ +=�                           (14) 

where . T
ny ],,[)( 1 εεε "=

Assumption 1. There exist known constants 00 >iε  and 

00 >iδ ,  such that 0)( ii y εε ≤  and  0),( iii y δθδ ≤ , for 
ni ,,2,1 …= . 

Denote iiiw δε −= , and we have iiiw δε +≤  

000 iii w=+≤ δε . 

III. ADAPTIVE FUZZY OUTPUT FEEDBACK CONTROL DESIGN 
The detailed design procedures of fuzzy adaptive output 

feedback controller are described in the following steps: 
Step 1: Define the tracking error for the system as 

ryyz −=1  
Expressing in terms of its estimate as2x 222 ˆ exx += , we 
obtain 
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Using (13) we obtain 

∑
=

+=
n

i
iie

1
222

~θζξ                        (16) 

Substituting (16) into (15) yields 

r
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Taking as a virtual control, and define 2x̂

rr yyyxxz �−−= ),,,ˆ(ˆ 11122 θα                   (18) 
Then we have 
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Consider the following Lyapunov function  

θθ
γ

ξξ
~~

2
1

2
1

2
1 2

11
TT zPV ++=                   (20) 

where is a positive matrix and 0>= TPP 0>γ  is a design 
constant. 
The time derivative of along the solutions of (3) and  1V
(19) is 
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By using the inequality , we have 222 baab +≤
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The intermediate control function ),,,ˆ( 111 ryyx θα and the 

adaptation function 1τ  are chosen as  
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where ,01 >c 0>γ , 0>σ and 0θ  are design parameters. 
Using the following property with regard to function )tanh(⋅  
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where 0>κ  is an arbitrary small constant. 
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Step 2 :  Differentiating yields： 2z
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Taking  as a virtual control, and introducing the variable 3x̂
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Consider the following Lyapunov function 
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The time derivative of  along the solutions of (30) is 2V
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Choosing intermediate control function 2α and the 
adaptation function 2τ  as 
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where  is a design parameter constant.  02 >c
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Using the following property with regard to function tanh(·) 
'
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From (35)-(37), we have  
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Step i . )13( −≤≤ ρi : A similar procedure is employed 
recursively at each step. By defining  
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2

1 2
1

iii zVV += −                             (41) 

The time derivative of  along the solutions of (40) is iV

)](

~[

12
1

11

δξαθϖ

θωα

+
∂

∂
−+−

−+++=

−

+−

y
w

HzzVV

i
i

T
i

T
iiiiiii

�

��
                   (42) 

By mathematical induction, we have 

κθτϖθ
γ

θθθ
γ
σδε

ξλ

′−+−++

−+
−

++

+−+−−≤

−

−

=

−

−

=
−

∑

∑

)1())(~1(

)(~
2

2
2
1

)1)((

1

2

2

0
2

1
2

1

1

1

22
min1

iz

iP

zzzciQV

i

i

j

T
jj

T

T

ii

i

k
kki

�

�

        (43) 

Substituting (43) into (42) results in 
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)tanh(

)(

00

1

2

21
1

κϖγω

τϖ
α

α

iii

i

j

T
jji

i
T
iii

i
iiii

zwwz

Hz
y

zcz

−+

+−
∂

∂
−−−=

∑
−

=

−
−

          (47) 

)(1 yz iiii ωγττ −= −                                            (48) 
where  is a design constant. 0>ic
From (45)-(48) we can obtain 

κεδθθθ
γ
σ

θτϖθ
γ

ξλ

′++
−

+−+

−+++

−−−≤

∑

∑

=
+

=

iPi

zzz

zciQV

T

i

i

j

T
jj

T
ii

i

k
kki

22
10

2
1

1

22
min

2
1

2
1)(~

))(~1(

))((

�

�

     (49) 

Step ρ : In the ρ th design step, the actual control input  
will appears. We consider the Lyapunov function as 
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In the ρ th design step, by setting ρ=i , the control 
and adaptation functions u θ are described by  
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The above design and analysis procedure is summarized in 
the following theorem. 
Theorem 1:  Suppose the bounding Assumptions 1 holds. 
Then the fuzzy adaptive output tracking design described by 
the state observer (9), control law (51) and parameter 
adaptive laws (52) and (53) guarantee that the closed–loop 
system is semi-globally uniformly ultimately bounded and 
the output tracking error converges to a small neighborhood 
of the origin.  
Proof: From (56) we have  

c
etVtV ttc λ

+≤ −− )(
0

0)()(                (57) 

If choose a positive matrix Q , such that 0)(min >− ρλ Q , 
then from (57), it can be shown the signals , , , )(tx )(ˆ tx )(te

)(tθ and  are semi-globally uniformly ultimately 

bounded, and that 

)(tu

c
etVtyty

ttc

r
λ2)(2) ≤()(

)(
2

0
0

+−
−−

.  

In order to achieve the tracking error convergences to a 
small neighborhood around zero, the parameters ,ic σ and 

should be chosen appropriately. Q

IV. SIMULATION 
Consider In this section, the proposed adaptive fuzzy control 
approach is applied to the following the example to verify its 
effectiveness 
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           (58) 

The given tracking reference signal is . )sin(tyr =
Choosing fuzzy membership functions as 

]
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)3(
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2
1

1
1
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+−
−=µ ， 5,,1"=l . 

]
4

)3(
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2
1

1
2
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Design parameters in controller and in adaptive laws are 
chosen as 

,21 =k 22 =k , 1.021 == γγ , 2.0=σ ,  
01.02010 == εε , , . 101 =c 102 =c

If the initial conditions are chosen as  
0)0(1 =x , , , 0)0(2 =x 0)0(ˆ1 =x

0)0(ˆ2 =x , ]0,0,0,0,0[)0()0( 21 == θθ . 

Then we obtain the simulation results, which are shown by 
Figure1-Figure 3. 

  
Fig.1. The trajectories of  “-” and  “- -”. 1x ry

 
Fig.2. The trajectories of  “-” and  “- -”. 1x 1x̂
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Fig.3. The trajectory of  u

V. CONCLUSION 
In this paper, a new fuzzy adaptive control approach is 

developed for a class of SISO nonlinear systems with 
unmeasured states. The main contribution of this paper is that 
by designing a fuzzy adaptive state observer based on 
K-filters, the application of adaptive fuzzy backstepping 
control is extended to a new class of nonlinear systems with 
states unmeasured. In addition, the stability of the closed-loop 
has been proved by using Lyapunov method, i.e., the 
proposed adaptive fuzzy control scheme can guarantee the all 
signals of closed-loop are boundedness and the tracking error 
of the system converges to a small neighborhood of the 
origin. 
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