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Abstract— This paper is concerned with the reliable H∞ fil-
tering problem against sensor failures for a class of continuous-
time systems with simultaneous sector-bounded nonlinearities
and varying time delay. The resulting design is such that the
filtering error system is asymptotically stable and meets the
prescribed H∞ norm constraint in the nominal case as well as
in the sensor failure case. A sufficient condition, which depend
not only on the upper and lower bound of delay but also on
the upper bound of delay derivative, for the existence of such
a filter is obtained by using appropriate Lyapunov functional
and linear matrix inequality (LMI) technique. What’s worth
mentioning is that the information about the upper bound of
delay derivative is taken into consideration even if this upper
bound is not smaller than 1. A numerical example is provided
to demonstrate the effectiveness of the proposed designs.

I. INTRODUCTION

During the past decades, considerable attention has been

devoted to the H∞ filtering problem since H∞ filter admits

not only the noise to be arbitrary signals with bounded

energy but also the system model to have uncertainty. In

particular, the LMI approach to H∞ filtering is more powerful

in numerical computations and suitable for handling the

optimization problems with multiple constraints[1]. On the

other hand, time delay is often one of the main sources of

instability and poor performance of a control system, which

is frequently encountered in many practical engineering

systems such as chemical processes, electrical heating and

so on. Therefore, the study of H∞ filtering for time-delay

systems has attracted much attention of many researchers

in the past years, however, for systems with time-varying

delays, the most existed literatures usually demand that the

upper bound of the derivative of delays must be smaller

than 1[2]. If the upper bound of the derivative of delays is

larger than 1, the information of the derivative of delays is

always discard such as [3], which is obviously unreasonable.

Therefore, improved asymptotic stability conditions for time-

delay systems were presented by using the information of

delay derivative in [4].

Meanwhile, filtering for nonlinear system is an impor-

tant research area that has attracted considerable interest.
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Recently, a large number of papers about the problem

of nonlinear filtering have appeared, see, e.g.,[5 − 6], and

the reference therein. The filtering problem for nonlinear

stochastic systems was investigated in [5, 6], and in par-

ticular, the considered filtering with variance-constrained

was designed for uncertain stochastic systems with missing

measurements in [6]. An H∞ filtering design problem for

uncertain stochastic time-delay systems with sector-bounded

nonlinearities was presented in [5], and the similar type of

nonlinear systems were also investigated in [7].

Noting that in the above mentioned works on the filtering

problems, the researchers are all based on a common as-

sumption that the sensors can provide uninterrupted signal

measurements. However, contingent failures are possible

for all sensors in a system in practice. A large degree

of filter performances may degrade and possible hazards

may happen[8]. Therefore, recently, the design of reliable

controller and filter have been received increasing attention,

mainly in linear systems[8-10], while the reliable controller

and filter for nonlinear systems are investigated in [11-

13]. In 2001, the reliable H∞ controller design for linear

systems with sensor or actuator failure via the algebraic

Riccati equation (ARE) approach was considered in [8]. [9-

10] studied the problem of reliable filtering problem against

sensor failures for linear systems, and a method of designing

adaptive reliable H∞ filter was proposed by combining the

LMI approach and adaptive method. The problem of reliable

H∞ controller design for nonlinear system was investigated in

[11,12] via LMI approach. Moreover, in 2003, [13] proposed

a class of reliable variable structure control laws, which were

shown to be able to tolerate the outage of actuators within a

prespecified subset of actuators. Unfortunately, to the best of

the authors’ knowledge, up to now, the reliable H∞ filtering

problem for nonlinear systems with varying time delay has

not been fully investigated.

Motivated by above points, a reliable H∞ filter is de-

signed for a class of nonlinear systems with both sector-

bounded nonlinearities and time delays. First of all, the

sector-bounded nonlinearities and a general sensor failure

model which covers outage cases and the possibility of

partial failures are introduced. Next, the designs guarantee

the asymptotic stability of the estimation errors, and the H∞

performance of the filtering error system from the exoge-

nous signals to the estimation errors less than a prescribed

level. Then, a sufficient condition for the existence of such

a reliable H∞ filter is obtained via appropriate Lyapunov

functional and LMI technique, which is dependent on the

lower bound and upper bound of the time-varying delays
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and the upper bound of the delay derivative. In addition, the

constraint on the upper bound of the delay derivative, which

is not larger than 1, is eliminated. Finally, a numerical ex-

ample is given to illustrate the effectiveness of the developed

techniques.

II. PROBLEM FORMULATION

Consider a class of nonlinear continuous-time system with

sector nonlinearity described as follows

ẋ(t) = Ax(t)+Adx(ε)+F f (x(t))+Fd f (x(ε))+Bw(t)

y(t) = Cx(t)+Cdx(ε)+Hh(x(t))+Hdh(x(ε))+Dw(t)

z(t) = Lx(t)

x(t) = Φ(t), t = [−max(d(t)),0]
(1)

where ε = t − d(t), x(t) ∈ Rn is the state vector, w(t) ∈ Rr

is the disturbance input which is assumed to belong to

l2[0,∞), z(t) ∈ Rq is the regulated output and y(t) ∈ Rp is

the measured output, respectively. The system matrices A, F ,

Fd , B, C, H, Hd , D and L are known constant matrices of

appropriate dimensions. f (⋆) and h(⋆) are the vector-valued

nonlinear functions.

For system (1), the state delay d(t) appearing in both the

dynamic and measurement equations are frequently encoun-

tered in various engineering systems such as networked con-

trol systems, long transmission lines in pneumatic systems

and so on. A natural assumption on d(t) can be made as

follows.

Assumption 1. The positive scalar d(t) is known function

and denotes the time-varying delay satisfying

dm ≤ d(t) ≤ dM, ḋ(t) ≤ µ, (2)

where 0 ≤ dm < dM and µ are known positive constants. In

particular, for the case of µ ≥ 1, if choosing a positive scalar

0 < α < 1, then it follows that

(αd(t))′ = α ḋ(t) ≤ αµ < 1, (3)

therefore, the information of the derivative of d(t) can be

used. In addition, Φ(t) is a continuous vector-valued initial

function of [−dM,0].
Remark 1. In many exist works, such as [2], the upper

bound of delay derivative µ should be smaller than 1. Though

the results in [3] can be applied to the case of µ ≥ 1,

these stability conditions were independent on the upper

bound of the delay derivative µ . However, the case that the

delay derivative is larger than or equal to 1 is universal[4].

Therefore, in order to use the information of the derivative

of d(t), (3) is considered which also has been studied in [4].

To ensure the achievement of filter design objective, the

following basic assumptions are also assumed to be valid.

Assumption 2. The vector-valued nonlinear functions

f (⋆) and h(⋆) are assumed to satisfy the following sector-

bounded conditions:
{

[

f (x)− f (y)−M1δ
]T [

f (x)− f (y)−M2δ
]

≤ 0
[

h(x)−h(y)−N1δ
]T [

h(x)−h(y)−N2δ
]

≤ 0

(4)

where δ = x − y, ∀x,y ∈ Rn, and M1,M2 ∈ Rn×n and

N1,N2 ∈ Rp×n are known constant matrices. In what follows,

for presentations implicity and without loss of generality,we

always assume that:

f (0) = 0, h(0) = 0. (5)

Remark 2. It is obvious that, the conditions in Assumption

2 are more general than the usual sigmoid functions and the

recently commonly used Lipschitz conditions, see e.g. [5].

And M1, N1 and M2, N2 are lower and upper slope bound,

respectively.

The sensor outage cases are considered here

yF
i j(t) = (1−ρ j

i )yi(t),0 ≤ ρ j
i ≤ ρ j

i ≤ ρ j
i ≤ 1,

i = 1, · · · p, j = 1, · · ·L,
(6)

where ρ j
i is an unknown constant. Here, the index j denotes

the jth failure mode, L denotes the total number of the failure

modes, and yF
i j(t) represents the measured signal from the ith

sensor that has failed in the jth failure mode. For every faulty

mode, ρ j
i and ρ j

i represent the lower and upper bounds of

ρ j
i , respectively. Note that, when ρ j

i = ρ j
i = 0, there is no

failure for the ith sensor yi in the jth failure mode. When

ρ j
i = ρ j

i = 1, the ith sensor yi is outage in the jth failure

mode. When 0 < ρ j
i < ρ j

i < 1, it corresponds to the case of

partial failure of yi. Denote

yF
j (t) =

[

yF
1 j(t),y

F
2 j(t) · · ·y

F
p j(t)

]T
= (I −ρ j)y(t) (7)

where ρ j = diag
[

ρ j
1 ,ρ j

2 , · · ·ρ j
p

]

, j = 1, · · ·L. The scaling

factors ρ j satisfy

Nρ j = {ρ j|ρ j = diag
[

ρ j
1 ,ρ j

2 , · · ·ρ j
p

]

∈ Rp,

0 ≤ ρ j
i ≤ ρ j

i ≤ ρ j
i ≤ 1, i = 1,2, · · · p}.

(8)

For convenience in the following sections, for all possible

failure modes, we use a uniform sensor failure model

yF(t) = (I −ρ)y(t),ρ ∈ {ρ1,ρ2, · · ·ρL}. (9)

Then, the system (1) with sensor failure (9) is described

by

ẋ(t) = Ax(t)+Adx(ε)+F f (x(t))+Fd f (x(ε))+Bw(t)

yF(t) = (I −ρ)(Cx(t)+Cdx(ε)+Hh(x(t))+Hdh(x(ε))
+Dw(t))

z(t) = Lx(t)
(10)

The reliable filter is of the form

¯̇x(t) = AF x̄(t)+BF yF(t)

z̄(t) = CF x̄(t)
(11)

where x̄(t) ∈ Rn is the filter state, z̄(t) ∈ Rq is the estimation

of z(t), AF , BF and CF are the filter parameter matrices to

be designed. Here, we assume that the filter is of the same

order as the system model.
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Applying the filter (11) to the system (10), we obtain the

filtering error system

ξ̇ (t) = Āξ (t)+ Ādξ (ε)+ Ā f f (Kξ (t))+ Ā f d f (Kξ (ε))
+Āhh(Kξ (t))+ Āhdh(Kξ (ε))+ B̄w(t)

e(t) = C̄ξ (t)
(12)

where ξ (t) =

[

x(t)
x̄(t)

]

, K =
[

I 0
]

, e(t) = z(t)− z̄(t) is

the estimation error, and

Ā =

[

A 0

BF(I −ρ)C AF

]

, Ād =

[

Ad 0

BF(I −ρ)Cd 0

]

, Ā f =
[

F

0

]

, Ā f d =

[

Fd

0

]

, Āh =

[

0

BF(I −ρ)H

]

, Āhd =
[

0

BF(I −ρ)Hd

]

, B̄ =

[

B

BF(I −ρ)D

]

, C̄ =
[

L −CF

]

.

For convenience in the following sections, we denote the

filtering error system without sensor failures, i.e., ρ = 0, as

follows:

ξ̇ (t) = Ãξ (t)+ Ãdξ (ε)+ Ã f f (Kξ (t))+ Ã f d f (Kξ (ε))
+Ãhh(Kξ (t))+ Ãhdh(Kξ (ε))+ B̃w(t)

e(t) = C̃ξ (t)
(13)

where Ã =

[

A 0

BFC AF

]

, Ãd =

[

Ad 0

BFCd 0

]

, Ã f =

[

F

0

]

,

Ã f d =

[

Fd

0

]

, Ãh =

[

0

BF H

]

, Ãhd =

[

0

BF Hd

]

, B̃ =
[

B

BF D

]

, C̃ =
[

L −CF

]

.

Our objectives are to develop a filter of the form (11)

such that the filtering error systems (12) and (13) satisfy the

following requirements:

1) While there is no exogenous disturbance, that is w(t) =
0, the filtering error systems (12) and (13) are asymp-

totically stable.

2) For given constants γ f > γn > 0, find the filter (11)

such that

i. The filtering error system (12) in the nominal case, i.e.,

(13), is with an H∞ performance index no larger than

γn;

ii. The filtering error system (12) in the sensor fail-

ures case, i.e., ρ ∈ {ρ1,ρ2, · · ·ρL} with ρ j ∈ Nρ j , j =
1, · · · ,L, is with an H∞ performance index no larger

than γ f ;

The filter of form (11) satisfying above objectives is said

to be an reliable H∞ filter for the system (1) with (6) and

guarantee that the filtering error systems (12) and (13) are

asymptotically stable at the same time.

Now, we first provide some important lemmas which will

be useful in the derivation of our main results.

Lemma 1.(S-procedure)[14] Let T0(x),T1(x), · · · ,Tp(x)
be quadratic function of x ∈ Rn

Ti(x) = xT Ψix, i = 0,1, · · · , p (14)

with Ψi = ΨT
i . Then the implication

T1(x) ≤ 0, · · · ,Tp(x) ≤ 0 =⇒ T0(x) < 0 (15)

holds if there exist nonnegative scalar τ1, · · ·τp such that

Ψ0 −
p

∑
i=1

τiΨi < 0 (16)

Lemma 2. Assume that f (⋆) is a vector-valued nonlinear

function and M1,M2 ∈ Rn×n are known constant matrices,

then we have

[

f (x)−M1x
]T [

f (x)−M2x
]

≤ 0, ∀x ∈ Rn, (17)

which implies

[

xT f T (x)
]

[

M̂1 M̂2

M̂T
2 I

][

x

f (x)

]

≤ 0 (18)

with M̂1 = (MT
1 M2 +MT

2 M1)/2,M̂2 = −(MT
1 +MT

2 )/2.

Proof. Due to the limit of the space, the proof is omitted.

Lemma 3.[15] For any positive symmetric matrix M ∈
Rn×n, a scalar τ > 0, vector function ϖ : [0,r] → Rn such

that the integrations concerned are well defined, then

(
∫ τ

0 ϖ(s)ds)T M(
∫ τ

0 ϖ(s)ds) ≤ τ
∫ τ

0 ϖT (s)Mϖ(s)ds. (19)

III. MAIN RESULT

To facilitate the presentation, we denote M̂1 =
(MT

1 M2 + MT
2 M1)/2,M̂2 = −(MT

1 + MT
2 )/2, N̂1 =

(NT
1 N2 + NT

2 N1)/2, N̂2 = −(NT
1 + NT

2 )/2, ζ = 1 − µ ,

β = 1−α , λ = 1−αµ , η = dM −dm, κ1 = 1
dM

, κ2 = 1
dm

, ν1 =

κ2 + κ1 + κ1
α ,ν2 = 4

η + κ1 + κ1
α , ν3 = κ2 + 1

η , ν4 = κ1
α + κ1

β ,

ε1 = t −dM,ε2 = t −dm,ε3 = t −αd(t),U1 = B̂F(I −ρ), and

the notation He{M} := M +MT is also used.

Before continuing with the solution to the synthesis prob-

lem, we present the following theorem which guarantees that

the filtering error system (12) is asymptotically stable and has

H∞ performance criterions at the same time.

Theorem 1. Given scalars γn > 0 , γ f > 0 and the known

constant matrices M̂1,M̂2, N̂1, N̂2. If there exist matrices Pn =
PT

n > 0,Pf = PT
f > 0, Qin = QT

in ≥ 0,Qi f = QT
i f ≥ 0, Ã, B̃, C̃

Ā, B̄, C̄ and nonnegative scalars τi, i = 1,2, · · · ,4 such that
[

M11n ∗

M12n M13n

]

< 0 (20)

holds for ρ = 0 and
[

M11 f ∗

M12 f M13 f

]

< 0 (21)

holds for ρ ∈ {ρ1,ρ2, · · ·ρL} with ρ j ∈ Nρ j , j = 1, · · · ,L,

where

M11n =











Ω11 ∗ ∗ ∗

Ω12 −τ1I ∗ ∗

Ω13 0 −τ3I ∗

Θ11n 0 0 Θ12n











,

M12n =







Θ13n 0 0 Θ14n 0 0

PnÃ PnÃ f PnÃh PnÃd PnÃ f d PnÃhd

C̃ 0 0 0 0 0






,

M13n = diag{Ω16,Ω17,Ω18,Ω19,−I},
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M11 f =











Π11 ∗ ∗ ∗

Π12 −τ1I ∗ ∗

Π13 0 −τ3I ∗

Θ11 f 0 0 Θ12 f











,

M12 f =







Θ13 f 0 0 Θ14 f 0 0

Pf Ā Pf Ā f Pf Āh Pf Ād Pf Ā f d Pf Āhd

C̄ 0 0 0 0 0






,

M13 f = diag{Π16,Π17,Π18,Π19,−I},

Θ11n =





Ω14

ÃT
f dPn

ÃT
hdPn



 ,Θ12n =







Ω15 ∗ ∗

−τ2M̂T
2 K −τ2I ∗

−τ4N̂T
2 K 0 −τ4I






,

Θ13n =









κ2Pn

0
κ1
α Pn

B̃T Pn









,Θ14n =











1
η Pn

3
η Pn
κ1
β Pn

0











,Θ11 f =





Π14

ĀT
f dPf

ĀT
hdPf



 ,

Θ12 f =







Π15 ∗ ∗

−τ2M̂T
2 K −τ2I ∗

−τ4N̂T
2 K 0 −τ4I






,Θ13 f =









κ2Pf

0
κ1
α Pf

B̄T Pf









,

ΘT
14 f =

[

1
η Pf

3
η Pf

κ1
β Pf 0

]

with Ω11 =
4

∑
i=1

Qin + PnÃ + ÃT Pn − ν1Pn − τ1KT M̂1K −

τ3KT N̂1K, Ω12 = ÃT
f Pn − τ1M̂T

2 K, Ω13 = ÃT
h Pn − τ3N̂T

2 K,

Ω14 = ÃT
d Pn + κ1Pn, Ω15 = −ζ Q3n − ν2Pn − τ2KT M̂1K −

τ4KT N̂1K, Ω16 = −Q1n − ν3Pn, Ω17 = −Q2n −
3
η Pn, Ω18 =

−λQ4n − ν4Pn, Ω19 =

[

−γ2
n I ∗

PnB̄ −κ1
3

Pn

]

and Π11 =

4

∑
i=1

Qi f +Pf Ā+ ĀT Pf −ν1Pf −τ1KT M̂1K−τ3KT N̂1K, Π12 =

ĀT
f Pf − τ1M̂T

2 K, Π13 = ĀT
h Pf − τ3N̂T

2 K, Π14 = ĀT
d Pf +

κ1Pf , Π15 = −ζ Q3 f −ν2Pf − τ2KT M̂1K − τ4KT N̂1K, Π16 =
−Q1 f − ν3Pf , Π17 = −Q2 f −

3
η Pf , Π18 = −λQ4 f − ν4Pf ,

Π19 =

[

−γ2
f I ∗

Pf B̄ −κ1
3

Pf

]

. Then, the filtering error systems

(12) and (13) are asymptotically stable and satisfy H∞

performance constraint simultaneously.

Proof. Let us choose a Lyapunov functional candidate

V (t) = V1(t)+V2(t)+V3(t) (22)

where

V1(t) = ξ T (t)Pf ξ (t)+
∫ t

ε2
ξ T (s)Q1 f ξ (s)ds+

∫ t
ε1

ξ T (s)

Q2 f ξ (s)ds,
V2(t) =

∫ t
ε ξ T (s)Q3 f ξ (s)ds+

∫ t
ε3

ξ T (s)Q4 f ξ (s)ds,

V3(t) =
∫ 0
−dm

∫ t
t+θ ξ̇ T (s)Pf ξ̇ (s)dsdθ +

∫ −dm

−dM

∫ t
t+θ ξ̇ T (s)

Pf ξ̇ (s)dsdθ +2
∫ 0
−dM

∫ t
t+θ ξ̇ T (s)Pf ξ̇ (s)dsdθ ,

(23)

where Pf = PT
f > 0 and Qi f = QT

i f ≥ 0,(i = 1, · · · ,4) are to

be determined.

Then, after some manipulation including applying Lemma

1, Lemma 2 and Lemma 3, we can obtain (20) and (21). Due

to the limit of the space, the detail is omitted. This completes

the proof.

Similar to the common method, which can be found in

many papers concerning the reliable controlling and filtering

problems, see [10,11], is to set

Pn = Pf = P (24)

before converting all the inequalities to LMIs. Consequently,

based on LMI technique, we give the sufficient condition for

the existence of the reliable H∞ filter as following theorem.

Theorem 2. For prescribed γ > 0 and known constant

matrices M̂1,M̂2, N̂1, N̂2, assume that there exist matrices

0 < P1n = PT
1n ∈ Rn×n, P2n ∈ Rn×n, 0 < P3n = PT

3n ∈ Rn×n,

0 < P1 f = PT
1 f ∈ Rn×n, P2 f ∈ Rn×n, 0 < P3 f = PT

3 f ∈ Rn×n,

X ∈ Rn×n , Y ∈ Rn×n, ÂF ∈ Rn×n, B̂F ∈ Rn×p, ĈF ∈ Rq×n

and nonnegative scalars τi, i = 1,2, · · · ,4 such that
[

Σn21 ∗
Σn22 Σn23

]

< 0,

[

Qi1n ∗
Qi2n Qi3n

]

≥ 0 (25)

holds for ρ = 0, and
[

Σ f 31 ∗
Σ f 32 Σ f 33

]

< 0,

[

Qi1 f QT
i2 f

∗ Qi3 f

]

≥ 0 (26)

holds for ρ ∈ {ρ1,ρ2, · · ·ρL} with ρ j ∈ Nρ j , j = 1, · · · ,L,

where Σn21 =









Λ11n ∗ ∗ ∗

Λ12 Λ13 ∗ ∗

Λ14 0 Λ15n ∗

Λ16 0 Λ17 Λ18n









,ΣT
n22 =

[

N T
11

N T
12

]

,

Σn23 = diag{−Q13n −ν3R,Λ31n,Λ32n,Λ33n,−I},

Σ f 21 =









Λ11 f ∗ ∗ ∗

Λ12 Λ13 ∗ ∗

Λ14 0 Λ15 f ∗

Λ16 0 Λ17 Λ18 f









,ΣT
f 22 =

[

N T
11

N T
13

]

,

Σ f 23 = diag{−Q13 f −ν3R,Λ31 f ,Λ32 f ,Λ33 f ,−I},

Λ11n =

[

ϒ20n ∗

ϒ21n ϒ22n

]

,Λ12 =

[

ϒ23 ϒ24

−τ3N̂T
2 ϒ25

]

,

Λ13 = diag{−τ1I,−τ3I},Λ14 =

[

AT
d S +κ1S ϒ26

AT
d S +κ1S ϒ28

]

,

Λ15n =

[

ϒ27n ∗

ϒ29n Ξ20n

]

,Λ16 =





FT
d S FT

d R

0 (U1Hd)T

κ2S κ2S



 ,

Λ17 =





−τ2M̂T
2 −τ2M̂T

2

−τ4N̂T
2 −τ4N̂T

2
1
η S 1

η S



 ,Λ18n = diag{−τ2I,−τ4I,Ξ21n},

N11 =























κ2Λ21 0 1
η Λ21 0

0 0 3
η Λ22 0

κ1

α 0 κ1

β Λ22 0

Λ23 0 0 0

Λ24 Λ25 Λ26 Λ27

Λ28 0 0 0























,Λ21 =
[

S R
]

,

N T
12 =

[

−QT
12n −ν3S 0 0 0 0 0

]

,Λ22 =

[

S S

S R

]

,

N T
13 =

[

−QT
12 f −ν3S 0 0 0 0 0

]

,

Λ23 =
[

BT S (RB+U1D)T
]

,Λ24 =

[

SA SA

Ξ22 RA+U1C

]

,

Λ25 =

[

SF 0

RF B̂F H

]

,Λ26 =

[

SAd SFd

Ξ23 RAd +U1Cd

]

,

Λ27 =

[

SFd 0

RFd U1Hd

]

,Λ31n =

[

Ξ24n ∗

Ξ25n −Q23n −
3
η R

]

,
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Λ28 =
[

L−ĈF L
]

,Λ32n =

[

Ξ26n ∗

Ξ27n −λQ43n −ν4R

]

,

Λ33n =





−γ2
n I ∗ ∗

SB − κ1

3 S ∗

RB+ B̂F D − κ1

3 S − κ1

3 R



 ,

Λ11 f =

[

ϒ20 f ∗

ϒ21 f ϒ22 f

]

,Λ18 f = diag{−τ2I,−τ4I,Ξ21 f },

Λ15 f =

[

ϒ27 f ∗

ϒ29 f Ξ20 f

]

,Λ31 f =

[

Ξ24 f ∗

Ξ25 f −Q23 f −
3
η R

]

,

Λ32 f =

[

Ξ26 f ∗

Ξ27 f −λQ43 f −ν4R

]

,

Λ33 f =





−γ2
f I ∗ ∗

SB − κ1

3 S ∗

RB+U1D − κ1

3 S − κ1

3 R



 , with R1 = SA + AT S−

ν1S − τ1M̂1 − τ3N̂1,R2 = RA + U1C + ÂF + AT S − ν1S − τ1M̂1 −

τ3N̂1,R3 = He{RA +U1C}− ν1R− τ1M̂1 − τ3N̂1,R4 = −τ2M̂1 −

τ4N̂1−ν2S,R5 =−τ2M̂1−τ4N̂1−ν2S,R6 =−τ2M̂1−τ4N̂1−ν2R,

ϒ20n =
4

∑
i=1

Qi1n +R1, ϒ21n =
4

∑
i=1

Qi2n +R2, ϒ22n =
4

∑
i=1

Qi3n +R3,

ϒ23 = FT S − τ1M̂T
2 , ϒ24 = FT R− τ1M̂T

2 , ϒ25 = (U1H)T − τ3N̂T
2 ,

ϒ26 = AT
d R +(U1Cd)T + κ1S, ϒ27n = −ζ Q31n +R4, ϒ28 = AT

d R +

(U1Cd)T + κ1R, ϒ29n = −ζ Q32n + R5, Ξ20n = −ζ Q33n + R6,

Ξ21n = −Q11n − ν3S, Ξ22 = RA +U1C + ÂF , Ξ23 = RAd +U1Cd ,

Ξ24n = −Q21n −
3
η S, Ξ25n = −Q22n −

3
η S, Ξ26n = −λQ41n − ν4S,

Ξ27n =−λQ42n−ν4S, ϒ20 f =
4

∑
i=1

Qi1 f +R1, ϒ21 f =
4

∑
i=1

Qi2 f +R2,

ϒ22 f =
4

∑
i=1

Qi3 f +R3,ϒ27 f = −ζ Q31 f +R4,ϒ29 f = −ζ Q32 f +R5,

Ξ20 f = −ζ Q33 f +R6, Ξ21n = −Q11 f −ν3S, Ξ24 f = −Q21 f −
3
η S,

Ξ25 f =−Q22 f −
3
η S, Ξ26 f =−λQ41 f −ν4S,Ξ27 f =−λQ42 f −ν4S.

Moreover, if there exist solutions of this inequality, the reliable

filter can be given by

AF = (S−R)−1ÂF ,BF = (S−R)−1B̂F ,CF = ĈF . (27)

Proof. Due to the limit of the space, the proof is omitted.

It is noted that the conditions in Theorem 2 are LMI conditions

with respecting to the scalar γn and γ f , which denote the reliable H∞

performance bounds for the nominal and the sensor failure cases

of the filtering error system (12), respectively. Therefore, γn and γ f

can be minimized by using convex optimization algorithms.

Remark 3. The sufficient conditions expressed in LMIs are

presented in Theorem 2, which there exist sensor failures. When the

sensor failures are not considered, i.e., ρ = 0, the problem reduces

to standard H∞ filter design, which (25) should be satisfied.

IV. NUMERICAL SIMULATION

To illustrate the validity and effectiveness of the reliable H∞

filter, a numerical simulation is carried out to provide a comparison

among the approaches proposed in this paper.

Consider the following nonlinear continuous-time time-delay

system (1) with the following parameters:

A =





−0.08 −4.52 1.76

1.15 1.67 −1.93

1.93 2.27 −3.10



 ,D =

[

1 0

2 1

]

,

Ad =





0.1 −0.1 0

0.1 −0.2 0

0 −0.1 −0.1



 ,B =





−0.01 0.03

−0.02 −0.05

0.03 0.04



 ,

F = Fd =





0.1 0.1 0.3
0.2 0.2 0

0.3 0.1 0.1



 ,C =

[

0 0.1 −0.2
0.1 −0.1 0.2

]

,

Cd =

[

0 −0.2 0.1

0.1 0 0.2

]

,H = Hd =

[

0.3 −0.1 0

0.2 0 0.1

]

,

L =
[

−1 0 1
]

,M1 = N1 =





0.01 0.01 −0.01

0.01 0.02 0.04

−0.02 0.01 0.02



 ,

M2 = N2 =





−0.01 0.01 −0.01

−0.03 −0.02 −0.02

0.02 −0.03 −0.04



 , f (x(t)) = h(x(t))

=





0.02x1(t)sin2(x1(t))−0.01(x1(t)− x2(t)+ x3(t))

−0.01(x1(t)− x3(t))

−0.01(x2(t)+ x3(t))



 ,

and for convenience, we denote ς(t) = x(ε), then we have

f (x(ε)) = h(x(ε)) = f (ς(t)) = h(ς(t)) =




0.02ς1(t)sin2(ς1(t))−0.01(ς1(t)− ς2(t)+ ς3(t))

−0.01(ς1(t)− ς3(t))

−0.01(ς2(t)+ ς3(t))



 ,

where f (⋆) and h(⋆) satisfy (4). On the other hand, the minimum

bound and upper bound delay time d(t) are given by dm = 0.5 and

dM = 1, respectively, and let α = 0.05.

Here, the following four possible sensor failure modes are

considered:

• Nominal mode 1: Both of the two sensors are nominal, that

is, ρ1 = diag[ρ1
1 ,ρ1

2 ] = diag[0,0].

• Sensor failure mode 2: The first sensor is nominal and the

second is outage, that is, ρ2 = diag[ρ2
1 ,ρ2

2 ] = diag[0,1].

• Sensor failure mode 3: The first sensor is outage and the second

is nominal, that is, ρ3 = diag[ρ3
1 ,ρ3

2 ] = diag[1,0].

• Sensor failure mode 4: The two sensors are partial failure, that

is, ρ4 = diag[ρ4
1 ,ρ4

2 ] = diag[0.4,0.5].

Then, for various µ , we can obtain the optimal reliable H∞

performances and the filter parameters with a = 10 and b = 1.

Due to the limit of the space, the filter gain matrices are omitted.

For comparison, Table 1 gives out the H∞ norm performances

for the nominal and the sensor failure cases by the above two

approaches with various µ . Table 1 shows that the standard filter

has the best performance in the nominal case. However, the optimal

H∞ performance of the standard filter is serious deteriorative in the

sensor failure case, while the reliable H∞ filter performs well.

Table 1 Comparison of γ by different methods with various µ

µ Design methods γ

Nominal Sensor Failures

µ = 0.5 Thm. 2 RF 1.3331 2.5784

Rem. 3 SF 1.0531 8.5237

µ = 1 Thm. 2 RF 1.3447 2.5864

Rem. 3 SF 1.0657 8.4632

µ = 1.5 Thm. 2 RF 1.3288 2.5764

Rem. 3 SF 1.0703 8.3846

• RF: Reliable Filter • SF: Standard Filter.

In order to show the effectiveness of our method more clearly,

a simulation is also reformed. In the following simulation, let

the system initial state be x0 =
[

0 0 0
]

and the filter initial

state be x̄0 =
[

0 0 0
]

. And we assume the disturbance input

wT (t) =
[

wT
1 (t) wT

2 (t)
]

as following:

w1(t) = w2(t) =

{

−0.2cos(t) 15 ≤ t ≤ 20

0 otherwise,
(28)
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and the delay d(t) is assume as

d(t) = 0.5|sin(3t)|+0.5. (29)

It obviously that dm = 0.5, dM = 1 and µ = 1.5. Fig.1 and Fig.2

show the estimation error e(t) response of the filters designed by

the proposed methods for the reliable filter and the standard filter

in the nominal case and in the sensor failure case, respectively.

We can also compute ‖e(t)‖2 =
∫ ∞

0 eT (s)e(s)ds and ‖w(t)‖2 =
∫ ∞

0 wT (s)w(s)ds, respectively, and denote ϑ =
‖e(t)‖2

‖w(t)‖2
, then we can

obtain the following tables.

Table 2 Comparison of Reliable H∞ filter with standard H∞

filter in the nominal case under the disturbance w(t)

w(t) RF SF

‖w(t)‖2 ‖e(t)‖2 ϑ1 ‖e(t)‖2 ϑ2

0.4844 1.0590 2.1862 0.9498 1.9608

• RF: Reliable Filter • SF: Standard Filter.

Table 3 Comparison of Reliable H∞ filter with standard H∞

filter in the sensor failure case under the disturbance w(t)

w(t) RF SF

‖w(t)‖2 ‖e(t)‖2 ϑ3 ‖e(t)‖2 ϑ4

0.4844 1.2072 2.4922 2.1351 4.4077

• RF: Reliable Filter • SF: Standard Filter.

From Table 2 and Table 3, we can find, the reliable and standard

filter’s performance indexes in the nominal case are smaller than

the reliable filter and the standard filter’s performance indexes in

the sensor failure case, which implies that the reliable filter and

the standard filter perform well under the condition that there

isn’t considered the sensor failures. ϑ4 is bigger than ϑ3, which

illustrates the standard filter designed by Remark 3 is sensitive to the

sensor failures. Furthermore, from Fig.1 and Fig.2, we can easy find

that the standard filter performs well, however, the standard filter

is serious deteriorative in the sensor failure case. This phenomenon

shows the effectiveness of our design methods.

0 10 20 30 40 50
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6
The Response of Error Estimation e(t) in Nominal Case

e
(t

)

t

Reliable filter

Standard filter

Fig. 1. Comparison between the Relable H∞ filter and the standard H∞

filter in the nominal case

V. CONCLUSION

A reliable H∞ filter design method for a class of continuous-time

systems with both sector-bounded nonlinearities and time delays is

presented against sensor failures. The information about the upper

bound of delay derivative is taken into consideration even if this

0 10 20 30 40 50
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2
The Response of Error Estimation e(t) in Sensor Failure Case

e
(t

)

t

Reliable filter

Standard filter

Fig. 2. Comparison between the reliable H∞ filter and standard H∞ filter
in sensor failure case

upper bound is not smaller than 1. A delay-dependent sufficient

condition for the existence of the filter to meet H∞ performance is

presented via LMI, and the explicit expression of the desired filter is

also developed. And the convex optimization algorithm is given to

obtain the solution. A numerical example verifies the effectiveness

of the proposed methods.
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