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Abstract— The problem of non-fragile H∞ filtering for a class
of linear systems described by delta operator with circular
region pole constraints is investigated. The purpose of the paper
is to design a filter such that the error filtering system not
only satisfies the prescribed circular pole constraints or D-
stability constraint, but also meets the prescribed H∞ norm
constraint on the transfer function from the disturbance input
to the estimation error. In addition, the filter gain to be
designed is assumed to have multiplicative gain variations. A
sufficient condition for the existence of such a filter is obtained
by using appropriate Lyapunov function and linear matrix
inequality (LMI) technique. A numerical example is provided
to demonstrate the effectiveness and less conservativeness of
the proposed designs.

I. INTRODUCTION

In the actual engineering systems, the filters and con-

trollers realized by microprocessors/microcontroller do have

some uncertainties due to limitation in available micropro-

cessor/microcontroller memory, effects of finite word length

of the digital processor and quantization of the A/D and

D/A converters and so on[1]. It has shown that optimum and

robust controllers designed by modern robust control design

techniques should be very sensitive or fragile with respect

to error/uncertainty in controller parameters[2]. Therefore,

recently, the design of non-fragile (or resilient) controller

and filter have been received increasing attention, mainly in

additive gain variations[3-5], while the controller and filter

with multiplicative gain variations are investigated in [6-

7]. [3] investigated a non-fragile nonlinear H∞ control with

additive controller gain variations. [4] studied the problem

of non-fragile filter design for continuous-time systems,

which the filters to be designed were assumed to be with

additive gain variations. The non-fragile H∞ filtering problem

affected by finite word length(FWL) for linear discrete-time

systems was investigated in [5]. A robust non-fragile Kalman

filtering problem for uncertain linear systems with estimator

gain uncertainty was addressed[6], where the multiplicative

uncertainty model was used to describe degradations of

sensors. [7] presented the non-fragile H∞ output feedback
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controller design with multiplicative controller gain varia-

tions via Riccati equations method. However, most of the

existing results of analysis and synthesis for non-fragile

H∞ filter or controller have been obtained separately for

continuous-time and discrete-time system.

Meanwhile, there has also been a rising interest in con-

structing Delta operator instead of traditional z-transform

for sampling continuous system. Two major advantages are

known for the use of delta operator parametrization: a theo-

retically unified formulation of continuous-time and discrete-

time systems, see, e.g.,[8−9], and the reference therein, and

better numerical properties in FWL implementations when

compared with traditional Z transform at high sampling

period[10]. On the other hand, as is well known, the estima-

tion dynamics of a linear system is closely related to the loca-

tion of its poles. By constraining the filter’s poles to lie inside

a prescribed region in the complex plane, the filter designed

would have the expected transient performance[11]. Hence,

if combined the delta operator theory and pole-placement

method with non-fragile filter theory, the unstable and fragile

problem of filtering error system can be solved, and well

transient performance can be obtained at the same time. In

the past few years, the robust filter problem for delta operator

systems has been studied by a number of researchers[12-13],

but they are all based on an implicit assumption that the filter

will be implemented exactly. Although, the robust non-fragile

H∞ state feedback controller for a class of uncertain system

is designed based on delta operator, where the controller and

the controlled object parameters are assumed to have addi-

tive norm-bounded variations in [14], the non-fragile filter

problem for delta operator system remains to be resolved.

Motivated by above points, a non-fragile H∞ filter with

the considerations of the multiplicative gain variations is

designed for a class of linear systems described by delta

operator with circular region pole constraints. The paper is

organized as follows. First of all, we introduce the delta

operator model to overcome the unstable problem caused by

using the traditional z-transform at high sampling rates. Next,

a sufficient condition for the existence of such a non-fragile

H∞ filter is obtained via appropriate Lyapunov function

and LMI technique. Further, less conservativeness can be

introduced by considering a more general type of filter gain

uncertainties. Then, a convex optimization problem is then

formulated, and the optimal solutions to the non-fragile H∞

filter problem with pole location for the domain considered

is also provided. Finally, a numerical example is given to

illustrate the effectiveness of the developed techniques.
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II. PROBLEM FORMULATION

Consider the following linear continuous system:

ẋ(t) = Ax(t)+Bw(t)

y(t) = Cx(t)+Dw(t)

z(t) = Lx(t)

(1)

where x(t) ∈ Rn is the state, w(t) ∈ Rr is the disturbance

input which belongs to l2[0,∞), z(t) ∈ Rq is the regulated

output and y(t) ∈ Rp is the measured output, respectively.

The system matrices A, B, C, D and L are known constant

matrices of appropriate dimensions.

Then, the delta operator system can be given as following






























δx(k) = Aδ x(k)+Bδ w(k)
y(k) = Cx(k)+Dw(k)
z(k) = Lx(k)
x(k) = 0, k ≤ 0

Aδ = (Az − I)/h,Az = eAh,Bδ = Bz/h,Bz =
∫ h

0 eAτ Bdτ,
δx(k) = (x(k +1)− x(k))/h

(2)

Throughout the paper, I denotes an identity matrix of ap-

propriate dimension, and h denotes the sampling period. Aδ

and Bδ are the corresponding delta operator system matrices,

Az and Bz are the z-domain discrete system matrices. C, D

and L are the same as the z-domain discrete system matrices

respectively. In addition, δ is delta operator, which is defined

by:

δx(t) =:

{

d
dt

x(t) h = 0

(x(t +h)− x(t))/h h 6= 0
(3)

On the other hand, it is obvious that

lim
h→0

Aδ = lim
h→0

(eAh − I)/h = A, lim
h→0

Bδ = B. (4)

Consequently, when h → 0, the δ domain discrete system

changes to continuous system.

We are interested in designing an delta operator filter

δ x̄(k) = AδF x̄(k)+BδF y(k)

z̄(k) = CδF x̄(k)
(5)

where x̄(t) ∈ Rn is the filter state, AδF , BδF and CδF are the

parameters of the filter with multiplicative gain variations

described by

AδF = AδF1(I +Γ1),BδF = BδF1(I +Γ2),
CδF = CδF1(I +Γ3)

(6)

where AδF1, BδF1, CδF1 are the filter parameters to be

designed. Γ1, Γ2 and Γ3 represent the gain variations with

the following form

Γ1 = H1ℜ1(k)E1,Γ2 = H2ℜ2(k)E2,Γ3 = H3ℜ3(k)E3 (7)

where Hi,Ei,(i = 1,2,3) are known constant real matrices

with appropriate dimensions, ℜi(k) denotes time-varying

parameter uncertainties, and is assumed to be of diagonal

form

ℜi(k) = diag{ℜi1(k), · · ·ℜir(k)}, (8)

where ℜil ∈Rpl×ql , l = 1, · · ·r, are unknown real time-varying

matrices satisfying

ℜT
ilℜil ≤ I, where k = 0,1,2, · · · .

Consider the linear transformation on the filter state

x̂(t) = Mx̄(t) (9)

where M is an invertible matrix to make the design easy,

which can be given out during the design of the filter. We

have a new representation form of the filter as follows

δ x̂(k) = MAδF M−1x̂(k)+MBδF y(k)

ẑ(k) = CδF M−1x̂(k)
(10)

Applying the filter (10) to the system (2), we obtain the

filtering error system

δξ (k) = Āδ ξ (k)+ B̄δ w(k)

e(k) = C̄δ ξ (k)
(11)

where ξ (k) =

[

x(t)
x̂(t)

]

, e(k) = z(k) − ẑ(k) is the esti-

mation error, and Āδ =

[

Aδ 0

MBδFC MAδF M−1

]

, B̄δ =
[

Bδ

MBδF D

]

, C̄δ =
[

L −CδF M−1
]

.

The transfer function matrix of the filtering error system

(11)from w(k) to e(k) is given by

G(z) = C̄δ (zI − Āδ )−1B̄δ . (12)

Our objective is to develop a filter of the form (5)(

or (10)) such that, for all admissible filter gain variations

(6), the filtering error system (11) satisfies the following

requirements:

a. While there is no exogenous disturbance, that is w(k) =
0, the filtering error system (11) is asymptotically

stable, and all filtering error system’s poles lie in the

region D(a,r) in the complex plane with the center at

(a+ j0) and the radius r, and have

λ (Āδ ) ⊂ D(a,r)
|a|+ r < 2/h, r < 1/h,

(13)

where λ (Āδ ) denote the eigenvalue of Āδ .

b. The filtering error system (11) has H∞ performances,

i.e, the transfer function matrix G(z) satisfies

‖G(z)‖∞ < γ. (14)

Now, we first provide some important lemmas which will be

useful in the derivation of our main results.

Lemma 1.[15] All the poles of the matrix Āδ ∈ Rn×n are

located with a given circular region D(a,r) as shown in figure

1, i.e.,λ (Āδ ) ⊂ D(a,r), if and only if there exists a matrix

X > 0 such that

(i)
(I +hAa)

T X
h
(I +hAa)−

X
h

< 0, (15)

(ii)
[

−rX ∗
XĀδ +βX −rX

]

< 0, (16)
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where Aa =
Āδ−aI−(1/h)I

rh
,β = r−a−1/h, and the above two

matrix inequalities are equivalent.

III. MAIN RESULTS

A. H∞ Filtering for Delta Operator Formulated Systems

Before continuing with the solution to the synthesis prob-

lem, we present the following theorem which guarantees that

the filtering error system (11) is asymptotically stable and has

H∞ performance criterions at the same time.

Theorem 1. Given scalar γ > 0 and the sampling period

h, if there exist some matrices X = XT > 0, Āδ , B̄δ , C̄δ such

that








hXĀδ +hĀT
δ X ∗ ∗ ∗

hB̄T
δ X −γ2h2I ∗ ∗

hXĀδ hXB̄δ −X ∗
hC̄δ 0 0 −I









< 0 (17)

holds, then the filtering error system (11) is asymptotically

stable and satisfies H∞ performance constraint.

Proof. Due to the limit of the space, the proof is omitted.

B. Non-fragile H∞ Filter with D-stability Constraints

In this subsection, we develop non-fragile H∞ filter with

D-stability constraints based on LMI technique.

Definition 1. For prescribed γ > 0 and the sampling period

h, assume that there exist X = XT > 0 and filter parameters

Āδ , B̄δ and C̄δ satisfying (16) and (17) at the same time,

then the filtering error system (11) is D-stable and satisfies

H∞ norm constraint simultaneously.

Remark 1. In the above definition, when the D-stable is

not considered, i.e. D(a,r) = D(−1/T,1/T ), the problem is

reduced to non-fragile H∞ filter design without circular pole

constraint.

In the following, based on LMI technique, we give the

sufficient condition for the existence of the non-fragile H∞

filter as following theorem.

Theorem 2. For prescribed γ > 0 and the sampling period

h, assume that there exist S = ST > 0, R = RT > 0, ÂδF , B̂δF ,

ĈδF and Λi = diag{λi1I, · · · ,λirI},(i = 1,2,3) such that

Ω1 =

[

Ξ01 ∗
Ξ02 Ξ03

]

< 0,Ω2 =

[

Ξ1 ∗
Ξ2 Ξ3

]

< 0, (18)

where

Ξ01 =













−rS ∗ ∗ ∗

−rS −rR ∗ ∗

/021 /021 −rS ∗

ϕ31 ϕ32 −rS −rR













,

Ξ02 =













0 0 0 HT
1 ÂT

δF

Λ1E1 0 0 0

0 0 0 HT
2 B̂T

δF

Λ2E2C Λ2E2C 0 0













,

Ξ03 = {−Λ1I,−Λ1I,−Λ2I,−Λ2I} ,

Ξ1 =























/022 ∗ ∗ ∗ ∗ ∗

ϒ31 ϒ32 ∗ ∗ ∗ ∗

hBT
δ S ϒ33 −γ2h2I ∗ ∗ ∗

hSAδ hSAδ hSBδ −S ∗ ∗

ϒ34 ϒ35 ϒ36 −I −R ∗

ϒ37 hL 0 0 0 −I























,

Ξ2 =

























0 HT
2 B̂T

δF
0 0 HT

2 B̂T
δF

0

hΛ2E2C hΛ2E2C hΛ2E2D 0 0 0

0 HT
1 ÂT

δF
0 0 HT

1 ÂT
δF

0

hΛ1E1 0 0 0 0 0

0 0 0 0 0 −HT
3 ĈT

δF

hΛ3E3 0 0 0 0 0

























,

Ξ3 = {−Λ2I,−Λ2I,−Λ1I,−Λ1I,−Λ3I,−Λ3I}

with /021 = SAδ + βS, /022 = hSAδ + hAT
δ S,ϕ31 = RAδ +

B̂δFC + ÂδF + βS,ϕ32 = RAδ + B̂δFC + βR,ϒ31 = hAT
δ S +

hRAδ + hB̂δFC + hÂδF ,ϒ32 = hAδ TR + hRAδ + hB̂δFC +
hCTB̂T

δF
,ϒ33 = hBT

δ R + hDTB̂T
δF

,ϒ34 = h(RAδ + B̂δFC +

ÂδF),ϒ35 = hRAδ + hB̂δFC,ϒ36 = hRBδ + hB̂δF D,ϒ37 =
hL−hĈδF . Then, the filtering error system (11) is D-stable

and satisfies H∞ norm constraint simultaneously.

Moreover, if there exist solutions of these inequalities, the

non-fragile filter can be given by

AδF1 = (S−R)−1ÂδF ,BδF1 = (S−R)−1B̂δF ,CδF1 = ĈδF .
(19)

Proof. Due to the limit of the space, the proof is omitted.

Remark 2. In the above theorem, when the D-stable is

not considered, i.e. D(a,r) = D(−1/h,1/h), the problem is

reduced to non-fragile H∞ filter design without circular pole

constraint. Then, the problem of non-fragile H∞ filter without

circular pole constraints design can be resolved by solving

LMIs Ω2 < 0 and
[

S S

S R

]

> 0. (20)

Remark 3. When the filter gain variations model is the

same as the model in [6], i.e.,

Γ1 = H1ℜ1(k)E1,Γ2 = H2ℜ2(k)E2,Γ3 = H3ℜ3(k)E3 (21)

where Hi,Ei,(i = 1,2,3) are known constant matrices of

appropriate dimensions, and ℜi(i = 1,2,3) are real uncertain

matrices with

ℜT
i (k)ℜi(k) ≤ I, i = 1,2,3 (22)

where ℜi(k) without the constraint (8).

Then, the following theorem presents a sufficient condition

for the solvability of the non-fragile H∞ filtering problem

with the filter gain variations (21).

Theorem 3. For prescribed γ > 0 and the sampling period

h, assume that there exist S = ST > 0, R = RT > 0, ÂδF , B̂δF ,

ĈδF and scalars λi,(i = 1,2,3) such that
[

Ξ01 ∗
Ξ12 Ξ13

]

< 0,

[

Ξ1 ∗
Ξ22 Ξ23

]

< 0, (23)
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where

Ξ12 =













0 0 0 HT
1 ÂT

δF

λ1E1 0 0 0

0 0 0 HT
2 B̂T

δF

λ2E2C λ2E2C 0 0













,

Ξ13 = {−λ1I,−λ1I,−λ2I,−λ2I}

Ξ22 =























0 HT
2 B̂T

δF
0 0 HT

2 B̂T
δF

0

hλ2E2C hλ2E2C hλ2E2D 0 0 0

0 HT
1 ÂT

δF
0 0 HT

1 ÂT
δF

0

hλ1E1 0 0 0 0 0

0 0 0 0 0 −HT
3 ĈT

δF

hλ3E3 0 0 0 0 0























,

Ξ23 = {−λ2I,−λ2I,−λ1I,−λ1I,−λ3I,−λ3I}

with Ξ01,Ξ1 defined in (18) and β defined in (16), re-

spectively. Then the filtering error system (11) with the

filter uncertainties as (21) is D-stable and satisfies H∞ norm

constraint simultaneously. The filter parameters can also be

given by (19).

Proof. Due to the limit of the space, the proof is omitted.

Remark 4. When the filter parameter uncertainties are not

considered, i.e., Γ1 = 0, Γ2 = 0, Γ3 = 0, the problem reduces

to standard H∞ filter design with circular pole constraints.

Hence, (18) ( or (23) ) are reduced to the following LMIs:

Ξ01 < 0,Ξ1 < 0. (24)

C. Comparison with the Existing Design Method

In this subsection, we compare our results, which

don’t consider the condition of D-stable, with Yang and

Che[5](continuous system) and Che and Yang[6](discrete

system), respectively. In this subsection, we denote

δx(t) =

{

ẋ(t), Continuous Case,
x(t +1), Disctrete Case,

i.e., the signification of δ in this subsection is different from

the one in other sections. Further, the filter and filtering error

system are similar to those in section 2.

Then, by using the proposed design method as Theorem

2, we can easily obtain the following lemma for continuous

system and discrete system, respectively.

Lemma 2. For prescribed γ > 0 and Ξ3 defined in (18), the

filtering error system is asymptotically stable and satisfies H∞

norm constraint, if there exist S = ST > 0, R = RT > 0, ÂδF ,

B̂δF , ĈδF and Λi = diag{λi1I, · · · ,λirI},(i = 1,2,3) such that

• For continuous system:
[

Ξ31 ∗
Ξ32 Ξ3

]

< 0, (25)

where

Ξ31 =













SA+ATS ∗ ∗ ∗

ϒ51 ϒ52 ∗ ∗

BTS ϒ53 −γ2I ∗

ϒ54 L 0 −I













,

Ξ32 =

























0 HT
2 B̂T

δF
0 0

Λ2E2C Λ2E2C Λ2E2D 0

0 HT
1 ÂT

δF
0 0

Λ1E1 0 0 0

0 0 0 −HT
3 ĈT

δF

Λ3E3 0 0 0

























,

and ϒ51 = ATS + RTA + B̂δFC + ÂδF , ϒ52 = ATR + RTA +
B̂δFC +CTB̂T

δF
, ϒ53 = BTR+DTB̂T

δF
, ϒ54 = L−ĈδF .

• For discrete system:

[

Ξ41 ∗
Ξ42 Ξ3

]

< 0, (26)

where

Ξ41 =























−S ∗ ∗ ∗ ∗ ∗

−S −R ∗ ∗ ∗ ∗

0 0 −γ2I ∗ ∗ ∗

SAz SAz SBz −S ∗ ∗

ϒ61 ϒ62 ϒ63 −S −R ∗

ϒ64 L 0 0 0 −I























,

Ξ42 =

























0 0 0 0 HT
2 B̂T

δF
0

Λ2E2C Λ2E2C Λ2E2D 0 0 0

0 0 0 0 HT
1 ÂT

δF
0

Λ1E1 0 0 0 0 0

0 0 0 0 0 −HT
3 ĈT

δF

Λ3E3 0 0 0 0 0

























,

and ϒ61 = RAz + B̂δFC + ÂδF , ϒ62 = RAz + B̂δFC, ϒ63 =
RBz + B̂δF D, ϒ64 = L−ĈδF . Furthermore, the inequality (20)

should be also satisfied for the continuous case and the

discrete case. And the designed filter’s parameters can also

be obtained by (19).

IV. NUMERICAL SIMULATIONS

In this section, numerical simulations are carried out to

confirm validity and advantage of the proposed method,

which also show the characteristic of discrete-time system

and delta operator system in sampling continuous-time sys-

tem.

A. Simulation for the Proposed Method

Consider a continuous-time system in s-domain:

ẋ(t) =





−0.7 0.4 0.6
−0.4 −0.5 0.4
−0.6 −0.4 −0.5



x(t)+





0.05 0

0.05 0

0.06 0



w(t)

y(t) =
[

3 −2 −1
]

x(t)+
[

1 0.9
]

w(t)

z(t) =
[

2 1 3
]

x(t),
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and the part of filter gain variations as following

H1 =





1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1



 ,H3 =





1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1



 ,

E1 = 0.02∗

















1 1 1

1 2 1

−1 1 2

1 2 1

2 1 3

1 2 1

















,E3 = 0.02∗

















1 1 2

1 2 1

−1 1 1

1 2 1

4 1 −1

1 3 1

















,

HT
2 =

















1

0

0

0

0

0

















,E2 = 0.02∗

















1

2

1

2

1

2

















,ℜi(k) =

[

ℜi1(k) 0

0 ℜi2(k)

]

,

where ℜi1(k),ℜi2(k) ∈ R3×3(i = 1,2,3,4).
By using shift operator and delta operator in sampling

the continuous-time system respectively, we get the relevant

different discrete-time systems in z-domain and δ -domain.

(1) When h = 0.1(s), there exist

Az =





0.9300 0.0365 0.0572

−0.0388 0.9497 0.0369

−0.0557 −0.0391 0.9488



 ,Bz =





0.0051 0

0.0049 0

0.0056 0





Aδ =





−0.7005 0.3650 0.5720

−0.3876 −0.5029 0.3687

−0.5569 −0.3914 −0.5123



 ,Bδ =





0.0509 0

0.0489 0

0.0561 0





(2) When h = 0.1(ms), there exist

Az =





0.9999 0.0000 0.0001

−0.0000 0.9999 0.0000

−0.0001 −0.0000 0.9999



 ,Bz = 10−5 ∗





0.5000 0

0.5000 0

0.5000 0





Aδ =





−0.7000 0.4000 0.6000

−0.4000 −0.5000 0.4000

−0.6000 −0.4000 −0.5000



 ,Bδ =





0.0500 0

0.0500 0

0.0600 0





(3) When h = 1(s), there exist

Az =





0.3662 0.1311 0.3362

−0.2599 0.5177 0.1526

−0.2504 −0.2814 0.4640



 ,Bz =





0.0511 0

0.0366 0

0.0269 0





Aδ =





−0.6338 0.1311 0.3362

−0.2599 −0.4823 0.1526

−0.2504 −0.2814 −0.5360



 ,Bδ =





0.0511 0

0.0366 0

0.0269 0





From above results, we found that when let h = 0.1(ms),
the Delta operate system is reduced to continuous system,

and we can also find the Delta operator model has the

advantage of better numerical properties at high sampling

rates; and when let h = 1(s), the Delta operate system is

reduced to the one of discrete system.

Due to the limit of the space, the filter gain matrices and

the filtering error system poles are omitted.

For comparison, we compute non-fragile H∞ performance

with different filter gain uncertainties (7) and (21), respec-

tively. The optimal γ under different sampling periods are

given in Table 1. From Table 1, the optimal γ by Theorem 2

are smaller than those by Theorem 3 under different sampling

periods. Obviously, Theorem 2 is less conservative then

Theorem 3.

Table 1 The optimal γ with different uncertainties

h Thm. 2 Thm. 3

h=0.1(s) 0.2583 0.2620

h=0.1(ms) 6.6361 6.7184

h=1(s) 0.3421 0.3477

Furthermore, in order to demonstrate advantages of the

designed filter, we make a comparison between non-fragile

H∞ filter and standard H∞ one in the presence of filter gain

variations (7). For different sampling periods, the optimal γ
by different methods are given in Table 2.

Table 2 Comparison of non-fragile H∞ filter with

standard H∞ filter for the optimal γ

h Thm.2 Rem.4 Rem.4 with (7)

h=0.1(s) 0.2583 0.2277 28.9412

h=0.1(ms) 6.6361 6.1812 68.2714

h=1(s) 0.3421 0.2190 375.7355

From Table 2, the optimal γ by Remark 4 are obviously

smaller than those by Theorem 2 for different sampling

periods respectively. However, when the standard filter is

with the uncertainties described by (7), the optimal H∞

performance of the standard filter is serious deteriorative.

On the other hand, in order to further demonstrate the

advantage of the non-fragile filter, we assume the disturbance

input w(k) =
[

wT
1 (k) wT

2 (k)
]T

as following:

w1(k) = w2(k) =







0.5 10 ≤ k ≤ 11

−0.5 40 ≤ k ≤ 41

0 otherwise

. (27)

Figs.1-3 show the response of estimation error e(k) un-

der the disturbance w(k). We can also compute ‖e(k)‖2 =
∫ ∞

k=0 eT(k)e(k)dk and ‖w(k)‖2 =
∫ ∞

k=0 wT(k)w(k)dk for h =

0.1(ms) and h = 0.1(s), and ‖e‖2 =
∞

∑
k=0

eT(k)e(k) and

‖w(k)‖2 =
∞

∑
k=0

wT(k)w(k) for h = 1(s), respectively. We

denote ϑ = ‖e(k)‖2

‖w(k)‖2
, and obtain the following table.

Table 3 Comparison of non-fragile H∞ filter with standard H∞ filter under the

disturbance w(k)

Sampling period w(k) NF SF with (7)

h ‖w(k)‖2 ‖e(k)‖2 ϑ1 ‖e(k)‖2 ϑ2

h=0.1(s) 1.0071 0.0211 0.0210 0.0325 0.0323

h=0.1(ms) 1.0071 0.1401 0.1391 0.1518 0.1573

h=1(s) 1.4140 0.0443 0.0313 0.1061 0.0750

• NF: Non-fragile filter; • SF: Standard filter

From Table 3, it is easy to find that ϑ1 are always smaller

than ϑ2 for the different sampling periods, which demon-

strate the effectiveness of the proposed method.

B. Comparison with the Existing Works

In this subsection, the results are given to provide a

comparison between the non-fragile H∞ filter designed by

the proposed method (Theorem 2) and the non-fragile H∞

filter designed by the existing method (Lemma 2). Then, the

H∞ performance indexes are shown in Table 4.
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Fig. 2. Comparison of non-fragile H∞ filter with standard H∞ filter when
h = 0.1(ms)

Table 4 Comparison of γ with different methods

Design methods γ with different conditions

h=0.01(ms) h=0.1(s) h=1(s)

Thm. 2 Delta Domain 20.9919 0.2585 0.3142

Lem. 2 z Domain Infeasible 0.2461 0.2323

In addition, we can obtain the optimal performance index

γ = 0.2353 for continuous system. From Table 4, it is easy to

see that Delta operator can solve the unstable problem caused

by using traditional z-transform for sampling continuous

system at high sampling period though our results are not

better than the results of the existing works at low sampling

period. On the other hand, our proposed method can unify

the related continuous-time and discrete-time systems into

the delta operator systems framework. Therefore, the delta

operator is widely applied in many fields of engineering such

as high-speed digital signal processing, system modeling, and

computer control based on fast sampled data.

V. CONCLUSIONS

The problem of a non-fragile H∞ filter design for a class of

linear systems described by delta operator with circular pole

constraints is investigated, where the filter to be designed

is assumed to be with multiplicative gain variations. It is

worth pointing out that the filtering problems of continuous-

time and discrete-time systems are investigated in the unified

form by using delta operator. A sufficient condition for the
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Fig. 3. Comparison of non-fragile H∞ filter with standard H∞ filter when
h = 1(s)

existence of the filter to meet H∞ performance and D-stable

is presented via LMI, and the explicit expression of the

desired filter is also developed. In addition, the proposed

uncertainties are less conservative than the normal norm-

bound parameter uncertainties.
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