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Fuzzy Adaptive Observer and Filter Backsteppping Control for
Nonlinear Systems

Li Changying, Tong Shaocheng, Li Yongming and Li Tieshan

Abstract—In this paper, a new fuzzy adaptive control
approach is developed for a class of SISO nonlinear systems
with unmeasured states. Using fuzzy logic systems to
approximate the unknown nonlinear functions, a fuzzy adaptive
observer based on filters is introduced for state estimation as
well as system identification. Under the framework of the
backstepping design, fuzzy adaptive output feedback control is
constructed recursively. By theoretical analysis, all the
closed-loop signals are semi-globally uniformly ultimately
bounded, and the tracking errors are proved to converge to a
small residual set around the origin.

I. INTRODUCTION

FUZZY/NEURAL network control methodology has emerged
in recent years as a promising way to deal with the control
problems of nonlinear systems containing highly uncertain
nonlinear functions. It has been shown that fuzzy logic
systems/neural network can be used to approximate any
nonlinear function over a convex compact region [1]. Based
on this theorem, various adaptive fuzzy control approaches
have been introduced for controlling nonlinear systems [3-6].
All the results mentioned above show that unknown nonlinear
functions need satisfy the matching conditions. However, in
practice, a large class of physical systems may be subject to
some unknown nonlinear functions which do not satisfy the
matching conditions.

Backstepping, which is based on the nonlinear stabilization
technique of ‘adding an integrator” introduced in [8], and was
first used in nonlinear adaptive control in [7], leads to the
discovery of a structural strict feedback condition under
which the systematic construction of robust control
Lyapunov function is always possible. With the development
of adaptive backstepping designs in nonlinear systems, many
fuzzy/neural network adaptive control schemes have been
developed for unknown nonlinear systems without the
requirement of matching conditions. In [9], [10], and [12]
stable fuzzy/neural network adaptive backstepping controller
design schemes were proposed for unknown nonlinear SISO
systems. Some further results on fuzzy/neural network
adaptive backstepping control approaches were reported by
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[3-4] for a class of MIMO nonlinear systems. However, the
existing fuzzy/neural network adaptive backstepping
controllers are all based on the assumption that the states of
the systems are measured directly, there are few results on the
fuzzy/neural network adaptive output feedback backstepping
controllers. Recently, adaptive observer backstepping control
approach using neural networks is proposed for a class of
nonlinear systems [11], in which it utilized the separation
principle to design a state observer and output feedback
controller. By assuming that the observer errors are bounded,
the stability of control systems is given. As pointed outin [11],
the separation principle does not hold for nonlinear systems,
and the stabilities of the state observer and control system can
not ensure the stability of the whole closed-loop system,
either.

Motivated by [11], in this paper, a new adaptive fuzzy
observer based control design scheme is studied for a class of
nonlinear uncertain systems by using the backstepping
technique. It is proved that the proposed design scheme can
achieve semi-global uniform ultimate boundedness of all the
signals in the closed-loop systems, and the tracking errors
converge to a small neighborhood of the origin.

II. SYSTEMS DESCRIPTION AND PROBLEM FORMULATION
We consider systems in the output feedback form:
X =x+ 10+ f1(¥)
Xy = x5+ [0+ f2()

).Cpfl = xp +<fp—l,0(y)+<fp—l(y)
fy= %+ Lro* Ly +byoiu (D

Xpop =X, oW+ fisi () + D10 (v)u
Xy = fao W)+ (V) +byo(¥)u
y=x
where x =[x,,---,x,]€ R"is the state, u € R is the control
input, y € R is the output, f;,,1<i<n, ando are known

smooth nonlinear functions, and f;(y),1<i < n is unknown

smooth nonlinear functions, b=[b,,,"--,b,]" €R™" are
vectors of known constant parameters. Only, the y is

available for measurement. We rewrite (1) as
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$= At Ky+ Y BLf o0+ fi()]+ Bo(yu

P @)
y(1) = Cx(1)
where
_kl
A=| I ,
-k, 0 ... 0
K:[kl kn]T9B:[O bm bO]T
Bi=[0 - 1 - of e=[1 - of.

K is chosen such that A is a strict Hurwitz matrix. Thus,
given a O >0, there exists a positive matrix P > 0 satisfying
A"P+P4A=-20 (3)
The control objective is to design an adaptive fuzzy controller
to track a given reference signal y,(¢) , while keeping all the

signals in the closed-loop system globally bounded.
Lemma 1", Let f(x) be a continuous function defined on a

compact set (2 .Then for any constant & > 0, there exists a
fuzzy logic system such as

sup|f(x)— " (x)0| < & )
xeQ

By Lemma 1, fuzzy logic systems are universal
approximation, i.e., they can approximate any smooth
functions on a compact space. Due to this approximation
capability, we can assume that the nonlinear terms f;(y)

S =0l W8 +ol MO +e)  ©)
where lSiSn,gl- =67 -0,.
Define the optimal parameter vectors 6, as
fiole)-£of ©

where Q and U are compact regions for 6§, and y

* .
0; =argming_g[sup .y

respectively. The fuzzy logic system minimum
approximation errors is defined as
& ()= 1,0)= 00 ()
5,(7.0)= f;()~1:516) ®)

Design fuzzy state observer as

f= A%+ Ky+ Y BLfi+ fiol+ Bo(u+Y 6 (9)
i=1 i=1

where the ¢; € R/ is defined by the following nxm 7

matrix differential equation:

¢ = AL+ B () (10)

Let e = x — x be observer error, then from (2) and (9) we
have the observer error equation.

¢= e+ B(f,(»)- 01600~ &6
i=1 i=1
., ., (11)
= Ae+zBi¢iT(y)§[ _zgiéi +e(y)

i=1 i=1

Note that gl = —é’i . Multiplying on the right by 5, and

rearranging (10), we obtain

D Ci06, =AY (06, + Y Bl (06, (12)
i=1 i=1 i=1
define
E=e-) 16, (13)
i=1
Using (12) and (13), (11) becomes
£=AE+e() (14)
where £(y) = [gl,---,gn]T .

Assumption 1. There exist known constants &;, >0 and
S, >0, such that |¢,(y)| < &,y and |5;(1,6,)| < 5, for
i=12,...,n.

Denote w; =¢; —0; , and we have |wi| < |5i| +|5i|

< &9+ 00 =Wy -

III. ADAPTIVE FUZZY OUTPUT FEEDBACK CONTROL DESIGN

The detailed design procedures of fuzzy adaptive output
feedback controller are described in the following steps:
Step 1: Define the tracking error for the system as

1 =Y=b
Expressing x, in terms of its estimate as x, = X, + e, , we

obtain
Z'l :).}_yr
=X+ froW+ /(W) -, (15)
=X, +e, +f1,o(}/)+¢’1T6’1 +¢’1T§1 +& -y,
Using (13) we obtain
e =6, +Z§i2§i (16)
i=1
Substituting (16) into (15) yields
=X +& +fl,o()’)+(01T‘91+51+a’1T§_)"r (17
where
a)oT =[621,¢22:623. 60,1, € =[0 "“’gn]T
w1T =[¢y +¢{a§22o§23o"‘a§2n], 0=0"-0.
Taking X, as a virtual control, and define
Z3 ZQZ_al(ﬁlsglsy:yr)_)}r (18)

Then we have
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=% +&, +f1,0(y)+501T€ +¢’1T91 +& =Y,

~ (19)
=22+a1+f1,0(y)+(p1T491+a)1T€+§2+31
Consider the following Lyapunov function
l.r 1 o 1 575
Vi==&" PéE+—z;y +—0°6 20
1=5s Perga 2 (20)

where P = P" >0 is a positive matrix and y > 0 is a design
constant.
The time derivative of ¥} along the solutions of (3) and

(19) is
V= € PE+ET P A+ 070
V4
< ETQEE Pt 0Ey 40T (- 0) (1)
V4

+olz ta + fi0(0)+ 0l 6+ 6]
By using the inequality 2ab < a® +b?, we have

1 1 1 1
& Po+&yn < I + S|Pl + Sl 452

1 1 @2)
2 2
<Jel +5 =7+ lPel
Substituting (22) into (21) yields
Vi < ~ain @~ DI 48 (72100 - ) S|Pl
g (23)

1
+21[z, +521 +a+ fio(0)+ol 6 +5]
The intermediate control function ¢, (%;,6,,y,y,)and the

adaptation function 7, are chosen as
1
oy =—C1zy——2z)—
1 1F1m5 A Sio() 24)

—@{ ()0, — & tanh(g,, 2, /x)
7 = yz0,(y)—o(0—-6,) (25

where ¢; >0,y >0,0 >0andf, are design parameters.

Using the following property with regard to function tanh(-)

2,6, — 2,6 tanh(g,0z, /) 02785k =k (26)
where x>0 is an arbitrary small constant.
Substituting (24) and (26) into (23) results in
; 2 ) 1 2
M < =(Ainin (Q)‘D"f" —Cz] 21z, +5"P‘9"
27

L7 -6+ 28700+«
e v
Step 2 : Differentiating z, yields:

22 = 5‘\"2 _dl()%laglay:yr)_j}r

(28)

=&y + Hy+w, —w§5—w§é—aa—0y‘l(§z +8)-5,

where

oo, ,
H, = ke +f2,0()’)+€02THz _a_yl(xz +€01T91)

oa;

A

N oa, .
(x; + ke +‘/’1T‘91)—_1yr
1 ayl

oa Ooay . _
A LN (PR G I Z RN
oy oy
oa oa oa
T 1 1 1
0y, =|/—— +— [ +T 5
2 [691 ¢ o, Ci¢n o, ¢i2
oa
”'?_é,ZH +6_A1§1n]
X
Taking X, as a virtual control, and introducing the variable
23:323_0‘2(;61,3%2,91,92»5(2)9%%9%)_j}r (29)
where é:(z) =[€11:¢21:612:822>" 5 G1ns San ]
Then we have
: oo (30)
—@, 0+ w, ——L(&+6)
oy
Consider the following Lyapunov function
Vo =V 4223 (1)

The time derivative of V, along the solutions of (30) is
; 2 1 2
Vy £ ~(Anin (Q)‘D"f” —ozf +22, +E"P‘9"
+£§T(9—90)+K’+15T(T1 — 12,0, —0)
e Y
T/ oa,
+zylz3+ay, +Hy —@) 0+w, —a—(fz +61)] (32)
y

By using the inequality 2ab < a? +b? , we have
oa 2 Oa 1
— 2@ sl Gy s 63
Substituting (33) into (32) yields

/ 1 1
Vy £ ~(Anin (Q)—2)||§||2 —c 12t +2,2, +5||Pg"2 +E512

+K'+15T(r1 — 1,0, —0)+Z 07 (0-6,)
y y

oa :
+2z,[z5 + p Loy va, +Hy @1 0+w,]
(34)
Choosing intermediate control function «, and the

adaptation function 7, as
oa

Oy = —2]—Cy2y ——122 -H, (35)
+ @) Ty — Wy, tanh(wyz, /)
Ty =7~ 12,0,(Y) (36)

where ¢, > 0 is a design parameter constant.
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Using the following property with regard to function tanh(-)

2, Wy —Zy Wy tanh(wyyz, [K) < K (37)
From (35)-(37), we have
2
<~ ain @ -2 =D iz
k=1
2,2+ (207 + 0] )z, —0) (38)
Y

+%§T(9—00)+%512 +%||pg||2 £ 25

Step i .(35i<p-
recursively at each step. By defining
WX .0,0

sYi—1»

1) : A similar procedure is employed

z; =% — o (X,

CUD oy p, ey — @

where
Z(i-1
é’(’ ) — [411,“',4711,4123'"94’[7129'“34’1”’.”’é’i*in]
Then we have
z= St H 4w -0
(39)

. 80(4_ i
_wiTH_—ll(égz +51)—J’£)
oy

where

-1

Z (k)

k=

H; = ke +f0(y)+(/’

Z ol

Oa,;_ a;
- (% 0l 0) - z l(xj+i+ke1+¢j )

ay Jj=1 ./
60( 80{ o,
T i—1 i—1 i—1
 : —_ - .
i ael gll é/ll ,\_ 4/1 11
Oa; 50‘1 1 50‘; 1
00, Cin+ S+ % ; -12>
Oa, aai 1 Zi
6y t———6a T + i-1»
26, , G-l %, Sl %, Citint
LIS
ST ax,_1 i
T aazl
@; (€158 20,5 (E0 — ( oy ) ?; )"“’é/Zn]

Taking x,,; as a virtual control, and introducing the variable

_2 _ i
Ziy] =X & Yy

Then we have

. TN
Zi=zigta,+H,—w; 0

. . 40
_WiTanWi_%(fszéi) 0
oy
Consider the following Lyapunov function
Vo=V + 52 (1)

The time derivative of V; along the solutions of (40) is

V.=V, +z[z;q+o,+H, -0 0

oo (42)
%@2 +6)]

—@! O+ w, -

By mathematical induction, we have
i1

2
—chzk tZiZ;

k=1

Vi € ~(Ain Q) — i+ DE]*

1 j—2 ~
#olPel + 507 + 207 0-0) “3)

i-2
+(10T +szwf)(ri,l —0)+ (-’
4 =
Substituting (43) into (42) results in

i—1

V,‘ < _(ﬂ’min (Q) —i+ 1)||§||2 -

k=1

2
CrZp tZiaZ;

+l||pg||2 +Eaf +£§T(9_eo)

+(—

+Zz @)ty ~0)+ (i~ Dx’

Jj=2

+z,]z, v, +H, -0l 6 (44)

—a!l6+w,

oa;_
i~ L& +0)]
oy
By using the inequalities

6
Ttz g, +o1< | +

6(1,
— 222 —51 (45)
y

z,w; —z;w,, tanh(w,z; /K) < K (46)
Choose intermediate control function ¢; and adaptation

functions z; as

oa;_
q; =—2;1 =¢z; —(8—1)221 -H,; “”iTTi
i (47)
+ yo; z z,@] —w tanh(w;yz, /x)
j=2
T =7 — 12;0;()) (48)
where ¢; >0 is a design constant.
From (45)-(48) we can obtain
i
. . 2
Vi € ~nin @ D[ =D ek
k=1
i
bz, (10T Zz @)z, - 6) (49)
v =)

+ 297 @—-6y)+ —||Pg|| +ik'
4

Step o : In the p th design step, the actual control input %
will appears. We consider the Lyapunov function as

(50)

1,
V,D :Vp—l +EZp
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In the p th design step, by setting i = p, the control

u and adaptation functions € are described by

1 oa,
u= —Z,1—C,Z,— z
bty Tt T
p-1
T T
—Hp+wprp+}/a)p22jwj (51)
j=2
—w,q tanh(w 0z, /x) + ]
T =T — 7w (y) , 25i<p (52)
b=r, (53)

In the similar derivation procedure in Step i, we can
obtain that the time derivative of ¥/,

) P
Py S ~Cin@) - Pl - Y izt + S Pel?
= (54)

+p_1512+£§T(9—90)+pK’
2 Y

By the inequality and based on Assumption 1, (54) can be
rewritten as

) P 1 P
Py < ~Cin @ = PNl =X ek + P Y i

k=1 i=1 (55)
_ ~ o~ 2
Pl 9515 9 g —90“ + o’
2 2y 2y

Let
c= min{z(ﬂ'min (Q) - p)/j’min (P) ’2Ci ,05i=12,-, ,0}

_oxN
/1_2”;

Then (55) becomes

. 21 S 1 :
o —00“ +E||P||2;|gi0|2+5512+p1(

V<—cV+2 (56)

The above design and analysis procedure is summarized in
the following theorem.
Theorem 1: Suppose the bounding Assumptions 1 holds.
Then the fuzzy adaptive output tracking design described by
the state observer (9), control law (51) and parameter
adaptive laws (52) and (53) guarantee that the closed—loop
system is semi-globally uniformly ultimately bounded and
the output tracking error converges to a small neighborhood
of the origin.
Proof: From (56) we have

A

V() <V(ty)e ) + 2 (57)
C

If choose a positive matrix Q , such that A, (Q)—p>0,
then from (57), it can be shown the signals x(¢), x(¢), e(?),
O(¢t) and u(t) are semi-globally uniformly ultimately

bounded, and that ‘ y(6) -y, (;)‘ < /2V(t0)e_5(l_l°) + %
c

In order to achieve the tracking error convergences to a
small neighborhood around zero, the parameters ¢, , o and

O should be chosen appropriately.

IV. SIMULATION

Consider In this section, the proposed adaptive fuzzy control
approach is applied to the following the example to verify its
effectiveness

1 (8) = xy () + (xp =) [(L+ x7')
iy () =u(t)— e sin(5x))

y(0) =x,(t)
The given tracking reference signal is y, = sin(¢) .

(58)

Choosing fuzzy membership functions as

x; =3+1)%
) =expl= LD s
1 16
x, —3+10)?
,qu/(xl):eXp[_—(l - )y, i=1es.

Design parameters in controller and in adaptive laws are
chosen as
ki=2,ky,=2,7,=y,=0.1,0=02,
Elg = &2 =0.01,¢, =10,c, =10.
If the initial conditions are chosen as
x(0)=0,x,(0)=0, x,(0)=0,
X,(0)=0,6,(0) =6,(0)=[0,0,0,0,0] .

Then we obtain the simulation results, which are shown by
Figurel-Figure 3.

15

L
ol

sk

i 1 i i L
5 10 15 20 25 30
seconds

2

and y, “--".

73R L)

Fig.1. The trajectories of x,

15

1l
ol

bk

-15
a

i L H i H
5 10 15 20 25 30
seconds

113 ER]

Fig.2. The trajectories of x; “-”and X, “--".
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Fig.3. The trajectory of u

V. CONCLUSION

In this paper, a new fuzzy adaptive control approach is
developed for a class of SISO nonlinear systems with
unmeasured states. The main contribution of this paper is that
by designing a fuzzy adaptive state observer based on
K-filters, the application of adaptive fuzzy backstepping
control is extended to a new class of nonlinear systems with
states unmeasured. In addition, the stability of the closed-loop
has been proved by using Lyapunov method, i.e., the
proposed adaptive fuzzy control scheme can guarantee the all
signals of closed-loop are boundedness and the tracking error
of the system converges to a small neighborhood of the
origin.
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