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Abstract— This paper is concerned with the problem of
designing adaptive fault-tolerant output-feedback controllers
for linear time-invariant (LTI) systems with actuator saturation.
By combining the linear matrix inequality (LMI) approach
for output-feedback controllers design and adaptive method,
a method of designing adaptive reliable output-feedback con-
trollers is proposed, where the controller parameter matrices
are updated automatically to compensate the controller failures
effects on systems based on the online estimations of eventual
faults. The designs are developed in the framework of LMI
approach, which can enlarge the domain of asymptotic stability
of closed-loop systems in the cases of actuator saturation and
actuator failures. An example is given to illustrate the efficiency
of the design method.

I. INTRODUCTION

Control systems with actuator saturation are often encoun-
tered in practice. When actuator saturation occurs, global
stability of an otherwise stable linear closed-loop system can
not in general be ensured. And the problem of estimating
the domain of attraction for a system with a saturated
linear feedback has been studied by many researchers in the
last few years and various methods have appeared. Model
predictive control (MPC) is an effective control algorithm
for dealing with actuator saturation. Over the last few years,
many formulations have been developed for the stability of
MPC (see, [1], [2]). Enlargement of the domain of attraction
is achieved in ([3], [4], [5], [6], [7]). Anti-windup research
has been largely discussed and many constructive design
algorithms have been formally proved to induce suitable
stability properties (see, [8]-[14]). Many of these constructive
approaches rely on sector condition and S-procedure tech-
niques and provide LMIs for the anti-windup compensator
design. In some papers, notion of invariant set and LMI-
based optimization approaches were proposed to estimating
the stability regions by using quadratic Lyapunov functions
and the Lur’e-type Lyapunov functions. In [15] and [16],
the modeling of the nonlinear behavior of the system under
saturation is made by using a polytopic differential inclusion
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and quadratic Lyapunov functions. For determining if a given
ellipsoid is contractively invariant, [17] described a condition
which is based on the circle criterion or the vertex analysis.

On the other hand, fault-tolerant design approach can be
broadly classified into two types: Passive approach [18]-[22]
and Active approach [23]-[28]. In the passive approach, the
same controller is used throughout normal case as well as
fault cases such that this passive fault tolerant controller is
easily implemented. Some approaches to the design of pas-
sive fault-tolerant controllers have been addressed by several
authors (see [18]-[22] and the references therein). An active
fault-tolerant control system compensates for faults either by
selecting a pre-computed control law or by synthesizing a
new control strategy on-line. Some of these methods include
a strategy involving a fast subsystem for Fault Detection and
Isolation (FDI), and a supervisory system that chooses the
corresponding controller for a particular type of fault.

As we all know, in practice, actuator saturation and
actuator faults are the common phenomenon, and they always
happen at the same time. However, noting all above results,
there is no work that deals with this problem. Motivated by
the above observations, this paper studies a class of linear
time-invariant systems with actuator saturation and actuator
faults at the same time. A general actuator fault model is
considered, which covers the outage cases and the possibility
of partial faults. Here, an LMI-based method is presented
to deal with the fault-tolerant and saturation problem. One
key difference between this paper and some existing results
is that in this paper, the fault-tolerant and saturation are
considered at the same time.

The paper is organized as follows. Problem statement is
given in Section 2. It is followed by the adaptive fault-
tolerant controller design method to enlarge the domain of
asymptotic stability of closed-loop systems in the cases of
actuator saturation and actuator failures in Section 3. An
illustrative example is presented in Section 4 to demonstrate
the proposed design methods. The paper will be concluded
in Section 5.

II. PROBLEM STATEMENT AND PRELIMINARIES

Consider an LTI plant described by

ẋ(t) = Ax(t)+Bσ(u(t))
y(t) = Cx(t) (1)

where x(t)∈ Rn is the plant state, σ(u)∈ Rm is the saturated
control input. A, B, C are known constant matrices of
appropriate dimensions.
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The actuator nonlinearity with the consideration of a
piecewise-linear saturation is described as

σ(u j) =
{

u j, |u j| ≤ umax
j ,

sign(u j)umax
j , |u j|> umax

j ,
(2)

for j ∈ I[1,m]. Here we have slightly abused the notation
by using σ to denote both the scalar valued and the vector
valued saturation functions as explained in [17]. We note that
it is without loss of generality to assume umax

j = 1, as level
of saturation can always be scaled to unity by scaling B and
u as pointed out in [17].

To formulate the fault-tolerant control problem, the fol-
lowing actuator fault model from [19] and [22] is adopted
in this paper:

uF
jq(t) = (1−ρq

j )σ(u j(t)), 0≤ ρq
j
≤ ρq

j ≤ ρq
j ,

j ∈ I[1,m], q ∈ I[1,L], (3)

where uF
jq(t) represents the signal from the jth actuator that

has failed in the qth fault mode, ρq
j is an unknown constant,

the index q denotes the qth fault mode and L is the total fault
modes. For every fault mode, ρq

j
and ρq

j represent the lower
and upper bounds of ρq

j , respectively. Denote

uF
q (t) = [uF

1q(t), uF
2q(t), · · ·uF

mq(t)]
T = (I−ρq)σ(u(t)) (4)

where ρq = diag[ρq
1 , ρq

2 , · · ·ρq
m], q ∈ I[1,L]. Considering the

lower and upper bounds ρq
j

and ρq
j , the following set can be

defined

Nρq = {ρq|ρq =diag[ρq
1 , ρq

2 , · · ·ρq
m],ρq

j = ρq
j

or ρq
j = ρq

j}. (5)

Thus, the set Nρq contains a maximum of 2m elements.
For convenience in the following sections, for all possible

fault modes L, the following uniform actuator fault model is
exploited:

uF (t) = (I−ρ)σ(u(t)), ρ ∈ {ρ1 · · ·ρL} (6)

and ρ can be described by ρ = diag[ρ1, ρ2, · · ·ρm].
The following definition and lemmas will be used in the

sequel.
Definition 1: For a matrix Ccl ∈ Rm×n, denote the jth row

of Ccl as Ccl j, define

℘(Ccl) = {x ∈ Rn : |Ccl jx| ≤ 1, j ∈ I[1,m]},
then ℘(Ccl) is the region in the state space where saturation
does not occur.

For x(0) = x0 ∈ Rn, denote the state trajectory of system
(4) as ψ(t,x0). Then the domain of attraction of the origin
is

` := {x0 ∈ Rn : limt→∞ψ(t,x0) = 0}.

Lemma 1: If there exists a symmetric matrix Θ with

Θ =
[

Θ11 Θ12
ΘT

12 Θ22

]

and Θ11, Θ22 ∈ RNn×Nn such that the following inequalities
hold:

Θ22 j j ≤ 0, j ∈ I[1,N],

Θ11 +Θ12∆(δ )+(Θ12∆(δ ))T +∆(δ )Θ22∆(δ )≥ 0, δ ∈ ∆v[
Q E

ET F

]
+GT ΘG < 0, ρ ∈ {ρ1 · · · ρL}, ρq ∈ Nρq

then inequality

W (δ ) = Q+∑N
j=1 δ jE j +(∑N

j=1 δ jE j)T

+∑N
j=1 ∑N

p=1 δ jδpFjp < 0

holds for all δ j ∈ [δ j δ j], where Q = QT ∈ Rn×n and Fp j =
FT

p j ∈ Rn×n, E j ∈ Rn×n

∆(δ ) = diag[δ1In×n · · · δN In×n], E = [E1 E2 · · · EN ],

F =




F11 · · · F1N
· · · · · · · · ·
FN1 · · · FNN


 ,G =







In×n
· · ·

In×n


 0

0 INn×Nn


 .

Let D be a set of m×m diagonal matrices whose diagonal
elements are either 1 or 0. There are 2m elements in D and
we denote its elements as Di, i ∈ I[0,2m−1], where for i =
z12m−1 + Z22m−2 + · · ·+ zm with z j ∈ {0,1}, the diagonal
elements of Di are {1− z1,1− z2, · · ·,1− zm}. Denote D−

i =
I−Di. It is easy to see that D−

i ∈ D. Then we have
Lemma 2: ([29]) Let u, v ∈ Rm with u = [u1,u2, ...,um]T

and v = [v1,v2, ...,vm]T . Suppose that |v j| ≤ 1 for all j ∈
I[1,m]. Then,

σ(u) ∈ co{Diu+D−i v : i ∈ I[0,2m−1]}, (7)

where co denotes the convex hull. Then, the following
problem will be considered in this paper.

Problem 1: Find an adaptive controller such that in both
normal operation and fault cases, the domain of asymptotic
stability is enlarged as possible for closed-loop system with
actuator saturation.

Remark 1: For the above problem to be solved, it is
necessary for the pair (A,B(I − ρ)) to be stabilizable for
each ρ ∈ {ρ1 · · ·ρL}.

III. MAIN RESULTS

A. An improved condition for set invariance
The dynamics with actuator faults (6) and saturation is

described by

ẋ(t) = Ax(t)+B(I−ρ)σ(u(t))
y(t) = Cx(t) (8)

The controller structure is chosen as

ξ̇ (t) = f (ξ (t), y), ξ (t) ∈ Rn

u(t) = CK(ρ̂(t))ξ (t) (9)

with

u(t) = CK(ρ̂(t))ξ (t) = (CK0 +CKa(ρ̂(t))+CKb(ρ̂(t)))ξ (t) (10)

where ρ̂(t) is the estimation of ρ , CKa(ρ̂(t)) =
∑m

j=1 CKa jρ̂ j(t) and CKb(ρ̂(t)) = ∑m
j=1 CKb jρ̂ j(t).

By lemma 1, the saturated linear feedback, with ξ (t) ∈
℘(H(ρ̂(t))), can be expressed as

σ(CK(ρ̂(t))ξ (t)) = ∑2m−1
i=0 ηi[DiCK(ρ̂(t))+D−i H(ρ̂(t))]ξ (t)

(11)
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for some scalars 0 ≤ ηi ≤ 1, i ∈ I[0,2m − 1], such that
∑2m−1

i=0 ηi = 1, and the following equality holds

(I−ρ)σ(u(t)) = ∑2m−1
i=0 ηi[(I−ρ)DiCK0 +DiCKa(ρ)

−ρDiCKa(ρ̂)+(I− ρ̂(t))DiCKb(ρ̂(t))+DiCKa(ρ̃(t))

+ ρ̃DiCKb(ρ̂(t))+(I−ρ)D−i HK0 +D−i HKa(ρ)

−ρD−i HKa(ρ̂)+(I− ρ̂(t))D−i HKb(ρ̂(t))

+D−i HKa(ρ̃(t))+ ρ̃D−i HKb(ρ̂(t))]ξ (t) (12)

where ρ̃(t) = ρ̂(t)− ρ . It should be noted that though
CKa(ρ̂(t)) and CKb(ρ̂(t)) have the same forms, we deal with
them in different ways in (12), which gives more freedom
and less conservativeness in Theorem 1.

Definition 2: Let P ∈ Rn×n be a positive-define matrix.
Denote

ε(P,δ ) = {x ∈ Rn : xT Px≤ δ}.
ε−(P,δ ) = {x ∈ Rn : xT Px < δ}.

ε∗(P,δ ) = {x ∈ Rn : xT Px+∑m
j=1

ρ̃2
j (t)

l j
≤ δ}.

Let V (t) = xT Px + ∑m
j=1

ρ̃2
j (t)
l j

. If V̇ (t) < 0 for all x ∈
ε∗(P,δ )\{0}, the domain ε∗(P,δ ) is contractively invariant.
Clearly, if ε∗(P,δ ) is contractively invariant, then it is inside
the domain of attraction.

We note that the scalars ηi’s are functions of ξ and ρ̂
and their values are available in real-time. These scalars in a
way reflect the severity of control saturation. In general, there
are multiple choices of ηi’s satisfying the same constraint,
leading to nonunique representation of (11). In the following
lemma, we provide one choice of such ηi’s, which are
Lipschitzian functions in ξ and ρ̂ and thus are particularly
useful in our controller design.

Lemma 3: ([16]) Let ξ (t) ∈℘(H(ρ̂(t))). For each j ∈
I[1,m], let

λ j(ξ (t), ρ̂(t))

=





1, if CK(ρ̂(t)) jξ (t)
= H(ρ̂(t)) jξ (t)

σ(CK(ρ̂(t)) jξ (t))−H(ρ̂(t)) jξ (t)
(CK(ρ̂(t)) j−H(ρ̂(t)) j)ξ (t) , otherwise

and for each i ∈ I[0,2m − 1], let z j ∈ {0,1} be such that
i = z12m−1 + z22m−2 + ...+ zm, and define

ηi(ξ (t), ρ̂(t)) =
m

∏
j=1

[z j(1−λ j(ξ (t), ρ̂(t)))

+(1− z j)λ j(ξ (t), ρ̂(t))] (13)

Then, ηi’s are functions Lipschitz in ξ and ρ̂ , such that,
∑2m−1

i=0 ηi = 1, 0 ≤ ηi ≤ 1, i ∈ I[0,2m − 1]. Moreover, they
satisfy relation (11).

By using the functions ηi(ξ (t), ρ̂(t))′s, the output feed-
back controller (9) can be parameterized as

ξ̇ (t) = (∑2m−1
i=0 ηiAKi(ρ̂))ξ (t)+(∑2m−1

i=0 ηiBKi(ρ̂))y(t)

u(t) = (I−ρ)σ(CK(ρ̂)ξ (t)) (14)

where

AKi(ρ̂) = AKi0 +AKia(ρ̂)+AKib(ρ̂)
BKi(ρ̂) = BKi0 +BKia(ρ̂)+BKib(ρ̂)
CK(ρ̂) = CK0 +CKa(ρ̂)+CKb(ρ̂)

BKia(ρ̂) = ∑m
j=1 ρ̂ jBKia j, BKib(ρ̂) = ∑m

j=1 ρ̂ jBKib j

CKa(ρ̂) = ∑m
j=1 ρ̂ jCKa j, CKb(ρ̂) = ∑m

j=1 ρ̂ jCKb j

AKia(ρ̂) = ∑m
j=1 ρ̂ jAKia j

AKib(ρ̂) = ∑m
j=1 ∑m

s=1 ρ̂ jρ̂sAKib js +∑m
j=1 ρ̂ jAKib j

Motivated by the quasi-LPV structure of both the plant
and the controller, we consider the following auxiliary LPV
system, if ε(P, δ )⊂℘([0 H(ρ̂)]) is an invariant set.

ẋe(t) = Ae(η)xe(t) = ∑2m−1
i=0 ηi(Aeixe(t)), η ∈ Γ (15)

where xe = [xT (t) ξ T (t)]T , η = [η0, η1, · · ·, η2m−1], and

Γ = {η ∈ R2m
: ∑2m−1

i=0 ηi = 1, 0≤ ηi ≤ 1, i ∈ I[0, 2m−1]}

Aei =
[

A B2(I−ρ)[DiCK(ρ̂)+D−i H(ρ̂)]
BKi(ρ̂)C AKi(ρ̂)

]

The following theorem establishes conditions on the
output-feedback controller coefficient matrices under which
the LPV system (15) is asymptotically stable with Lya-
punov function. Denote ∆ρ̂ = {ρ̂ = (ρ̂1 · · · ρ̂m) : ρ̂ j ∈
{min

q
{ρq

j
}, max

q
{ρq

j}}, q ∈ I[1,L]} and B j = [0 · · · b j · · · 0]

with B = [b1 · · ·bm].
Theorem 1: ε∗(P,δ ) is a contractively invariant set for

normal and actuator failure cases, if there exist matrices 0 <
N1 < Y1, AKi0, AKia j, AKib js, BKi0, BKia j, BKib j, CK0, CKa j,
CKb j, HK0, HKa j, HKb j, j ∈ I[1,m], s∈ I[1,m] and symmetric
matrixes Θi, i ∈ I[0,2m−1] with

Θi =
[

Θi
11 Θi

12
ΘiT

12 Θi
22

]

and Θi
11, Θi

22 ∈ Rm(2n)×m(2n) such that the following in-
equalities hold for all Di ∈ D and ε∗(P,δ ) ⊂℘([0 H(ρ̂)]),
i.e., |[0 H(ρ̂)] jxe| ≤ 1 for all xe ∈ ε∗(P,δ ), j ∈ I[1,m].

Θi
22 j j ≤ 0, j ∈ I[1,m], i ∈ I[0,2m−1]

Θi
11 +Θi

12∆(ρ̂)+(Θi
12∆(ρ̂))T +∆(ρ̂)Θi

22∆(ρ̂)≥ 0, ρ̂ ∈ ∆ρ̂[
Qi Ri
RT

i Si

]
+GT ΘiG < 0, i ∈ I[0,2m−1],

ρ ∈ {ρ1 · · · ρL}, ρq ∈ Nρq (16)

where

Ri =
[

Ri1 Ri2 · · · Rim
]

Qi =
[

Y1A−N1BKi0C +(Y1A−N1BKi0C)T T1i
∗ T2i

]

Ri j =




−N1BKib jC−N1BKia jC T3i

N1BKib jC +N1BKia jCS
[

0
C⊥

]
T4i




Si = [Si js], j, s ∈ I[1,m], Si js =
[

0 T5i
T6i T7i

]
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with

T1i = Y1B[(I−ρ)(DiCK0 +D−i HK0)+DiCKa(ρ)

+D−i HKa(ρ)]−N1AKi0−N1AKia(ρ)

+
[

0
C⊥

]T
ST [−Y1B2(DiCKa(ρ)+D−i HKa(ρ))

+N1AKia(ρ)]+(−N1A+N1BKi0C

+N1BKia(ρ)C− [N1BKia(ρ)CS]
[

0
C⊥

]
)T

T2i =−N1B[(I−ρ)(DiCK0 +D−i HK0)+DiCKa(ρ)

+D−i HKa(ρ)]+(−N1B[(I−ρ)(DiCK0 +D−i HK0)

+DiCKa(ρ)+D−i HKa(ρ)])T +N1AKi0

+N1AKia(ρ)+(N1AKi0 +N1AKia(ρ))T

T3i = Y1B[−ρ(DiCKa j +D−i HKa j)+DiCKb j +D−i HKb j]

−N1AKib j +
[

0
C⊥

]T
ST [Y1B((DiCKa j +D−i HKa j)

−ρ(DiCKb j +D−i HKb j))−N1AKia j]

T4i = N1Bρ(DiCKa j +D−i HKa j)

−N1B(DiCKb j +D−i HKb j)+N1AKib j

T5i =−Y1B j(DiCKbs +D−i HKbs)−N1AKib js

+
[

0
C⊥

]T
STY1B j(DiCKbs +D−i HKbs)

T6i = (−Y1Bs(DiCKb j +D−i HKb j)−N1AKibs j

+
[

0
C⊥

]T
STY1Bs(DiCKb j +D−i HKb j))T

T7i = N1B j(DiCKbs +D−i HKbs)+N1AKib js

+[N1B j(DiCKbs +D−i HKbs)+N1AKib js]T

G =







I(2n)×(2n)
· · ·

I(2n)×(2n)


 0

0 Im(2n)×m(2n)


 ,

∆(ρ̂) = diag[ρ̂1I(2n)×(2n) · · · ρ̂mI(2n)×(2n)].

and also ρ̂ j(t) is determined according to the adaptive law

˙̂ρ j = Proj[min
q
{ρq

j}, max
q
{ρq

j}{L1 j}

=





0, if
ρ̂ j = min

q
{ρq

j
} and L1 j ≤ 0

or ρ̂ j = max
q
{ρq

j} and L1 j ≥ 0

L1 j, otherwise

(17)

where

L1 j = l j ∑2m−1
i=0 ηi{ξ T O1[AKia j−BDiCKa j

−B jDiCKb(ρ̂)−BD−i HKa j−B jD−i HKb(ρ̂)]ξ

+
[

y
0

]T
ST [M1(BDiCKa j +B jDiCKb(ρ̂)

+BD−i HKa j +B jD−i HKb(ρ̂))−O1AKia j]ξ

+ξ T O1BKia jCS
[

y
0

]
},

M1 = δY1, O1 = δN1. l j > 0( j ∈ I[1,m]) and δ > 0 are
the adaptive law gains to be chosen according to practical
applications.

Proof: For the limitation of space, the proof is omitted.

If we take the following output-feedback controller with
fixed parameter matrices AKi0, BKi0, CK0, i ∈ I[0,2m−1]

ξ̇ (t) = (∑2m−1
i=0 ηiAKi0)ξ (t)+(∑2m−1

i=0 ηiBKi0)y(t)

u(t) = (I−ρ)σ(CK0ξ (t)) (18)

then combing (18) with (1), it follows:

ẋe1(t) = Ae1(η)xe1(t) (19)

Ae1(η) = ∑2m−1
i=0 ηi(Ae1ixe1(t)), η ∈ Γ (20)

where xe1 = [xT (t) ξ T (t)]T ,

Ae1i =
[

A B2(I−ρ)[DiCK0 +D−i H0]
BKi0C2 AKi0

]

Based on system (19), the following lemma is presented.
Lemma 4: Consider the closed-loop system described by

(19), we have that the following statements are equivalent:
(i) there exist a symmetric matrix X > 0 and controller K

described by (18) such that

AT
e1iX +XAe1i < 0

holds for ρ ∈ {ρ1 · · · ρL}, ρq ∈ Nρq

(ii) there exist symmetric matrices Y1 and N1 with 0 <
N1 <Y1, and a controller described by (18) with AKi0 = AKei0,
BKi0 = BKei0, CK0 =CKe0, H0 = He0, i∈ I[0,2m−1] such that

[
Y1A−N1BKi0C +(Y1A−N1BKi0C)T T0

∗ T1

]
< 0 (21)

with

T0 = Y1B2(I−ρ)[DiCK0 +D−i H0]−N1AKi0 +(−N1A+N1BKi0C)T

T1 =−N1B2(I−ρ)[DiCK0 +D−i H0]+N1AKi0

+(−N1B2(I−ρ)[DiCK0 +D−i H0]+N1AKi0)T

Proof: The proof is similar to the proof of Lemma 2 in
[31]. To avoid overlap, it is omitted.

Next, a theorem is given to show that the condition in
Theorem 1 for the adaptive controller design is more relaxed
than that in Lemma 4 for the traditional controller design
with fixed parameter matrices.

Theorem 2: If condition (i) or (ii) in Lemma 4 holds, then
the condition of Theorem 1 holds.

Proof: If condition (i) or (ii) in Lemma 4 holds, then it
is easy to see that the condition in Theorem 1 is feasible
with AKia j = AKib j = AKib js = BKia j = BKib j =CKa j =CKb j =
HKa j = HKb j = 0, i ∈ I[0,2m−1], j ∈ I[1,m], s ∈ I[1,m]. The
proof is completed.

B. Controller design

From Theorem 1, we can obtain various controller gains
and domains satisfying the set invariance condition. So, how
to choose the “largest” one of them becomes an interesting
problem. In this section, we will give a method to find the
“largest” domain.

The following definition will be used in the sequel.
Definition 3: Define XR is a prescribed bounded convex

set. XR = ε(R,1) = {x ∈ Rn×n : xT Rx ≤ 1}, R > 0 or
XR = co{x1,x2, ...,xl}. For a set S ∈ Rn, αR(S) = sup{α >
0 : αXR ⊂ S}.
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In Theorem 1, a condition for the set ε∗(P,δ ) to be inside
the domain of attraction is given. With the above shape
reference sets, we can choose from all the ε∗(P,δ )’s that
satisfy the condition of Theorem 1 such that the quantity
αR(ε∗(P,δ )) is maximized. The problem can be formulated
as follows

sup α
s.t. (a) αXR ⊂ ε∗(P,δ ),

(b) (16),
(c) ε∗(P,δ )⊂℘([0 H(ρ̂)]). (22)

By Definition 2, we know that (a) and (c) cannot be shown
as LMIs directly. Then we give the following proposition.

Proposition 1: Obviously, ε∗(P,δ ) ⊂ ε(P,δ ), which im-
plies that (c) holds if (c1) holds, where

(c1) ε(P,δ )⊂℘([0 H(ρ̂)]), (23)

By Definition 2, we have

xT
e Pxe +∑m

j=1

ρ̃2
j (t)

l j
≤ δ ⇔ xT

e
P
δ

xe +∑m
j=1

ρ̃2
j (t)

δ l j
≤ 1.

Let F(t) = ∑m
j=1

ρ̃2
j (t)
δ l j

. Then, by (17) and (3), it follows
that ρ̃ j(t) ≤ max

j
{ρq

j}−min
j
{ρq

j
}. We can choose l j and δ

sufficiently large so that F(t) is sufficiently small. Then the
conclusion can be drawn as follows:

For system (8) and controller (9) there must exist δ > 0
and li > 0 such that the closed-loop system (15) is asymp-
totically stable in domain ε−(P,δ ) if (b) and (c1) hold.

Then we can get the “largest” domain of asymptotic
stability by solving the following optimization problem

sup α
s.t. (a1) αXR ⊂ ε(P,δ ),

(b), (c1). (24)

If the given shape reference set XR is a polyhedron as
defined in Definition 1, then Constraint (a1) is equivalent to

α2xT
q (

P
δ

)xq ≤ 1⇔
[

1/α2 xT
q ( P

δ )
( P

δ )xq ( P
δ )

]
≥ 0, (25)

for all q ∈ I[1, l]. If XR is a ellipsoid ε(R,1), then (a1) is
equivalent to

R
α2 ≥

P
δ
⇔

[
(1/α2)R ( P

δ )
( P

δ ) ( P
δ )

]
≥ 0. (26)

Condition (c1) is equivalent to

δ [0 h(ρ̂)] jP−1[0 h(ρ̂)]Tj ≤ 1⇔
[

1 [0 h(ρ̂)] j
∗ ( P

δ )

]
≥ 0. (27)

for all j∈ I[1,m], where [0 h(ρ̂)] j be the jth row of [0 H(ρ̂)].
We have that (26) is equivalent to the following inequalities.

(c2)
[ −1 −[0 HK0s]

∗ −X

]

+
m

∑
j=1

ρ̂ j

[
0 [0 −HKa js−HKb js]
∗ 0

]
≤ 0, ρ̂ ∈ ∆ρ̂

where HKa js is the sth row of HKa j, s ∈ I[1,m].

If XR is a polyhedron, then from (23) and (26), the
optimization problem (23) is equivalent to

inf γ

s.t. (a2)
[

γ xT
q X

Xxq X

]
≥ 0, q ∈ I[1, l],

(b), (c2), (28)

where γ = 1/α2.
If XR is an ellipsoid, we need only to replace (a2) with

(a3)
[

γR X
X X

]
≥ 0. (29)

It should be noted that condition (16) is not convex.
But when CK0,CKa j,CKb j,HK0,HKa j,HKb j are given, they
become LMIs.

From Theorem 1, we have the following algorithm to
design the adaptive output feedback controller.

Algorithm 1:
Step 1: Suppose that all states of system (1) can be

measured. Minimize the index γ to design the state-feedback
controller. Then, the matrices CK0, CKa j, CKb j, HK0, HKa j,
HKb j can be given.

Step 2: Solve the following optimization problem

inf γ
s.t. (a2), (b), (c2) (30)

Then the resulting AKi0, AKia j, AKib js, BKi0, BKia j, BKib j,
CK0, CKa j, CKb j, i ∈ I[0,2m−1], j ∈ I[1,m], s ∈ I[1,m] will
form the dynamic output feedback controller gains.

Remark 2: Step 1 is to determine matrices CK0, CKa j,
CKb j, HK0, HKa j, HKb j, which solves the corresponding
adaptive controller design problem via state feedback. This
procedure is adopted from [30], and convex conditions are
described in [30]. To avoid overlap, the conditions appear in
Step 1 will be omitted.

From Lemma 4, we have the following algorithm to design
the fault-tolerant controller with fixed gains.

Algorithm 2:
Step 1: Suppose that all states of system (1) can be

measured. Minimize the index γ to design the state-feedback
controller. Then, the matrices CK0, HK0 can be given.

Step 2: Solve the following optimization problem

inf γ
s.t. (a2), (21), (c2) (31)

Then the resulting AKi0, BKi0, CK0, i ∈ I[0,2m − 1] will
form the dynamic output feedback controller gains.

Remark 3: Step 1 is to determine matrices CK0, HK0,
which solves the corresponding controller design problem
via state feedback [30].

Remark 4: In Step 1, for some cases, the magnitude of
the designed gains CK0 (CKa j and CKb j) may be too large
to be applied in Step 2. For solving the problem, by adding
the following constraints, where Q and YK0 are variables in
conditions of Step 1.

Q > αI, YK0Y T
K0 < β I, (32)
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then the magnitude of CK0 can be reduced. In fact, by CK0 =
YK0Q−1 and (32), it follows that

‖CK0 ‖<
√

β/α.

The similar method can be used for the gains CKa j and CKb j.

IV. EXAMPLES

Example 1. Consider the system of form (8) with

A =
[

0.01 0.1
0.1 0.01

]
, B =

[
10 0
0 10

]
, C = [1 0]

and the following two possible fault modes:
Fault mode 1: Both of the two actuators are normal, that is,

ρ1
1 = ρ1

2 = 0

Fault mode 2: The first actuator is outage and the second
one may be normal or loss of effectiveness, described by

ρ2
1 = 1, 0≤ ρ2

2 ≤ a,

where a = 0.5 denotes the maximal loss of effectiveness for
the second actuator. Let

R =




0.1 0 0 0
0 0.1 0 0
0 0 0.1 0
0 0 0 0.1




After implementing Algorithm 2, we have that γ∗ =
1.9669. When Algorithm 1 is used to design adaptive
output-feedback controller, the optimal index is given as
γ∗ = 0.7648. Obviously, the optimal index γ is smaller for
Algorithm 1. The phenomenon indicates the superiority of
our adaptive method.

V. CONCLUSIONS

In this paper, an adaptive fault-tolerant controllers design
method has been presented for linear time-invariant systems
with actuator saturation. The designs were developed in
the framework of linear matrix inequality (LMI) approach,
which can enlarge the domain of asymptotic stability of
closed-loop systems in the cases of actuator saturation and
actuator failures. An example has been given to illustrate the
efficiency of the design method.
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