
  

Abstract—During the analysis and design of control systems, 
the complex SISO linear system that consist of several single 
transfer functions plus different time delay are often 
encountered and need to be reduced order. However, due to the 
complicated characteristics, it is difficult for such high-order 
model to obtain the reduced-order model using the existing 
methods. In this paper, a frequency-domain weighted recursive 
least squares (RLS) method is proposed for model reduction of 
such complex SISO linear system. The involved algorithm is 
derived, and the computational procedure of the model 
reduction is presented. At last, numerical examples are offered 
to verify the effectiveness of the proposed scheme for model 
reduction.  

I. INTRODUCTION 
EDUCED-order model is often required for simplifying 
the design and implementation of control systems [1]. 

For this reason model reduction is very important in many 
areas of engineering sciences, especially in model-based 
control and optimization. The problem of model reduction 
can be described to find a reduced-order model to 
approximate the original high-order model without 
significant errors introduced. Over the last few decades, a 
great deal of attention has been paid to model reduction 
techniques and many important results on model reduction 
have been reported, which involve various efficient 
approaches such as dominant eigenvalue [2], Pade 
approximation [3], Routh approximation [4], balanced 
reduction [5], error minimization in the frequency-domain or 
in the time-domain [1, 6-8], Krylov subspace [9], and the 
recently proposed simple analytic rules method [10].  
   During the analysis and design of a control system, one 
usually encounters such sort of complex SISO linear system 
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that composed of several transfer functions with different 
time delay. Such as the transfer function of a hybrid system 
that consist of several parallel connected subsystem with the 
same input, and the determinant of a multivariable transfer 
matrix with multiple input/output delays. From certain points 
of view, any complex stable SISO linear system can be 
described as the multinomial of several single transfer 
functions with different time delay. Because such high-order 
system is difficult to obtain the delay time and non-minimum 
phase zeros during the analysis and design of control system, 
it is necessary to simplify it to a single transfer function plus 
time delay. However almost all of the existing model 
reduction methods only pertains to the single transfer 
function, which can be considered as a particular simple case 
of above mentioned complex transfer multinomial. Therefore, 
it is hard to simplify the transfer multinomial using the 
existing method. For these reasons, it is necessary and helpful 
to develop a novel model reduction method to reduce the 
order of such prevalent complex SISO linear system.  

Motivated by the above problems, a frequency-domain 
weighted recursive least squares (RLS) model reduction 
scheme is proposed in this paper to simplify the complex 
SISO linear system that described as the multinomial of 
several single transfer functions with different delay time. 
The derivation of the detailed algorithm, as well as the 
procedure of model reduction, is presented. At last, two 
illustrative simulations are offered to verify the effectiveness 
of proposed scheme.      

II. PROPOSED MODEL REDUCTION SCHEME 
Any complex SISO linear system can be described as the 

following transfer function multinomial 
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where ,j ia� and ,j ib�  are the coefficients of each single transfer 

function, jτ  is the delay time of each single transfer function. 

In this paper, ( )G s�  is assumed a strictly proper and 
asymptotically stable transfer function multinomial. Notice 
that when 1ξ = , ( )G s�  is simplified to a single transfer 
function, which is studied by most of the existing model 
reduction methods.  
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Let the desired reduced model with the time delay be 
described by 
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where ( )A s  and ( )B s are the denominator and numerator 
polynomials of ( )G s , respectively.  

Among the above mentioned model reduction approaches, 
the error minimization method are used most widely because 
of the practical advantages. It takes account of the system 
responses subject to different types of inputs so that the 
obtained model yields zero steady-state error, preserves the 
stability characteristics and does not cause large errors. 
Besides, the control which is optimal for the reduced model is 
also applicable for the original high-order system. Moreover, 
the suitability of the reduction method of minimizing an 
objective function involving the approximation is assured 
since the method does not have any uncertainty in the 
reduction process [8].  

Essentially, the error minimization based model reduction 
is to determine a set of parameters [ ]T

1 0      n ma a b bθ = " "  

so that ( )G s  can be approximated with ( )G s�  by minimizing 
certain objective, such as 2H -norm, H∞ -norm, 2L -norm or 
L∞ -norm [8,11-13]. In this paper, the following integral least 
squares performance index that proposed in [7] is used  
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where ( )e t is the Laplace inverse transform of ( )E s , and 

( ) ( ( ) ( )) ( ) ( ) ( )E s G s G s U s Y s Y s= − = −� � , ( )U s  is the Laplace 

transform of input signal, ( )Y s�  and ( )Y s  are the original 
system output and the reduced-order system output, 
respectively.   

According to the popular Parseval theorem, the Eq.(3) is 
equivalent to the following frequency-domain index 
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   Let s jω= .For a practical system, it is only need to take 
into account the problem within the selected frequency range 

min maxω ω∼ . Therefore the performance index showed in 
Eq.(4) is written as the following discrete form index  
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where 1vϖ ϖ ϖω ω+= − (assume that 1 2 1Mω ω ω +< < <" ) are 
the weights. vϖ  indicate that the larger the differences 
between the sequential two frequency points is, the heavier 
the weight is, and vice versa.  
    Eq.(5) indicates that [ ]T

1 0      n ma a b bθ = " " are 

determined by matching ( )Y s  to ( )Y s� at multiple points. 
This multiple-point fitting approach will make modeling 
more robust [1].  

From Eq. (2), we obtain ( ) ( ) ( )jG j B j e A jϖτ ω
ϖ ϖ ϖω ω ω−= , 

then the performance index showed in Eq.(5) can be rewritten 
as 
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Notice from Eq.(6) that ia appear in the denominator and τ  
appears in the exponent. This causes the problem to be 
nonlinear. To simplify calculation, we multiply the equation 
error ( ) ( ) ( ) ( ) ( )jG j U j B j U j e A jϖτ ω

ϖ ϖ ϖ ϖ ϖω ω ω ω ω−−� with 
( )A j ϖω  by adopting the Levy method [14], thus Eq. (6) is 

further rewritten as   
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(7) 
Notice that Eq.(7) contains the unknown time delay τ  to be 
estimated and it still makes the problem nonlinear. However, 
if τ  is known, then the problem becomes to approximate a 
modified process 0 ( ) ( ) sG s G s eτ=� �  with a rational transfer 
function 0 ( ) ( ) ( )G s B s A s= . Therefore, for convenience of 
calculation, the following performance index is used for 
replacing of Eq. (7) 
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The approximation to ( )G s�  will give an error J  which is 
obviously related to τ . The solution to the original model 
reduction is obtained by minimizing this error over the 
possible range of τ . This is a one-dimensional search 
problem and can be easily solved if an estimation of the range 
of τ is given. 

From Eq.(2), we can obtain 
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Moreover, the performance index can be further derived as  
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In the following paper, the detailed frequency-domain 
weighted RLS arithmetic for model reduction is derived by 
adopting the similar method as reference [15]. 

Take the partial derivative of J with respect to θ , we have 
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Let 0J
θ

∂
=

∂
, we get 
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Define 1
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From Eq. (11) and Eq. (12), we have  
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It follows that  
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Define  
1 1
1 1 2 Re( ( ))Re( ( ))T

k k k k kQ P v j jω ω− −
− −= +            (15) 

From Eq.(12) and Eq.(15), we get 

 1 1
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From Eq.(15) and Eq.(16), 1kQ −  and kP  can be obtained as 
follows by using the famous matrix inversion lemma 
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Integrating Eq. (14), Eq.(17) and Eq.(18), the final frequency 
-domain weighted RLS formulae for model reduction is 
obtained as follows  
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Some initial parameters can be determined by using the 
tentative method that 0P Iσ= and 0θ ε= , where σ is a 
sufficiently large positive number, and ε  is a sufficiently 
real vector. 

The above recursive formulae will be repeated until the 
given maximum recursion number or the following maximum 
estimating error of θ  meets 
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where η  is a user-specified threshold, ( )k iθ  denotes the 
i -th element of kθ . 
   In general, model reduction and system identification are 
service for system control. Therefore, the selection of 
exciting input signal ( )U s in model reduction should to 
consider the used control strategy. If the control strategy 
emphasizes in accuracy of step response, ( )U s  can choose 
the unit step input. If the control strategy requires a finer 
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response for high frequency input, ( )U s  can choose the 
impulse input. 

III. COMPUTATIONAL PROCEDURE  
The computational procedure required for the 

frequency-domain weighted RLS model reduction for the 
above mentioned complex linear system that consist of 
several single transfer functions in parallel is summarized as 
follows 

Step 1: According to the actual requirement, choose 
0, ,N τ τΔ , and obtain 0 ( 1) ,  1, ,i i i Nτ τ τ= + − Δ = " . 

Step 2: Determine the frequency range min max( )ω ω∼ Hz , 

such as 3 3(10 10 )− ∼ Hz, and average it into M parts in the 
logarithm coordinate, then the k -th frequency kω can be 

calculated by  min max min( ( ) )10 k M
k

ω ω ωω − + −= . 
Step 3: Choose the exciting input signal ( )U s  according 

to the actual requirement.  
Step 4: For each iτ , find a rational approximation solution 

0 ( )G s  to modified model 0 ( ) ( ) i sG s G s eτ=� �  with the proposed 
weighted RLS model reduction formulae. 

Step 5: For each rational approximation solution 0 ( )G s  

obtained in step 4, calculate 0( ) ( ) it sG s G s e−= , and then 
evaluate the corresponding approximation error e  in Eq. (21) 
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Step 6: Take as the solution ( )G s  that yields the minimum 
error e  in Eq. (21). 

IV. ILLUSTRATIVE EXAMPLES 

In this section, two simulation examples are presented to 
demonstrate the effectiveness of the proposed frequency- 
domain weighted RLS based model reduction scheme.  

Example 1. Consider the following complex linear system 
that consist of two second-order systems plus time delay, it is 
desired to obtain first-order reduced model (FORM) and 
second-order reduced model (SORM) using the proposed 
model reduction arithmetic. 
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Then choose the unit step input as the exciting input signal, 
which means that ( ) 1U s s= . Finally, the FORM and the 
SORM are obtained as Eq. (22) and Eq. (23), respectively. 
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Fig.1, Fig. 2 and Fig.3 show the response effect of the 
original model and the reduced-order models due to the unit 
square wave input, the unit ramp input and the unit sine input, 
respectively.  It can be seen that no matter what the input is, 
the obtained lower-order model can approximate to the 
original model very closely. From the comparisons of 
approximation effect of the FORM and the SORM, it can 
conclude that the SORM has better accuracy. This is because 
the SORM can cover a wider range of dynamics of the 
original model. Moreover, it is easy to obtain that the 
steady-state responses of the original model, the FORM and 
the SORM are (0) 1.2199G = −� , (0) 1.2197G = − and 

(0) 1.22G = − , respectively. This means that the reduced-order 
models almost have yielded zero steady-state error. Therefore, 
the reduced model obtained by using the proposed model 
reduction method not only can cause limited large dynamic 
approximation errors, but also can preserve the stability 
characteristics. 

Example 2. Consider the following more complex linear 
system that consist of three second-order systems plus time 
delay, it is still desired to obtain FORM and SORM. 
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Firstly, choose ( ) 1U s s= , and determine the parameters as 

follows 
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Then, by using the proposed model reduction method, the 
FORM and the SORM are obtained as Eq. (24) and Eq. (25), 
respectively. 
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Fig. 1 Unit square wave response of original and reduced-order models  
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Fig. 2 Unit ramp response of original and reduced-order models 
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Fig. 3 Unit sine response of original and reduced-order models 

 
  Fig. (4) shows the unit step response error of the 

reduced-order models. It can be seen that the absolute 
response errors of the FORM and the SORM are all tiny, 
which means that no matter how complex the original system 
is, the obtained reduced-order models with the proposed 
model reduction scheme all have fine approximation to the 

original model. This example further illustrates the 
effectiveness of the proposed method for model reduction of 
the complex SISO linear system. 
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Fig. 4 Unit step response error of reduced-order models 

V. CONCLUSION 
A new frequency-domain weighted RLS method has been 

presented and validated in this paper for model reduction of 
SISO linear dynymic system that described as the 
multinomial of several single transfer functions with different 
delay time. The proposed method shows some good 
performances in the following aspects: 

 The proposed method not only can cause less dynamic 
error, but also can yield zero steady-state error, thus can 
preserve the stability characteristics.  

 The proposed method can be used to simplify any SISO 
linear system to a single transfer function plus time delay 
with any order. This is because all complex SISO linear 
system can be described as the form of Eq. (1), and any 
desired reduced-model also can be described as the form of 
Eq. (2). 

 The quadratic performance index used in this paper (as 
shown in Eq. (8) or Eq. (9)) includes the exciting input 
signal, which expresses the requirement for optimal 
performance index subjected to the selected input signal. 
Therefore, it reflects the thought of control-oriented 
identification that involved in the proposed model 
reduction method. 
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