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Abstract— The problem of suppressing the vibrations of a
one-degree-of-freedom structural system using an AMD (active
mass damper) with restricted stroke is considered; it can be
formulated as the problem of stabilizing a linear system with a
state constraint. First this problem is reduced to the one with
an input constraint by compensating the driving system for the
weight (the auxiliary mass) of the AMD to have a second-order
lag transfer function. Then a saturating control is designed
by a partial state feedback technique. The control law has the
following properties: 1) a good control performance is obtained
controlling the weight of the AMD within the stroke constraint;
2) the control law is simple and easily implemented; and 3) in
the case where the controller is used in the linear range a good
frequency response property is obtained that the peak gains
of the frequency responses of the weight and the structure for
disturbances are lowered. The effectiveness of the control law
is demonstrated by experiments and simulations.

I. INTRODUCTION

An active mass damper (AMD) is a mechanical device
that suppresses the vibrations of a structural system using
reaction forces generated by moving the auxiliary mass with
an actuator connected between the structure and the auxiliary
mass. Many applications of AMDs to real buildings and
civil structures have already been reported. The number
of applications to high-rise buildings has been over sixty
since the Kyobashi Center building, the former Kyobashi
Seiwa building, an 11-story building in Tokyo, Japan, was
constructed by the Kajima Corporation in 1989; and these
applications have been conducted mainly in Japan [1], [2].

The auxiliary mass of an AMD for a building structure
is usually less than 0.4% of the total mass of the structure
[3]; that is, a relatively small mass is to be moved with a
limited amplitude to suppress the vibrations of the structure.
Therefore, AMDs intrinsically dot not have an ability to
absorb the energy due to large earthquake excitations, but
they aim to suppress the vibrations of structures under strong
winds or moderate earthquakes. Generally, the allowable
amplitude of an auxiliary mass is severely restricted due to
the size of the AMD or the installation space. In fact, the
amplitude constraint of an auxiliary mass is one of the main
reasons for the limited performance of AMDs. Thus, it is
desired to develop a control law that effectively suppresses
the vibrations of a structural system under the amplitude
constraint of the auxiliary mass.

Control laws for AMDs that have been in practical use are
mainly state feedback controls with constant gain, obtained

by LQ optimal control theory or H∞ control theory [3].
These gains are designed to satisfy the amplitude constraint
of the auxiliary mass for the maximum possible disturbance
(wind or earthquake excitation), so they do not make the most
of the performance of the AMD for ordinary disturbances.

For the problems considering the limited amplitude of an
auxiliary mass, the following control laws have been devel-
oped: gain-scheduling control laws changing the feedback
gain according to the magnitude of the disturbance [4], [5],
[6], [7], [8]; gain-scheduling control laws with a nonlinear
spring [9], [10]; and saturating control laws that limit the
input to the actuator [11], [12]. These have the drawback that
the control algorithm is complex. Also, except the control
law in [4] that uses the technique developed in [13], they
do not theoretically assure that the auxiliary mass satisfies
the amplitude constraint or that the closed-loop system is
asymptotically stable.

This paper proposes a control law for an AMD that ef-
fectively suppress the vibrations of a one-degree-of-freedom
structural system under the amplitude constraint of the
auxiliary mass. The proposed control law has the following
features:

1) The control algorithm is simple; the control law is
constructed based on a linear saturating control and
can be computed as easily as an LQ optimal regulator.
Thus, it can also be applied to systems where an LQ
optimal regulator is already implemented.

2) The asymptotic stability of the control system is the-
oretically guaranteed. Moreover, it provides a good
control performance.

3) When the control law is used in the linear range,
the frequency response for disturbances has good
characteristics. That is, for sinusoidal disturbances, it
effectively suppresses the vibrations of the structural
system, keeping the amplitude of the auxiliary mass
small.

The effectiveness of the control law is examined by
simulations and experiments.

II. MATHEMATICAL MODEL OF THE CONTROLLED
OBJECT AND PROBLEM STATEMENT

Fig.1 shows the analytical model of the apparatus, a one-
degree-of-freedom structural system with an AMD, used in
this study. The apparatus consists of a pair of flexible beams,
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Fig. 1. One-degree-of-freedom structural system with an AMD.

a rigid top board, and a cart as the additive mass; the cart can
be moved on the top board without slip with a DC motor and
a rack and pinion gear set. In the modeling the following are
assumed: only the first mode of oscillation appears in each
beam; the amplitude of the oscillation is sufficiently small;
and the mass of each beam can be neglected. With these
assumptions the paired beams can be regarded as a linearly
elastic spring.

The symbol θ(t) represents the angular displacement the
line between the ends of each beam makes with the vertical
line, r(t) the position of the cart measured from the nominal
point on the top board, f(t) the manipulated force applied
between the cart and the top board, generated by the DC
motor, and d(t) the disturbance applied to the top board, at
time t. Let M denote the mass of the top board, m the mass
of the cart (the auxiliary mass of the AMD), H the length
of each beam, and K the rotational spring constant of the
paired beams.

The linearized equations of motion are obtained from the
balance of forces or moments as

m(r̈ + Hθ̈) = f (1)

MH2θ̈ + Hf + Kθ = Hd (2)

or equivalently

r̈ =
K

MH
θ +

m + M

mM
f (3)

θ̈ = − K

MH2
θ − 1

MH
f +

1
MH

d. (4)

The variable r is supposed to be constrained as

|r(t)| ≤ a, ∀t ≥ 0 (5)

where a > 0 is the maximum allowable amplitude of the
cart.

The problem is to find a control law for the AMD that
quickly suppresses the vibrations of the structural system
generated by an impulsive disturbance, under condition (5).

III. DESIGN METHOD

A. Reduction to a problem with constrained input

Let v(t) be a new input for the cart system, r(s) and v(s)
the Laplace transforms of r(t) and v(t), respectively, and
G(s) the transfer function from v(s) to r(s). Let Vin(t) be
the input voltage of the driver amplifier for the cart’s DC
motor. The input Vin is designed so that G(s) takes the form
of a second-order lag

G(s) =
r(s)
v(s)

=
1

(1 + Ts)2
(6)

with T > 0 being a design parameter; a second-order
dynamics is natural because the cart-motor system is well
modeled by a second-order system. Then the following holds
for the 1-norm of G(s), denoted ∥G(s)∥1:

∥G(s)∥1 :=
∫ ∞

0

|g(t)|dt = 1 (7)

where g(t) is the impulse response of G(s).
The time-domain expression of (6) is

r̈ = − 1
T 2

r − 2
T

ṙ +
1

T 2
v (8)

and the force f making (8) hold is obtained from (3) and
(8) as

f =
mM

m + M

(
− 1

T 2
r − 2

T
ṙ − K

MH
θ +

1
T 2

v

)
. (9)

Let R be the set of all solutions of (8), [r(t) ṙ(t)]′, ∀t ≥ 0,
reachable from the origin by some input v satisfying |v(t)| ≤
a.

Thanks to (7), condition (5) is satisfied if the following
two conditions hold (see Appendix I).

[r(0) ṙ(0)]′ ∈ R (10)

|v(t)| ≤ a, ∀t ≥ 0 (11)

Also, substitution of (9) into (4) yields

θ̈ = a41r + a42ṙ − ω2
nθ + b4v +

1
MH

d (12)

where

a41 =
m

(m + M)HT 2
, a42 =

2m

(m + M)HT

ω2
n =

K

(m + M)H2
, b4 = − m

(m + M)HT 2
.

Now define the state as

x =
[

r ṙ θ θ̇
]′

. (13)

Then the equations of motion of the structural system after
compensated by (9), i.e., (8) and (12), are represented by the
following state equation:

ẋ = Ax + Bv + Bdd (14)
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where

A =
[

A11 0
A21 A22

]
, B =

[
B1

B2

]
, Bd =


0
0
0
1

MH


with

A11 =
[

0 1
− 1

T 2 − 2
T

]
, A21 =

[
0 0

a41 a42

]
A22 =

[
0 1

−ω2
n 0

]
, B1 =

[
0
1

T 2

]
, B2 =

[
0
b4

]
.

It is seen from the structures of A and B that (A,B) is
controllable.

A solution of the problem will be obtained by solving the
more tractable problem: find a control law that asymptoti-
cally stabilizes the system (14) under conditions (10) and
(11).

B. Stabilization by partial state feedback

The problem in Section III-A will be solved by reducing
the problem to a much easier one, by decomposing the
system (14) into the stable and unstable subsystem by a
change of coordinates, where a control law is to be found that
asymptotically stabilizes the unstable subsystem, a second-
order system, under the constraint of the input v.

Let S be a coordinate transform matrix such that by the
change of coordinates

w =
[

w1 w2 w3 w4

]′ = Sx (15)

the system (14) can be transformed as

ẇ = Ãw + B̃v + B̃dd (16)

where

Ã = SAS−1 =
[

A11 0
0 A22

]

B̃ = SB =
[

B1

B̃2

]
=


0
1

T 2

0
1

 , B̃d = SBd.

Such a matrix S is given by (see Appendix II)

S =
[

I2 0
Y −1X Y −1

]
(17)

where I2 is the 2 × 2 identity matrix and

Y =
[

A22(XB1 + B2) XB1 + B2

]
with X being the solution of the Sylvester equation

−A22X + XA11 + A21 = 0. (18)

Since A11 and A22 have no common eigenvalues, (18) can
be solved uniquely [14].

The disturbance signal d is not necessary for the devel-
opment of the stabilizing control law, so let d = 0 for the
moment.

The state w is partitioned as

w =
[

ws

wu

]
(19)

where

ws =
[

w1 w2

]′
, wu =

[
w3 w4

]′
.

With the change of coordinates (15) the system has been
decomposed into the two subsystems:

ẇs = A11ws + B1v (20)

ẇu = A22wu + B̃2v. (21)

The ws subsystem is asymptotically stable, while the wu

subsystem is unstable (its poles are ±jωn). Thus, a control
law v = f1(wu) that asymptotically stabilizes the wu

subsystem under |v(t)| ≤ a asymptotically stabilizes the
whole system; moreover, if condition (10) also holds, then
the control law satisfies the constraint on r, i.e., (5), and thus
it is also a solution of the original problem.

A saturating control that globally asymptotically stabilizes
the wu subsystem is given by (see Appendix III)

v = sat(F̃0w, a) (22)

where
F̃0 =

[
0 0 0 −2ζωn

]
(23)

with ζ > 0 being a design parameter. Here sat(·) is the
saturating function with amplitude a defined by

sat(µ, a) = sgn(µ)min{|µ|, a}. (24)

Substituting (15) into (22) and letting

F0 = F̃0S (25)

yield
v = sat(F0x, a). (26)

The f obtained by substituting (26) into (9) is the proposed
control law.

IV. FREQUENCY CHARACTERISTICS OF THE CONTROL
LAW WHEN USED IN THE LINEAR RANGE

In this section it is assumed that the input v is not
constrained, or the control is used in the linear range. Let F̃
be a feedback gain in a class of gains including F̃0 as

F̃ =
[

0 0 −k1 −k2

]
(27)

and consider the control

v = F̃ x̃. (28)

Note that the control in (28) has so sufficient degrees of
freedom for the control of the wu subsystem that with it the
eigenvalues of the wu subsystem can be allocated arbitrarily.
Suppose that k1 and k2 are taken so that the closed-loop
eigenvalues of the wu subsystem have negative real parts
(the wu subsystem is asymptotically stabilized).

For the closed-loop system with the control (28), the
transfer functions from d to r, denoted Grd(s), and from d to
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θ, denoted Gθd, can be computed as follows (see Appendix
IV):

Grd(s) =

(−2k1T − k2 + k2T
2ω2

n)s + k1T
2ω2

n − k1 + 2k2Tω2
n

ϵω2
nM(1 + Ts)2(s2 + k2s + ω2

n + k1)
(29)

Gθd(s) =
(1 + Ts)2ω2

n + (2k1T + k2)s + k1

ω2
nMH(1 + Ts)2(s2 + k2s + ω2

n + k1)
(30)

where ϵ was defined by

ϵ :=
m

m + M
.

From (29), as T tends to 0, Grd(s) approaches

Grd(s) = − k2s + k1

s2 + k2s + ω2
n + k1

· 1
ϵω2

nM
. (31)

From this, the magnitude of Grd(jω) is computed as

|Grd(jω)| =

√
k2
1 + k2

2ω
2

(ω2
n + k1 − ω2)2 + k2

2ω
2
· 1
ϵω2

nM
. (32)

This takes the following constant value at ω = ωn, irrespec-
tive of k1 and k2:

|Grd(jωn)| =
1

ϵω2
nM

.

Moreover, the function |Grd(jω)| becomes maximum at ω =
ωn when k1 = 0. In fact, substituting k1 = 0 into (32) gives

|Grd(jω)| =
|k2ω|√

(ω2
n − ω2)2 + k2

2ω
2
· 1
ϵω2

nM
≤ 1

ϵω2
nM

.

Therefore, when T tends to 0, the control system minimizing
∥Grd(jω)∥∞ (the maximum magnitude of the frequency
response from d to r) can be obtained by setting F̃ = F̃0,
i.e., k1 = 0 and k2 = 2ζωn.
|Grd(jω)| and |Gθd(jω)| with F̃ = F̃0 have the following

upper bounds (see Appendix V):

|Grd(jω)| ≤ 1
ϵω2

nM
(1 + 4ωnTζMp(ζ)) (33)

|Gθd(jω)| ≤ 1
ω2

nMH
(Mp(ζ) + 1). (34)

where

Mp(ζ) =


1

2ζ
√

1 − ζ2
if 0 < ζ < 1√

2

1 if ζ ≥ 1√
2

.

Note from (33) that the upper bound of |Grd(jω)| is a linear
function of T , which approaches its minimum 1/ϵω2

nM
when T tends to 0, and from (34) that |Gθd(jω)| can have
an upper bound that does not depend on T .

Fig. 2. View of the experimental system.

V. EXPERIMENTAL RESULTS

Fig.2 shows a view of the experimental system. The pa-
rameters of the apparatus are as follows: M = 1.2 [kg],m =
0.455 [kg],H = 0.5 [m],K = 74 [Nm/rad]. The outputs are
the position of the cart, r, measured by a potentiometer, and
the angular acceleration of the top board, θ̈, measured by an
accelerometer. So the output equation is

y = Cx + Dv (35)

where

y =
[

r

θ̈

]
, C =

[
1 0 0 0

a41 a42 −ω2
n 0

]
, D =

[
0
b4

]
.

The equation of θ̈ is obtained from (12) with d = 0.
The nonmeasured variables of the state, ṙ, θ, and θ̇, were
estimated by a full-order observer, desiged based on (14)
and (35) with the poles being {−20, −20, −20, −20}.

The DC motor for the cart was compensated in advance
by rate feedback and a first-order-lag filter to have a robust
input-output property; the resulting transfer function of the
drive unit (from the input voltage of the motor driver, Vin,
to the output, r) was an integrator plus a first-order lag.
Moreover, when compensating the cart system to have the
transfer function G(s), only r and ṙ were used; f was not
computed and the force relating to θ̈ was ignored and treated
as a disturbance.

In the experiment the maximum allowable cart’s amplitude
a and the initial conditions were given as

a = 0.03 [m]

r(0) = 0, ṙ(0) = 0, θ(0) = 0, θ̇(0) = 0.

Also, the design parameters were chosen as

T = 0.2 [s], ζ = 0.7.
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Fig. 3. Experimental (solid lines) and numerical (broken lines) results for
T = 0.2s, ζ = 0.7.

Fig.3 show the results of the experiment and those of the
corresponding simulation. The structural system was first
excited by an input v(t) = 0.1 sin ωnt [m] for the first
4π/ωn ≈ 0.94 [s], and then the control was applied. A
vibration suppression control is done, under the constraint
of r, providing a comparable rate of damping with that of
the simulation in spite of sensor noise and modeling errors.
The amplitude of r is maintained at a certain level until
the vibration is settled, enabling an effective damping. For
comparison, the response of the apparatus with v = 0 is
shown in Fig.4; it is confirmed that the inherent damping
of the apparatus is very small. These figures also show the
control v and the input voltage Vin to the driver of the DC
motor; a constant voltage of 2.0 [V] or −2.0 [V] is added to
the input to compensate the dead zone of the drive unit.

When T is made smaller, the speed of response of the
ws subsystem becomes faster and the control performance is
more improved; then, on the other hand, the magnitude of
the manipulated input f becomes larger and the robustness
against sensor noise and modeling errors becomes lower. The
parameter ζ can be used to improve the speed of response
of the wu subsystem.

VI. CONCLUDING REMARKS

If the wu subsystem is controlled time-optimally (for
second-order systems time-optimal control is easily obtained
[15]) and moreover T is made to approach 0, then the
structural system is controlled time-optimally under the
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Fig. 4. Experimental results for v = 0.

stroke constraint of the AMD. However, such a control
has no robustness against sensor noise and modeling errors,
and requires an infinitely large manipulated input when
T approaches 0. Therefore, a practical control law was
constructed by using a saturating control to stabilize the wu

subsystem and choosing T that is not too small.
The equations of motion of the structural system under an

earthquake has the same structure as those considered here
(see appendix VI). Thus the proposed control law can also
be applied to such a case.

APPENDIX I
PROOF OF THE FACT THAT IF (10) AND (11) HOLD, THEN

(5) IS SATISFIED.

Conditions (10) and (11) can be replaced by[
r(−∞) ṙ(−∞)

]′ = 0, |v(t)| ≤ a, ∀t > −∞.

From these, r(t) is computed as

r(t) =
∫ t

−∞
g(t − τ)v(τ)dτ.

Use of the change of variable η = t − τ yields

r(t) =
∫ ∞

0

g(η)v(t − η)dη.

From this and (7), the following inequality is obtained.

|r(t)| ≤
∫ ∞

0

|g(η)| · |v(t − η)|dη ≤ a
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APPENDIX II
PROOF OF THE FACT THAT THE COORDINATE TRANSFORM

MATRIX S IS GIVEN BY (17)

Define the following matrices using X , the solution of
(18).

S1 =
[

I2 0
X I2

]
, S−1

1 =
[

I2 0
−X I2

]
.

Then we have

S1AS−1
1 =

[
A11 0
0 A22

]
(36)

S1B =
[

B1

XB1 + B2

]
. (37)

Since (A,B) is controllable, (A22, XB1 + B2) is also
controllable. Therefore, the following matrix is nonsingular.

Y =
[

A22(XB1 + B2) XB1 + B2

]
This and the relation A2

22 = −ω2
nI2 yield

A22Y = Y A22, XB1 + B2 = Y

[
0
1

]
or

Y −1A22Y = A22, Y −1(XB1 + B2) =
[

0
1

]
. (38)

Letting

S2 =
[

I2 0
0 Y −1

]
transforming the matrices in (36) and (37) by S2, and using
(38) yield

S2

[
A11 0
0 A22

]
S−1

2 =
[

A11 0
0 A22

]
= Ã

S2

[
B1

XB1 + B2

]
=

 B1[
0
1

]  = B̃.

It is seen from the above that S is obtained by combining
S1 and S2 as follows:

S = S2S1 =
[

I2 0
Y −1X Y −1

]
.

APPENDIX III
PROOF OF THE FACT THAT THE CONTROL (22) GLOBALLY

ASYMPTOTICALLY STABILIZES THE wu SUBSYSTEM

Let d = 0 and define the following positive definite
function of the state wu = [w3 w4]′:

V1 :=
1
2
(ω2

nw2
3 + w2

4).

The time derivative of V1 is computed as

V̇1 = w4(ω2
nw3 + ẇ4) = w4v

= −w4sat(2ζωnw4, a) ≤ 0

where (21) and (22) were used. Moreover, V̇1 ̸≡ 0 except
where wu = 0. In fact, if V̇1 ≡ 0, then we have w4 ≡ 0,

which means that ẇ4 ≡ 0 and v ≡ 0. Then from (21) we get
ẇ4 = −ω2

nw3, so we also have w3 ≡ 0. Therefore, it follows
from LaSalle’s invariance theorem [16] that any initial state
wu(0) is made to converge to 0 by the control v in (22).
That is, the control (22) globally asymptotically stabilize the
wu subsystem.

APPENDIX IV
COMPUTING Grd(s) AND Gθd(s)

Although Grd(s) and Gθd(s) can in principle be derived
from the state equation of w, this way needs to compute the
explicit expression of S. So we shall use the state equation
in another coordinate system where the computation of S is
not necessary.

From (3) and (4), we have

θ̈ = −ω2
nθ − ϵ

H
r̈ +

1
MH

d. (39)

Define the variable

p := ϵr + Hθ. (40)

The equation (39) can be written in terms of p as

p̈ = −ω2
np + ϵω2

nr +
1
M

d. (41)

Define the new state

x̄ =
[

r ṙ p ṗ
]′

. (42)

Then the equations of motion with the servo system for the
cart, i.e., (8) and (41), are represented by the following state
equation:

˙̄x = Āx̄ + B̄v + B̄dd (43)

where

Ā =


0 1 0 0

− 1
T 2 − 2

T 0 0
0 0 0 1

ϵω2
n 0 −ω2

n 0



B̄ =


0
1

T 2

0
0

 , B̄d =


0
0
0
1
M

 .

The characteristic equation of Ã + B̃F̃ is
1

T 2
(1 + Ts)2(s2 + k2s + ω2

n + k1) = 0. (44)

Since the structural system is a single-input controllable
system, if we find F̄ such that the characteristic equation
of Ā + B̄F̄ is equal to (44), then we have v = F̃w = F̄ x̄.
Therefore, F̄ can explicitly be computed by pole placement
methods as the feedback gain realizing the same closed-loop
poles as those of (44) as follows:

F̄ =
[

f̄1 f̄2 f̄3 f̄4

]
(45)

with
f̄1 = −(k1T + 2k2)T, f̄2 = −k2T

2

f̄3 = − 1
ϵω2

n

{k1 − (k1T + 2k2)Tω2
n}
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f̄4 = − 1
ϵω2

n

(2k1T + k2 − k2T
2ω2

n).

Noting that
r = Crx̄, θ = Cθx̄ (46)

where
Cr =

[
1 0 0 0

]
Cθ =

[
− ϵ

H 0 1
H 0

]
we have

Grd(s) = Cr

{
sI − (Ā + B̄F̄ )

}−1
B̄d (47)

Gθd(s) = Cθ

{
sI − (Ā + B̄F̄ )

}−1
B̄d. (48)

Computing these equations yields (29) and (30). The above
computations were performed with the aid of the software
Mathematica.

APPENDIX V
UPPER BOUNDS OF |Grd(jω)| AND |Gθd(jω)|

An upper bound of |Grd(jω)| can be computed as follows.
From (29), we have

Grd(s) =
2ζωn(ω2

nT 2 − 1)s + 4ζω3
nT

ϵω2
nM(1 + Ts)2(s2 + 2ζωns + ω2

n)

= − 1
ϵω2

nM(1 + Ts)2
· 2ζωns

s2 + 2ζωns + ω2
n

+
2ζωnT

ϵω2
nM

· ω2
n

s2 + 2ζωns + ω2
n

· Ts + 2
(1 + Ts)2

. (49)

Note that ∣∣∣∣ 2ζωns

s2 + 2ζωns + ω2
n

∣∣∣∣
s=jω

≤ 1

∣∣∣∣ ω2
n

s2 + 2ζωns + ω2
n

∣∣∣∣
s=jω

≤ Mp(ζ)

∣∣∣∣ 1
(1 + Ts)2

∣∣∣∣
s=jω

≤ 1,

∣∣∣∣ Ts + 2
(1 + Ts)2

∣∣∣∣
s=jω

≤ 2.

Equation (49) and the above inequalities give (33).
An upper bound of |Gθd(jω)| can similarly be computed

using the following relation:

Gθd(s) =
(1 + Ts)2ω2

n + 2ζωns

ω2
nMH(1 + Ts)2(s2 + 2ζωns + ω2

n)

=
1

ω2
nMH

· ω2
n

s2 + 2ζωns + ω2
n

+
1

ω2
nMH(1 + Ts)2

· 2ζωns

s2 + 2ζωns + ω2
n

. (50)

This and related inequalities yield (34).

APPENDIX VI
EQUATIONS OF MOTION OF THE STRUCTURAL SYSTEM

UNDER AN EARTHQUAKE

Let u0(t) be the horizontal displacement of the ground.
Then the equations of motion of the structural system are
written as

m(r̈ + Hθ̈) = f̃

MH2θ̈ + Hf̃ + Kθ = −(m + M)Hü0

where
f̃ = f − mü0.
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