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Abstract— For the problem of stabilizing an inverted pendu-
lum with restricted travel, a saturating control law is developed
that satisfies the amplitude constraint on the cart and has
a large region of attraction. The explicit expression of the
region of attraction is also obtained. The analysis and design
are performed based on the linearized model of the system,
as in the study of Lin et al. The control law has two design
parameters: T and k, which are both positive. As T approaches
0, the region of attraction approaches the maximal one. These
parameters are chosen to optimize the transient response of the
closed-loop system considering the input constraint, observation
noise, etc. The effectiveness of the control law is demonstrated
by simulations and experiments.

I. INTRODUCTION

Inverted pendulums (cart-and-pole systems) have been in
widespread use in control laboratories as controlled objects
for testing control laws developed. Also, since they are
interesting controlled objects with the properties that they
are underactuated, nonlinear, and unstable, methods for con-
trolling them are still being studied.

This paper investigates the problem of stabilizing an
inverted pendulum considering the amplitude constraint of
the cart. For a similar problem, Lin et al. [1] have developed a
linear state feedback control law minimizing the amplitude of
the cart from a given initial attitude. The closed-loop system
has four poles. Let ωn be the natural angular frequency of the
pendulum, and ϵ a small positive number. Lin et al.’s control
law places one of the poles at −ωn, another at −ϵ, and the
remaining two at points whose real parts are very small (very
large in the negative direction). If ϵ is made to approach
0, then the maximum amplitude of the cart approaches the
theoretical lower limit. However, there is a slow mode in
the motion of the cart due to the pole at −ϵ. Yoshida et
al. [2] have proposed a linear state feedback control law
that makes the amplitude of the cart small, placing two
of the four closed-loop poles at complex conjugate points,
−ζωn ± jωn

√
1 − ζ2 (ζ = 0.6 ∼ 1), and the other two at

a single real point whose real part is very small. While this
control achieves good response characteristics, it entails a
larger amplitude of the cart than Lin et al.’s one. Also, Wei
et al. [3] proposed a nonlinear control, using the pendulum’s
phase trajectory and switching functions, that performs a
bang-bang control of the acceleration of the cart. Although
this control can achieve a good control performance under
the amplitude constraint of the cart, such a bang-bang control
is susceptible to measurement noise, and also a driving

system is required that can precisely control the acceleration
of the cart.

For a given control law, it is desirable to find the set of
all initial states from which the system can be stabilized,
i.e., the region of attraction, where the control can be used.
However, in general, it is not easy to find such a set; in fact,
in [1], [2], [3] such sets were not obtained.

For the problem of stabilizing an inverted pendulum with
restricted cart travel, this paper proposes a saturating control
that satisfies the constraint and makes the region of attraction
as large as possible; also, the expression of the region
of attraction is obtained. The control law has a structure
similar to the one proposed by Teel [4], [5] realizing semi-
global stabilization for a class of single-input partially linear
composite systems. Although both controls can keep some
of the state variables of the control system small by using
a state feedback and a saturating control, the proposed
method designs the feedback compensation so that the state
constraint is satisfied. The analysis and design are performed
based on the linearized model of the system, as in the study
of Lin et al. [1].

The proposed control law has two design parameters, T >
0 and k > 0. T is the time constant of the servo system for
the cart, and if T is made to approach 0, then the region of
attraction approaches its upper limit (the maximal region of
attraction in the sense that a larger region of attraction cannot
be obtained by any other controls satisfying the constraint).
Also, if the control law is used in the unsaturated range, then
the closed-loop poles are {−1/T,−1/T,−ωn,−k}. Unlike
Lin et al.’s control law, k is not required to be small to make
the region of attraction large, and thus a control system with
good response characteristics can be designed.

The effectiveness of the control law is examined by
simulations and experiments.

II. MATHEMATICAL MODEL OF THE CONTROLLED
OBJECT AND PROBLEM STATEMENT

Fig.1 shows the inverted pendulum considered in this
study. It is assumed that the pendulum can rotate without
friction around the pivot attached to the cart. Let θ(t), r(t),
and u(t) be, respectively, the angular displacement of the
pendulum, the displacement of the cart, and the force applied
to the cart, at time t. Moreover, let M denote the mass of
the cart, m the mass of the pendulum, LG the distance from
the pivot to the center of gravity of the pendulum, JG the
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Fig. 1. Inverted pendulum.

moment of inertia of the pendulum around the center of
gravity, and g the acceleration of gravity.

The linearized equations of motion of the inverted pendu-
lum can be written as [6]

Mr̈ = u − F ṙ (1)

θ̈ =
g

L
θ − r̈

L
(2)

where the equation for the cart, (1), was simplified by
supposing m ≪ M , and where F is the viscous friction
coefficient of the cart driving system and L is the effective
pendulum length defined by

L =
mL2

G + JG

mLG
. (3)

Let a > 0 be the maximum allowable amplitude of r; that
is, let r be constrained as

|r(t)| ≤ a. (4)

The problem is to find, for the inverted pendulum de-
scribed by (1) and (2), a control law that asymptotically
stabilizes the system around the upright equilibrium point
under condition (4) with the region of attraction being made
as large as possible.

III. DESIGN METHOD

A. Reduction to a problem with constrained input

Introduce the variable v(t) as a new input for the cart
driving system. Let v(s) and r(s) be the Laplace transforms
of v(t) and r(t), respectively, and G(s) the transfer function
from v(s) to r(s). G(s) is designed so as to be

G(s) =
r(s)
v(s)

=
1

(1 + Ts)2
(5)

where T > 0 is a design parameter. Then the following
relation holds for the 1-norm of G(s), denoted ∥G(s)∥1:

∥G(s)∥1 :=
∫ ∞

0

|g(t)|dt = 1 (6)

where g(t) is the impulse response of G(s).

The relation (5) can be written in the time domain as

r̈ = − 1
T 2

r − 2
T

ṙ +
1

T 2
v. (7)

The input u making (7) hold is obtained from (1) and (7) as

u = M

{
− r

T 2
−

(
2
T

− F

M

)
ṙ +

v

T 2

}
. (8)

Let R be the set of all solutions of (7), [r(t) ṙ(t)]′, ∀t ≥ 0,
reachable from the origin by some input v satisfying |v(t)| ≤
a.

Thanks to (6), condition (4) is satisfied if the following
two conditions hold (see Appendix I).

[r(0) ṙ(0)]′ ∈ R (9)

|v(t)| ≤ a, ∀t ≥ 0 (10)

With the state variables

x1 = r
x2 = ṙ
x3 = r + Lθ

x4 = ṙ + Lθ̇

(11)

which were also used in [6], the equations of motion (2) and
(7) can be written in state equation form as

ẋ = Ax + Bv (12)

where
x =

[
x1 x2 x3 x4

]′
and

A =


0 1 0 0

− 1
T 2

− 2
T

0 0

0 0 0 1
−ω2

n 0 ω2
n 0

 , B =


0
1

T 2

0
0


with ωn being defined by

ωn =
√

g

L
.

The problem has been simplified to the one with con-
strained input: find a control law that asymptotically stabi-
lizes the system (12) under conditions (9) and (10) with the
region of attraction being made as large as possible. Since
a solution of this problem satisfies condition (4), it is also a
solution of the original problem.

B. Stabilization by partial state feedback

Decomposing the system (12) into a stable and an unstable
subsystem by a change of coordinates, we shall solve the
problem in Section III-A by reducing it to a much simpler
problem where a stabilizing control for the unstable subsys-
tem, a first-order system, is required to be found under the
amplitude constraint on v.

Introduce the change of coordinates

w = Sx (13)
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where S is given by

S =


1 0 0 0
0 1 0 0

1 + T (Tωn − 2) −T 2 s33 s34

T (Tωn + 2) T 2 s43 s44


with

s33 = − (Tωn − 1)2 + ωn

ωn
, s34 =

(Tωn − 1)2 + ωn

ω2
n

s43 = − (Tωn + 1)2

ωn
, s44 = − (Tωn + 1)2

ω2
n

.

The fact that S is nonsingular can be seen from the relation

|S| =
2

ω3
n

(Tωn + 1)2{(Tωn − 1)2 + ωn} ̸= 0. (14)

The system (12) is transformed by S as

ẇ = Ãw + B̃v (15)

where
Ã = SAS−1, B̃ = SB

Ã =


0 1 0 0

− 1
T 2

− 2
T

0 0

0 1 −ωn 0
0 0 0 ωn

 , B̃ =


0
1

T 2

−1
1

 .

This can be seen by direct computation.
Then the state w is partitioned conformably with the

partition of Ã and B̃ as

w =
[

ws

wu

]
where

ws =

 w1

w2

w3

 , wu = w4.

The idea of the design is as follows: construct a satu-
rating control v(t) = f(wu(t)) that locally asymptotically
stabilizes the wu subsystem, a first-order system, around
the equilibrium point wu = 0 and apply it to the whole
system. Then, for initial states in the region of attraction,
the control v(t) approaches 0 because so does wu(t); and
moreover ws(t) also approaches 0 since the ws subsystem
is asymptotically stable. Therefore, the problem in Section
III-A is further simplified as follows: find a control v that
locally asymptotically stabilizes the wu subsystem under the
condition |v(t)| ≤ a.

From (15), the wu subsystem is written as

ẇu = ωnwu + v. (16)

A control v that locally asymptotically stabilizes this system
and satisfies the constraint on v is given by the saturating
control

v = −sat((ωn + k)wu, a), k > 0 (17)

where the function sat(·, ·) is defined by

sat(ξ, a) = sgn(ξ)min{|ξ|, a}. (18)

Let s4 denote the fourth row of S. Then, since wu = s4x
from (13), (17) can be written in terms of x as

v = −sat((ωn + k)s4x, a), k > 0. (19)

Moreover, the region of attraction is given by

X0 =
{

x : |s4x| <
a

ωn

}
. (20)

For the proofs of these results, see Appendix II.
It can be thought from (20) that since a/ωn is a constant,

the magnitude of the set X0 is inversely proportional to
∥s4∥. Since ∥s4∥ is a monotone increasing function of T ,
when T → 0, ∥s4∥ becomes minimal, or equivalently the
magnitude of the set X0 becomes maximal. In fact, when
T → 0, the set (20) approaches the maximum region of
attraction of the original problem in the sense that a larger
region of attraction cannot be obtained by any other controls
satisfying the constraint of r (see Appendix III). Note that
when T → 0, the magnitude of the manipulated input u
becomes infinitely large (see (8)); in practice, u is also
constrained and thus T cannot be chosen too small.

Specifically, the resulting control input u is obtained by
substituting v in (19) into (8). Also, from (9) and (20) we
see that the initial state has to be in the set

X1 =
{

x : |s4x| <
a

ωn
, [x1 x2]′ ∈ R

}
. (21)

Remark 1: If the control (19) is used in the unsaturated
range, the closed-loop poles are{

− 1
T

, − 1
T

, −ωn, −k

}
.

This can be seen from the fact that substitution of the
unsaturated control v = −(ωn + k)wu into (15) gives the
closed-loop system

ẇ =


0 1 0 0

− 1
T 2

− 2
T

0 ∗

0 1 −ωn ∗
0 0 0 −k

w

where the symbol ∗ denotes a number that may not be 0.
Remark 2: The region where the control (19) does not

saturate is given by{
x : |s4x| ≤

a

ωn + k

}
. (22)

It becomes smaller as k becomes larger.
Remark 3: Suppose that v is not constrained and let

T → 0. Then the peak value of |r(t)| for the initial state
[r(0) ṙ(0) θ(0) θ̇(0)]′ = [0 0 θ0 0]′ becomes a monotone
increasing function of k; moreover, when k → 0, the peak
value of |r(t)| approaches its lower limit, i.e., Lθ0 (see
Appendix IV). Then the control (19) used in the unsaturated
range becomes the same kind of control as the one proposed
by Lin et al.[1].
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IV. NUMERICAL RESULTS

Let the value of the equivalent pendulum length L be that
of the apparatus used in this study. That is,

L =
g

ω2
n

= 0.265 [m]. (23)

From this, ωn can be computed as

ωn =
√

g

L
= 6.09 [rad/s] (24)

where g = 9.81 [m/s2] was used. Suppose that the cart
system has been compensated so as to have the transfer
function (5). Let the maximum allowable amplitude of the
cart a be given by

a = 0.2 [m].

The design parameter k was chosen as

k = wn = 6.09

and the following three T s were considered:

T =
1

nωn
[s], n = 1, 2, 5

or
T = 0.164 [s], 0.0821 [s], 0.0328 [s].

The initial state variables were given as

r(0) = 0, ṙ(0) = 0, θ(0) = 0.151 [rad], θ̇(0) = 0 (25)

which were obtained by multiplying by 0.8 a state on the
boundary of the region of attraction for T = 0.164 [s]. Figs.2
and 3 show the numerical results for the nonlinear and linear
plant model, respectively. The difference between the two
is very small, because the initial state is small. Also, the
amplitude constraint of the cart |r(t)| ≤ 0.2 [m] is satisfied.
It is seen that as T becomes smaller, the response becomes
faster and the peak value of the cart amplitude becomes
smaller.

Fig.4 shows the relationship between T and ∥s4∥; recall
that ∥s4∥ is inversely proportional to the magnitude of the
region of attraction X0. It is confirmed from Fig.4 that ∥s4∥
is a monotone increasing function of T .

V. EXPERIMENTAL RESULTS

Fig.5 shows a view of the experimental system. The value
of the parameter L is given by (23). The cart system was
compensated so as to have the transfer function (5). The
maximum allowable amplitude of the cart a was set to be

a = 0.2 [m]. (26)

The design parameters T and k were chosen as

T =
1

ωn
= 0.164 [s], k = ωn = 6.09. (27)

Fig.6 shows the experimental results. First the pendulum
was swung up from the pendant position (θ = −π) using the
method in [7], and then stabilized at the upright position with
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Fig. 2. Numerical results for the nonlinear model.

n = 5

n = 1

n = 2

n = 1

n = 2
n = 5

n = 1

n = 2
n = 5

t [s]

θ
 [

ra
d
]

r
 [

m
]

0

0.1

0.2

-0.1

0 1 2 3

0 1 2 3
0

0.05

0.1

0.15

0 1 2 3
0

0.1

0.2

v
 [

m
]

Fig. 3. Numerical results for the linear model.
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Fig. 4. Relationship between T and ∥s4∥.

the proposed saturating control. As the switching criterion of
control law, the following logic was adopted: if

|θ| < 0.5 [rad] and |s4x| < 0.8
a

ωn
(28)
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Fig. 5. View of the experimental system.
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Fig. 6. Experimental results.

hold, then switch the control mode from swing-up to stabi-
lization. The first condition is used to determine if the pen-
dulum is close to the upright position. The second condition
means that the state x is in the subset of X0, i.e., 0.8 times
X0 (see (20)). Also, after the switching, a disturbance was
applied to the pendulum by patting it with a finger. Fig.7
shows an enlarged graph of the part of the disturbed response.
It can be seen from these experiments that the pendulum
is stabilized with the amplitude constraint of the cart being
satisfied.

VI. CONCLUSION

The stabilization problem for an inverted pendulum with
restricted cart travel was reduced to the stabilization problem
for an unstable first-order system with bounded input, by
compensating the cart transfer function to be a second-order
lag and then decomposing the system into the stable and
unstable subsystem by a change of coordinates. A saturating
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Fig. 7. Experimental results enlarged.

control solving the original problem and the expression of
the region of attraction were obtained from the investigation
of the reduced problem. These results were derived based
on the linearized model of the system, so they are valid in a
small region of the state space around the equilibrium point.

The stable subsystem has the poles {−1/T, −1/T, −ωn},
where T is the design parameter; and the unstable subsystem
is stabilized by the saturating control with parameter k. A
control system with good response characteristics can be
designed by adjusting the parameters T and k. Actually, these
parameters are designed considering response characteristics,
actuator saturation, and measurement noise.

APPENDIX I
PROOF OF THE FACT THAT IF (9) AND (10) HOLD, THEN

(4) IS SATISFIED.

Conditions (9) and (10) can be replaced by[
r(−∞) ṙ(−∞)

]′ = 0, |v(t)| ≤ a, ∀t > −∞.

From these, r(t) is computed as

r(t) =
∫ t

−∞
g(t − τ)v(τ)dτ.

Use of the change of variable η = t − τ yields

r(t) =
∫ ∞

0

g(η)v(t − η)dη.

From this and (6), the following inequality is obtained.

|r(t)| ≤
∫ ∞

0

|g(η)| · |v(t − η)|dη ≤ a

APPENDIX II
PROOF OF THE FACT THAT v IN (17) ASYMPTOTICALLY

STABILIZES THE wu SUBSYSTEM FOR x(0) ∈ X0 .

Consider the positive definite function of wu

V =
1
2
w2

u.
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The time derivative of this function is given by

V̇ = wuẇu = wu(ωnwu + v)
= wu(ωnwu − sat((ωn + k)wu, a)).

From this and the fact that k > 0, it is seen that if
|ωnwu(0)| < a, then V̇ (t) ≤ 0, and moreover the equality
holds only when wu = 0. Therefore, from LaSalle’s invari-
ance theorem [8], the wu subsystem is asymptotically stable
for w(0) satisfying |ωnwu(0)| < a, i.e., |s4x(0)| < a/ωn.
Conversely, if |ωnwu(0)| ≥ a, then V̇ (t) ≥ 0, so wu(t) does
not converge to zero.

APPENDIX III
PROOF OF THE FACT THAT THE REGION OF ATTRACTION

(20) BECOMES MAXIMAL WHEN T → 0.
Take from (11)

x3 = r + Lθ. (29)

Differentiating this twice with respect to t and using (2) and
(11) give

ẋ4 = ω2
nx3 − ω2

nr. (30)

Note that when T → 0, the variable r can be considered as
the input of the system (30), because then, from (5), r =
v (an ideal case where an infinitely large input would be
required). Also, we see from (20) and the definition of S
that when T → 0, the set (20) becomes{

x :
∣∣∣∣x3 +

1
ωn

x4

∣∣∣∣ < a

}
. (31)

Define the variable

λ := x3 +
1

ωn
x4 (32)

and consider the positive definite function of λ

V1 =
1
2
λ2. (33)

The time derivative of V1 is computed as

V̇1 = λλ̇ = λ

(
x4 +

1
ωn

ẋ4

)

= λ

{
x4 +

1
ωn

(ω2
nx3 − ω2

nr)
}

= λ(ωnx3 + x4 − ωnr)

= ωn(λ2 − λr). (34)

Here (30) and (32) were used. From (34), we get

min
|r|≤a

V̇1 = ωn(λ2 − |λ|a). (35)

Therefore, if |λ| ≥ a, then

min
|r|≤a

V̇1 ≥ 0 (36)

which shows that |λ(t)| is a monotone nondecreasing func-
tion of t, and thus the system is unstable for any r(t)
satisfying |r(t)| ≤ a. Hence, for the initial state which does
not belong to the set (31), the system cannot be stabilized
by changing r(t) within the limited range. This means that
the set (31) is the maximum region of attraction.

APPENDIX IV
ON THE BEHAVIOR OF r(t) WHEN T → 0.

Let the initial state be

[r(0) ṙ(0) θ(0) θ̇(0)]′ = [0 0 θ0 0]′. (37)

Letting T → 0 in (13) yields

wu = w4 = − 1
ωn

x3 −
1

ω2
n

x4. (38)

From (11) and (37), we get

x3(0) = Lθ0, x4(0) = 0. (39)

Substituting (39) into (38) gives

wu(0) = −Lθ0

ωn
. (40)

From (16) and (17), the equation of motion for wu with v
being unsaturated is given by

ẇu = −kwu. (41)

From (40) and (41), wu(t) is found to be

wu(t) = −e−kt Lθ0

ωn
. (42)

Also, since r = v when T → 0, r(t) is represented by

r(t) = v(t) = −(ωn + k)wu(t) =
(ωn + k)Lθ0

ωn
e−kt. (43)

From this, we have

max
t≥0

|r(t)| =
(ωn + k)Lθ0

ωn

which is a monotone increasing function of k > 0. Therefore,
when k → 0, the maximum amplitude of r(t) approaches its
lower limit, Lθ0.
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