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Abstract—In this paper we study a measurement-based
model identification problem for constructing dynamic equiva-
lent models of two-area radial power systems with intermediate
voltage control by Static VAr Compensators (SVC). We consider
two types of feedback mechanisms, namely, combined voltage
and current feedback from the SVC bus, and supplementary
current feedback from the transmission line. Given these system
configurations, we first derive expressions for the aggregated
equivalent reactance and machine inertias in each area, and
then show how these parameters can be computed from the
voltage and frequency measurements at three buses in the
transfer path including the SVC bus.

I. INTRODUCTION

Large-scale interconnected systems such as electric power

systems typically exhibit two time-scale behavior in their

dynamic responses, where the time-scale separation arises

due to the differences in the strength of interconnections [3].

Strongly connected components in the system synchronize

with each other over a fast time-scale and form an aggregate

node, while the different aggregated nodes, which, by as-

sumption are weakly connected, synchronize over a slower

time-scale. In a recent reference [2] we have developed a

method, referred to as the Interarea Model Estimation (IME)

method, for constructing a reduced-order dynamic model

capturing this slow interarea motion for a two-area power

system. Unlike typical model reduction approaches as in

[8], [4] etc., where the model parameters are assumed to

be known, this method relies solely on dynamic electrical

measurements available from specific parts of the system,

and, hence, can equivalently be viewed as a model identifi-

cation method. We showed that the construction of the two-

machine interarea equivalent of the two-area system reduces

down to the estimation of the equivalent reactance and

machine inertia, internal to each area, whereupon we derived

expressions by which these quantities can be computed from

voltage and frequency measurements at any three buses

on the path. In [1] we extended the method to two-area

systems with intermediate voltage support in the form of

a Static VAr compensator (SVC) [6]. However, [1] studied

the simple case where the SVC was assumed to employ

simple first-order proportional controllers with bus voltage

feedback for voltage regulation. In actual power system

operation, much more advanced forms of feedback may be

used: for example, papers like [9] have used the current

flowing through the SVC branch as an additional feedback

signal for increasing the effectiveness of the regulation using

a smaller gain. Similarly, the authors of [7] have considered

several other supplementary feedback variables such as line

current, bus frequency etc., to provide adequate damping to

the transient interarea oscillations by the SVC in addition

to voltage regulation. The objective of this paper is to

extend the results of [1] and develop the variant of the

IME method when these complicated mechanisms of SVC

feedback are employed in the system. In particular, we focus

on two feedback mechanisms, namely the combined current

and voltage feedback, and the line current supplementary

feedback.

The rest of the paper is organized as follows. In Section 2

we describe the two-machine equivalent of a two-area radial

power system with a SVC controller. In Sections 3 and 4

we derive the IME algorithm for SVC current feedback, and

line current feedback, respectively. Section 5 concludes the

paper.

II. TWO-AREA POWER SYSTEM WITH SVC

Consider the two-area power system with intermediate

voltage support in the form of a SVC in Figure 1(a). In this
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Fig. 1. Two-machine power system model with SVC

figure, Generators G11, G12, ..., G1n are strongly connected

(i.e., with small reactances) and form one area, say Area
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1, while generators G21, G22, ..., G2n form a different area,

namely Area 2, which is assumed to be connected weakly

to the machines in Area 1. In other words, the reactance of

the lossless transmission line contained in between buses 1

and 2 is assumed to be significantly higher compared to the

individual reactances internal to each area. Each machine

is assumed to be connected to its individual terminal bus

through a transformer having reactance xTki , k = 1, 2,
i = 1, ..., n. A SVC is installed at Bus 3, located between

buses 1 and 2 (not necessarily at the midpoint).

The two-machine interarea aggregate model of the above

system is shown in Figure 1(b). This reduced system consists

of two aggregated generators G1 and G2 with aggregated in-

ertias H1 and H2 representing each coherent area, connected

to Buses 1 and 2 through equivalent (Thevenin) transformer

reactances xT1 and xT2, respectively. The variable reactance

provided by the compensator at Bus 3 is denoted as −xc.
The voltage phasors at Buses 1, 2 and 3 are given as

Ṽ1 = V1∠θ1, Ṽ2 = V2∠θ2, Ṽc = Vc∠θc (1)

where V ∠θ denotes the polar representation V εjθ . The

transmission line between Buses 1 and 2 is assumed to be

lossless, with a line reactance xe = xe1 + xe2. Following
a classical model representation, each generator is modeled

as a voltage source Ei∠δi, i = 1, 2, where δi represents the
state of the ith generator and Ei is constant, in series with

a direct-axis transient reactance x′di, i = 1, 2, respectively.
The reactances connecting the generator internal voltages to

Buses 1 and 2 are thus given by

xi = (xTi + x′di), i = 1, 2. (2)

We define the notations σ1 = x1 + xe1, σ2 = x2 + xe2.
The dynamic model of the two-machine system in Figure 1,

neglecting damping, is given by [5]

δ̇ = Ωω, 2H ω̇ = Pm − Pe (3)

where, δ = δ1−δ2, ω = ω1−ω2 with δi, ωi (i = 1, 2) being
the angle and speed of the ith machine respectively, H =
H1H2/(H1+H2) is the equivalent inertia, Pm = (H2Pm1−
H1Pm2)/(H1 +H2) with Pmi being the mechanical power

input to the ith machine, and Pe is the effective electrical

power exchange between the two generators. The constant

Ω is the conversion factor from pu speed to rad/s. The SVC

connected to Bus 3 regulates the bus voltage magnitude Vc to
a fixed setpoint voltage Vr , and thereby provides intermediate
voltage support. For perfect regulation,

Pe =
E1E2

xeq
sin(δeq) (4)

where for a symmetrical network xeq = σ1 = σ2 and

δeq = (δ1 − δ2)/2. For an asymmetrical network these two

quantities are given as xeq = σ1 + σ2 and δ = δ1 − δ2
satisfying the equation

E1

σ1
sin(δ1 − θc) =

E2

σ2
sin(θc − δ2). (5)

In our subsequent analysis we will refer to the equivalent

angular difference between the generators as simply δ.

We next assume that measurement devices (phasor mea-

surement units) are located at Buses 1, 2 and 3, i.e., high

sampling-rate dynamic measurements of the voltage phasors

at these buses as well as the current phasors at different parts

of the system are available over time. Therefore, consider-

ing the two-area system described above, the identification

problem that we want to solve can be stated as: Given the

measured time-synchronized phasor variables V1(t), θ1(t),
θ̇1(t), V2(t), θ2(t), θ̇2(t), Vc(t), θc(t), I1(t), θI1(t), I2(t),
and θI2(t) that exhibit a few cycles of interarea oscillations,
and assuming that E1 and E2 are some constant values,

compute xe1, xe2, E1, δ1(t), E2, δ2(t), x1, x2, H1, and

H2 to completely characterize the dynamic behavior of the

two-machine reduced system given by equation (3).

Two of these quantities, namely xe1 and xe2 can readily

be computed from Ṽ1, Ṽ2, and Ṽc, and the currents Ĩ1 and

Ĩ2 at any fixed point of time, using AC Ohm’s law:

jxe1 = (Ṽ1 − Ṽc)/Ĩ1, jxe2 = (Ṽc − Ṽ2)/Ĩ2. (6)

In addition, if x1 and x2 are known, then the machine internal

voltages can be computed from the bus voltages and the line

currents. Thus the problem reduces to the estimation of x1

and x2, as well as the inertias H1 and H2. In the following

sections we develop techniques to extrapolate these quantities

for the two types of SVC feedback mechanisms listed in

Section 1.

III. COMBINED SVC VOLTAGE AND CURRENT

FEEDBACK

Considering a proportional controller for voltage regula-

tion at Bus 3, if the SVC voltage and current signals are

fed back, then the susceptance B = 1/xc evolves in time

according to the closed-loop control

Ḃ = −B
τ

+
k1((Vr − Vc) − kI(| Ĩc | − Ico))

τ
(7)

where Vr is a setpoint voltage for Bus 3, k1 is the regulation

gain, kI is the current feedback gain, Ico is the steady-state
current, and τ is the SVC time constant. Typically τ is in

the range of 50 to 300 msec [7], which is much faster than

the time constants for the voltage variations in the system.

Therefore, (7) can be approximated as the static equation

B = k1((Vr − Vc) − kI(| Ĩc | − Ico)) (8)

Using

| Ĩc | = B Vc, Ico = B Vr (9)

equation (8) reduces to

B =
k1(Vr − Vc)

1 + k2(Vc − Vr)
(10)

with k2 = k1kI . Without loss of generality, we assume δ2 =
0 so that δ1 = δ. To find the functional relationship between
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B and δ, we proceed as follows. For the network in Figure

1(b), after a few calculations it can be shown that

|Vc|2 =
(σ1E2 + σ2E1 cos(δ))2 + (σ2E1 sin(δ))2

(σ1 + σ2 −Bσ1σ2)2
(11)

which gives

Vc(σ1 + σ2 −Bσ1σ2)

=
√

σ2
1E

2
2 + σ2

2E
2
1 + 2σ1σ2E1E2 cos(δ)

, ψ(δ). (12)

We consider the positive square root (i.e. ψ(δ) > 0) because
both Vc > 0 and σ1 +σ2−Bσ1σ2 > 0. Using (10), equation
(12) reduces to the quadratic equation

(k2(σ1 + σ2) + k1σ1σ2)V
2
c + ((σ1 + σ2)(1 − k2Vr)

−k1σ1σ2Vr − k2ψ(δ))Vc − (1 − k2Vr)ψ(δ) = 0 (13)

where ψ(δ) is defined in (12). Since Vc > 0, the solution is

given as

Vc(δ) =
̺1 + ̺2

̺3
(14)

where,

̺1 = k1σ1σ2Vr+k2ψ(δ)−(σ1+σ2)(1−k2Vr)

̺2 = √
̺21+̺22

̺21 = ((σ1+σ2)(1−k2Vr)−k1σ1σ2Vr−k2ψ(δ))2

̺22 = 4(k1σ1σ2+k2(σ1+σ2))(1−k2Vr)ψ(δ)

̺3 = 2(k1σ1σ2+k2(σ1+σ2)).

Hence, from (10) the susceptance can be written as

B(δ) =
k1(Vr − Vc(δ)

1 + k2Vc(δ)
. (15)

Considering the right half of the network in Figure 1(b), the

voltage phasor at any point between Bus 3 and Generator

2, at a reactance of jx from the Generator 2 node can be

written as

Ṽ =

[

E2(1 − a2 + a2
σ1

χ
) + a2(

σ2

χ
)E1 cos(δ)

]

+j

[

a2(
σ2

χ
)E1 sin(δ)

]

(16)

where a2 = x/σ2 ∈ [0, 1], and

χ(δ) , σ1 + σ2 −B(δ)σ1σ2. (17)

The voltage magnitude at this point is given by equation

(18), where Σ̄r is independent of δ. Linearizing (3) and (18)
about an equilibrium (δ0, ω0, Vss(a2)), a small perturbation
in the voltage magnitude at the given point can, therefore,

be written as

∆V (a2, δ0) = J(a2, δ0)∆δ (19)

with the Jacobian function defined as

J(a2, δ0) =
∂|Ṽ |
∂δ

∣

∣

∣

∣

∣

δ=δ0

=
1

Vss(a2)
Υr(a2, χ, χ

′, δ0) (20)

where the function Υr(·, ·, ·, ·) is as in (21) with all powers
of χ(δ) and χ′(δ) computed at δ = δ0, and Vss(a2) is the pre-
disturbance equilibrium voltage at the given point. Denoting

Vn(a1, δ0) := ∆V (a1, δ0)Vss(a1), it follows from (19) and

(20) that

Vn(a2, δ0) = Υr(a2, χ, χ
′, δ0)∆δ. (22)

Assuming the reactance to be distributed uniformly along

the transfer path, the variable a2 can be equivalently treated

as a dimensionless spatial variable. Equation (22), therefore,

indicates how the product of the two voltages on the LHS

varies spatially between Generator 2 and Bus 3. Similarly,

for the left half of the network (between Bus 3 and Generator

1), it can be shown that at any point at a reactance jx away

from Bus 3 we have

Vn(a1, δ0) = Υl(a1, χ, χ
′, δ0)∆δ (23)

where a1 = x/σ1 ∈ [0, 1], and the function Υl(·, ·, ·, ·) is

as in (24) with all powers of χ(δ) and χ′(δ) computed at

δ = δ0.
Next, if measurement units are located at Bus 1, 2 and 3,

then it implies that, following a disturbance in the system,

the Vn values at these three points on the transfer path, at any
fixed instant of time, are available from the measurements.

We note that Bus 2 corresponds to a2 = x2/σ2, Bus 3 to

a2 = 1 (or a1 = 0), and Bus 1 to a1 = xe1/σ1. We denote

these three constants as a2
2, a

3
2 and a

1
1, respectively, with the

superscripts indicating the bus number. Then, from (22) and

(23) we can write

Vn(a1
1, δ0)

Vn(a3
2, δ0)

=
Υl(a

1
1, χ, χ

′, δ0)

Υl(a3
2, χ, χ

′, δ0)
(25)

Vn(a2
2, δ0)

Vn(a3
2, δ0)

=
Υl(a

2
2, χ, χ

′, δ0)

Υl(a3
2, χ, χ

′, δ0)
. (26)

Since the LHS of (25) and (26) are known from the bus

measurements, the two unknown parameters x1 and x2,

contained in the RHS, can be easily solved for by using

standard nonlinear equation solvers.

Figure 2 compares the variation of Vn (following (21) and

(24)) from one end of the transfer path to the other, for

the additional SVC current feedback case with that due to

SVC bus voltage feedback only (as in [1]). We use k = 20
for the voltage feedback case, and k1 = kI = 20 for the

current feedback case. It can be seen that for these equal

values of feedback gains, the oscillations in voltage reduce

significantly when the SVC current is fed back. Moreover,

more efficient setpoint regulation is achieved at the point of

voltage support. The values of the other parameters used for

the simulation are same as those in [1].

A. Estimation of Machine Inertias

The IME algorithm enables us to estimate the equivalent

inertia constant of the system given by

H =
H1H2

H1 +H2
(27)
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|Ṽ | =

√

Σ̄r + E2
2a

2
2

σ2
1

χ2
+ 2E2a2(1 − a2)

σ1

χ
+ E2

1a
2
2

σ2
2

χ2
+

2E1E2a2σ2 cos(δ)

χ

(

1 − a2 + σ2
σ1

χ

)

(18)

Υr(a2, χ, χ
′, δ0) = −E2

2σ
2
1a

2
2

χ′

χ3
− E2

2σ1a2(1 − a2)
χ′

χ2
− E2

1σ
2
2a

2
2

χ′

χ3

+E1E2σ2a2

(

(a2 − 1)
χ sin(δ0) + χ′ cos(δ0)

χ2
− a2σ1

χ2 sin(δ0) + 2χχ′ cos(δ0)

χ4

)

(21)

Υl(a1, χ, χ
′, δ0) = −E2

2σ
2
1(1 − a2

1)
χ′

χ3
− E2

1σ2a1(1 − a1)
χ′

χ2
− E2

1σ
2
2(1 − a1)

2 χ
′

χ3

+E1E2σ1(1 − a1)

(

(a1 − 1)σ2
χ2 sin(δ0) + 2χχ′ cos(δ0)

χ4
− a1

χ sin(δ0) + χ′ cos(δ0)

χ2

)

(24)
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Fig. 2. Comparison of voltage distribution between SVC bus voltage
feedback (k = 20, solid line ) and additional SVC current feedback
(k1 = 20, kI = 20, dashed line)

from the expression for the swing frequency, obtained from

the linearization of the swing model (3) about δ0 [10]

ωs =

√

E1VcΩ cos(δ10 − θc0)

2H(xe1 + x1)
(28)

where δ10 and θc0 are the pre-disturbance equilibrium values

of δ1 and θc. The swing frequency ωs can be computed

from the measured voltage oscillations, θc0 is available from
the measured Bus 3 voltage, while all other parameters are

calculable once x1 and x2 are estimated by the method

discussed in the foregoing section. In order to calculate

H1, H2 we need a second equation involving these two

parameters. As described in [1], this second equation can be

derived from the law of conversation of angular momentum

for the two-machine system, and is given as

H1

H2
= −ω1

ω2
(29)

where ω1 and ω2 are the rotor speeds of the two machines.

As these two speeds are not known, we extrapolate them

from the measured frequencies at Buses 1 and 2. The basic

methodology to achieve this is to consider the voltage phasor

Ṽ at any point in any part of the transfer path and express it

in terms of E1∠δ1, E2∠δ2, and the reactance x with respect

to some chosen reference point, calculate the phasor angle

θ = tan−1(Im(Ṽ )/Re(Ṽ )) and compute the time derivative
of θ as a function of x, ω1 and ω2. Hence, considering

the two measured frequencies at Buses 1 and 2, one can

readily solve for these two speeds using the values of the

other parameters obtained from the reactance extrapolation

method. We can show that for the case of combined voltage

and current feedback from the SVC, the expression for the

frequency at any point on left and right halves of the transfer

path are as follows:

1) For any point between Generator 2 and Bus 3 at a

reactance jx away from Generator 2:

νr(a2) =
ϑr1(δ1, δ2)ω1 + ϑr2(δ1, δ2)ω2

p2
1 + p2

2 + 2p1p2 cos(δ1 − δ2)
(30)

where a2 = x/σ2, and the expressions for ϑr1 , ϑr2 , p1

and p2 as functions of (a2, δ1, δ2) are given in Ap-

pendix 1.

2) For any point between Bus 3 and Generator 1 at a

reactance jx away from Bus 3:

νl(a1) =
ϑl1(δ1, δ2)ω1 + ϑl2(δ1, δ2)ω2

m2
1 +m2

2 + 2m1m2 cos(δ1 − δ2)
(31)

where a1 = x/σ1, and the expressions for ϑl1 , ϑl2 , m1

and m2 as functions of (a1, δ1, δ2) are given in Ap-

pendix 1.

Substituing a2 = x2/σ2 and a1 = xe1/σ1 in the above

expressions and using the measured values of νr and νl at
buses 1 and 2, respectively, we can solve for ω1 and ω2, and

hence, for H1 and H2 using (27)-(29).

B. Simulation Results

In this section, we apply the IME algorithm to the two-

machine system in Figure 1 operating with a power transfer

of 300 MW from Area 1 to Area 2. The disturbance applied is

a three-phase fault at Bus 3 cleared after 0.05 second without
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any line switching. The machine data can be found in [1].

Here we consider k = 20 pu/pu (a 5% droop), k2 = 5 pu/pu

(weak current feedback), Vr = 1 pu and τ = 20 msec.

The voltage magnitudes at the three buses are shown in

Figure 3. Choosing the peak of the second cycle as a fixed

time instant, we get

V1n = 0.0211, V2n = 0.0235, V3n = 0.0191.(32)

Using the IME algorithm (25)-(26), we obtain x1 =
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Fig. 3. Voltage oscillations at three buses in the two-machine system

0.338 pu, x2 = 0.397 pu whereas the actual values of

these parameters are x1 = 0.34 pu, x2 = 0.39 pu. Also
the estimates for H1, H2 are obtained as 6.39 and 9.61 pu

while the actual values are 6.5 and 9.5 pu, respectively.

IV. DAMPING IMPROVEMENT WITH LINE CURRENT

FEEDBACK

In this section, we assume that the SVC in the two-

machine system in Figure 1 is employed for providing

additional damping to the interarea oscillations, by supple-

mentary line current feedback (for voltage regulation there

will be an additional washout filter to eliminate the feedback

effect in steady-state). Therefore, the susceptance is given as

B = −k3 |Ĩ2| (33)

where k3 is a constant gain and Ĩ2 is the line current

flowing between Bus 3 and Bus 2. Alternatively, Ĩ1 can

also be considered for feedback. If additionally, the SVC

is also expected to achieve steady-state voltage regulation,

then there will be an additional voltage error feedback term

on the RHS of (33), similar to as in Section 3.

We first derive an expression for Ĩ2 in terms of the angular
difference δ. From network equations, it is straightforward

to show that

cos(θc) =
σ1E2 + σ2E1 cos(δ)

ψ(δ)
, ψ̃(δ) (34)

where ψ(δ) =
√

σ2
1E

2
2 + σ2

2E
2
1 + 2σ1σ2E1E2 cos(δ) as

defined in (12). Next, we note that

I2 := |Ĩ2| =
1

σ2

√

V 2
c + E2

2 − 2VcE2ψ̃(δ). (35)

so that, using (33) and (35), the equivalent of equation (13)

for this case, can be written as

(σ1 + σ2)Vc + σ1k3Vc

√

V 2
c + E2

2 − 2VcE2ψ̃(δ) = ψ(δ)

which reduces to the quartic equation

α1V
4
c + α2V

3
c + α3V

2
c + α4Vc + α5 = 0 (36)

where

α1 = σ2
1k

2
3 , α2 = −2(σ1k3)

2E2ψ̃(δ) (37)

α3 = −(σ1 + σ2)
2 + (σ1k3)

2E2
2 (38)

α4 = 2(σ1 + σ2)ψ(δ), α5 = −ψ(δ)2. (39)

The solution is given by Ferrari’s formula for quartic equa-

tion as

Vc(δ) = − α2

4α1
+

±sβ1 ±t
√

−(3β2 + 2β3 ±s 2β4

β1
)

2
(40)

where the subscripts s and t denote dependent and in-

dependent signs respectively, and the construction of the

coefficients β1, β2, β3 and β4 in terms of αi (i = 1, ..., 5)
is shown in Appendix 2. For typical values of the system

parameters, the signs may be chosen as s = − and t = +.

The subsequent derivations for the normalized voltage at any

point on the transfer path on either side of the SVC bus are

similar to those in Section 3, i.e.,

Vn(a1) = Υl(a1, χ, χ
′, δ0)∆δ, (41)

Vn(a2) = Υr(a1, χ, χ
′, δ0)∆δ (42)

where

χ(δ) = σ1 + σ2 + σ1k3

√

Vc(δ)2 + E2
2 − 2Vc(δ)E2ψ̃(δ),

(43)

the functions Υr and Υl are as in (21) and (24), and the

expression for χ′(δ) can be derived as

χ′(δ) =
−σ1k3

σ2I2(δ)

(

Vc(δ)V
′
c (δ)

−E2

(

Vc(δ)ψ̃
′(δ) + V ′

c (δ)ψ̃(δ)
)

)

(44)

with ψ̃′(δ) and V ′
c (δ) being the derivatives of ψ̃(δ) and Vc(δ)

in (34) and (40) respectively, with respect to δ. It should
be remembered that equations (41)-(42) are considered for

δ = δ0. From (41)-(44), the method of solving for x1 and

x2 follows in the same way as in Section 3.
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Fig. 4. Comparison of voltage distribution between SVC voltage and
current feedback (k1 = 20, kI = 20, solid line) and supplementary line
current feedback (k3 = 10, dashed line)
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Figure 4 compares the variation of Vn for the case of

combined SVC voltage and current feedback (as in Section

3) with that due to the supplementary line current feedback.

We use k1 = kI = 20 for the SVC current feedback case,

and k3 = 10 for the supplementary feedback. It can be seen

that for approximately the same amount of voltage regulation

at Bus 3, the voltage oscillations at each point of the

transfer path are significantly damped by the supplementary

feedback. This testifies to the fact that supplementary control

can be a useful tool for improving interarea damping, as

used in [7]. If additional voltage feedback is used for voltage

regulation then the dashed curve will dip more at r = 1, the
point of voltage support. The values of the other parameters

used for the simulation are same as those in [1].

V. CONCLUSION

In this paper our main objective has been to study how

voltage oscillations at any point in a radial two-area power

system with intermediate SVC control, vary as a function of

the electrical distance of that point from a common reference

following a disturbance in the system. This has enabled

us to estimate the aggregated model parameters for each

area, using dynamic measurements of voltage, currents and

frequencies available from specific parts of the system, so

that a reduced order two-machine interarea equivalent for

the system can be constructed. This reduced order model

can now be used for control design for damping the transient

interarea swings in the system following any disturbance.

VI. APPENDIX 1

We first define Vc(δ1, δ2) to be the solution (14) with ψ(δ)
in (12) replaced by ψ(δ1 − δ2), and define B(δ1, δ2) as in

(15). We next define

Sr(δ1, δ2) = p1Ã(E2σ1 sin(2δ2) + E1σ2 sin(δ1 + δ2))

p2Ã(E1σ2 sin(2δ1) + E2σ1 sin(δ1 + δ2))

where

Ã = −a2σ
2
1σ

2
2E1E2 sin(δ1−δ2)

ψ(δ1−δ2)
(k1(1+k2Vc)+k1k2(Vr−Vc))

p1 = E2

(

1−a2+
a2σ1

χ(δ1,δ2)

)

, p2=
a2σ2E1
χ(δ1,δ2)

. (45)

Then

ϑr1(δ1,δ2) = p1π̄E1σ2 cos(δ1−δ2)+p2π̄E1σ2−Sr
λ(δ1,δ2)

ϑr2(δ1,δ2) = p1E2(1−a2)+p2E2(1−a2) cos(δ1−δ2)

+
p2π̄E2σ1 cos(δ1−δ2)+p1π̄E2σ1+Sr

λ(δ1,δ2)

where

λ(δ1,δ2) = χ(δ1,δ2)2(1+k2Vc(δ1,δ2))
2 (46)

π̄(δ1,δ2) = a2(1+k2Vc(δ1,δ2))2χ(δ1,δ2). (47)

For the left side of the network, we can derive that

ϑl1(δ1,δ2) = m1E1a1 cos(δ1−δ2)+m2E1a1

+
m2π̃E1σ2+m1π̃E1σ2 cos(δ1−δ2)−Sl

λ(δ1,δ2)

ϑl2(δ1,δ2) = m1π̃E2σ1+m2π̃E2σ1 cos(δ1−δ2)+Sl
λ(δ1,δ2)

where

m1 = σ1(1−a1)E2
χ(δ1,δ2)

, m2=E1

(

a1+
σ2(1−a1)

χ(δ1,δ2)

)

(48)

π̃(δ1,δ2) = (1−a1)(1+k2Vc(δ1,δ2))
2χ(δ1,δ2) (49)

and the expression for Sl is exactly the same as that of Sr
but with Ã replaced by Ā where

Ā =
−(1 − a1)σ

2
1σ

2
2E1E2 sin(δ1 − δ2)

ψ(δ1 − δ2)
(k1(1 + k2Vc)

+k1k2(Vr − Vc)) . (50)

The symmetry of the Jacobian functions on either side of

the transfer path with respect to the spatial variables a1 and

a2 can be readily seen from the expressions for ϑri and ϑli,
i = 1, 2. Also, from the above equations and (30), (31) it can

be verified that νr(0) = ω2, νl(1) = ω1 and νr(1) = νl(0).

VII. APPENDIX 2

Let α1, .., α5 be as in (37)-(39). Then, by Ferrari’s for-

mula, the coefficients β1, .., β4 in the solution (40) of the

quartic equation (36) are given as follows:

β2 = −3α2
2

8α2
1

+
α3

α1
, β4 =

α3
2

8α3
1

− α2α3

2α2
1

+
α4

α1
(51)

µ1 = − 3α4
2

256α4
1

+
α3α

2
2

16α3
1

− α2α4

4α2
1

+
α5

α1
(52)

µ2 = −β
2
2

12
− µ1, µ3 = − β3

2

108
+
β2µ1

3
− β2

4

8
(53)

µ4 =
µ3

2
+

√

µ2
3

4
+
µ3

2

27
, µ5 = 3

√
µ4 (54)

β3 = −5β2

6
− µ5 +

µ2

3µ5
(µ5 6= 0) (55)

β1 =
√

β2 + 2β3 (56)
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