
  

  

Abstract—In this paper, a group of cooperative planning 
paths for simultaneous starting and arriving Unmanned Aerial 
Vehicles (UAVs) are generated by parameterized Cornu-
Spirals (CSs). The continuity and smoothness requirements for 
the designed flyable paths are achieved by the continuous 
curvature characteristics of CSs. The final curves are 
minimized in length with the least number of parameters 
representing the polynomial expression of the path curvature, 
while satisfying the maximum curvature constraints, equal 
length constraints, and collision avoidance constraints. The 
paths are integrated from initial points to final points by a 
trapezoidal integration algorithm. A nonlinear programming 
solver is used to calculate the optimized parameters. Simulation 
results for four simultaneous UAV paths are presented with 
designated initial and final positions and attitudes.   

I. INTRODUCTION 
UTIPLE Unmanned Aerial Vehicles (UAVs) are widely 
used in recent anti-terrorism activities and intelligence 

gathering to enhance the mission performance and maximize 
safety. The path planning strategies in hostile environments 
normally comprise two phases [1], [2]. The first phase is the 
Voronoi graph search which will generate polygonal graphs 
with optimized safety performance index. The second is to 
use the virtual forces emanated from the virtual field of each 
surveillance radar site to refine the generated Voronoi 
graphs. Although the virtual forces will reduce the vertices 
of the Voronoi polygonals, the curvature continuity of the 
refined graphs, which plays an important role in the stability 
of the UAVs turning maneuvers, does not meet the 
requirements of the continuously flyable path.     

In order to generate a flyable path, many kinds of curves 
have been studied and designed for UAVs to accomplish 
their mission [3]-[5]. Dubins curves were first applied in 
robotics path planning that can move both forward and 
backward. This kind of circle-line-circle curve has a jump in 
curvature at the connection points between the circle and the 
line that will cause the robotics to stop at these connection 
points when traveling through the whole path. Other curves 
like Reeds and Shepp [6], [7] also have curvature 
discontinuities at their joint points. As an alternative choice, 
the composite clothoid-line-clothoid curves can be well 
designed with curvature being zero at the joint points to 
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eliminate the discontinuities, but this kind of curve lacks 
flexibility in shape and does not leave enough space of 
change. Shanmugavel, et. al [3]-[5]. have proposed quintic 
Pythagorean Hodograph (PH) curves for a flyable path with 
ten parameters representing each curve.  The PH curves are 
flexible in design and their curvatures are expressed in 
continuous polynomials. The parameter calculation of a PH 
curve is an iterative process in order to satisfy different 
constraints. Such kind of curves can be further simplified 
with fewer parameters and a more efficient optimization 
algorithm. These all leave room for improvement in the area 
of continuous curvature path planning.  

The Cornu-Sprial (CS) [8], [9], also known as a clothoid 
or Euler's Spiral, has wide application in highway and 
railroad construction since it can be used to design gradual 
and smooth transitions in highway entrances or exits. Kelly 
and Nagy [10] used a parametric CS model to generate real-
time, nonholonomic trajectories for robotics to minimize the 
terminal posture error. Here, we consider this CS model for 
use  in UAV path planning and investigate how this 
parametric CS curve works under different constraints. 

To generate flyable and safe paths for multiple UAVs 
with simultaneous starting and arriving time, the path 
constraints considered here include: (1) continuous 
curvature throughout its length which will ensure flyable 
path (2) maximum curvature corresponding to the lateral 
turn rate, (3) same flight length of each curve which will 
satisfy the simultaneous starting and arriving time condition 
under same flight speed and (4) minimum safety distance 
which will prevent the collision between the UAVs at equal 
lengths. 

Unlike other path planning problems, including moving 
objects in finding the final path that normally results in 
motion planning or trajectory planning with system 
dynamics [11], the path considered here is in a static object 
environment without dynamic constraints. This paper 
follows the work of Shanmugavel, et. al. [3]-[5], by 
proposing a generalized CS curve along with simplified 
parameter identification procedure.   

The following sections present the problem formulation in 
more detail followed by the introduction of the CS curve 
expression and properties. The different constraints and their 
mathematical expression are explained and the systematic 
solution using nonlinear programming (NLP) solver is 
presented. Finally, the simulation of four cooperative UAV 
paths with minimal length satisfying different constraints is 
calculated and presented.  
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II. PROBLEM FORMULATION 

There are N ( 2≥N ) UAVs that are the same model 
and have the same capabilities starting from several bases 
simultaneously toward the desired target that is flying at 
constant equal speed. Each UAV is assumed to start and end 
at designated position ),( yx  and heading angle θ  
specified as: 
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These two points can be the starting and ending points in the 
planned path, they can also be treated as a pair of important 
way-points in a long term curve. In either case, the path 
designed to connect the points must be flyable and safe. 
Accordingly, the curvature of the planning path is required 
to be continuous and to not exceed a maximum bound on 
curvature maxκ . Additionally, the minimum distance of any 
two paths among them is required to be larger than the 
safety radius sR . Finally, the performance index to be 
optimized is the flight distance: 

0ssJ f −=                                (2) 

III. CORNU-SPIRAL 
The CS is a well known curve whose curvature is defined 

as a polynomial function of its arc length s  as 
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and the curvature is also the derivative of the curve angle θ  
with respect to the arc length: 

dsds /)( θκ =                            (4) 
The position of the points on this curve in Cartesian 
coordinates is calculated by the "Fresnel Integrals":  
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One advantage of using this curve in solving the path 
planning problem is the simplicity of calculation of its arc 
length: 
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   The above expression are general, i.e., they apply to all 
forms of CS curves including special cases like straight line 
( 0=n , 00 =α ), circle ( 1=n , 01 =α ) and unit CS 

( 1=n , 00 =α , 11 =α ). In a unit CS, the curvature 
equals to the arc length and it will increase with the length. 
So the longer the curve, the more it will be curved.  That is 
the origin of the term “spiral”. The coefficients iα  affect 
the increase rate of the CS curve. In Fig. 1, all the CS curve 
curvature polynomials are in order 1=n  with 00 =α , 1α  
varied from 0.1 to 5. It is obvious that when transversing the 

same arc length, the larger the value of 1α , the greater the 
curvature increases. In addition, the order in the curvature 
expression also affects its shape. Fig.2 shows a series of CS 
curves with different order numbers in the curvature 
polynomials. The coefficients of the highest order are all set 
as 1=nα  with the others set as zero. It can be seen that 
curves with the higher order polynomials “curl” faster than 
others.  

Combing the two types of effects that determine the shape 
of the CSs, we can produce an expression of the curvature 
polynomials to define any CSs possessing as many degrees 
of freedom as necessary to meet the required constraints. In 
the problem formulation stated above, the primary constraint 
for such curves is to meet the initial and final conditions 
which are classified as equality constraints. If the initial 
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Fig. 1. CS curves of order 1=n  and 00 =α  with coefficients 

1α  changes from 0.1 to 5. 
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Fig. 2. CS curves of 1=nα  and other coefficients set as zero, 

order  n  changes from 1 to 5. 
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conditions ),,( 0000 θyxP =  are incorporated as  
parameters in the CS curve, at least three additional 
parameters are required to meet the final boundary 
constraints. To have enough freedom to satisfy other 
inequality constraints and coordinate all the parameters to 
achieve the optimization purpose, one more parameter is 
required. Finally, four parameters are used in one CS curve. 
Three of them, a , b  and c , form the cubic polynomials of 
the curve angle expression. The fourth one is the final arc 
length fs . These parameters enter the problem formulation 

as follows: 
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Then the path planning problem has been cast as a parameter 
optimization problem with equality and inequality 
constraints. 

IV. FLYABLE AND SAFE PATH CONSTRAINTS 

A. Continuous Curvature Constraints 
Continuous curvature is an important factor in designing a 
flyable path, because physically the curvature’s path must be 
continuous and the rate of change of curvature with arc 
length is related to the directional command, a key input in 
maneuvering UAVs. Discontinuities in the curvature will 
cause jumps in the steering angle input. Unless the UAV 
reduces its speed and makes a stop to adjust the steering 
angle, such discontinuous input is not achievable. The 
continuous curvature will ensure smooth transitions in UAV 
autopilot. The curvature of a planar curve defined by )(tx  

and )(ty  is 
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The CS curve specified in (7) with three parameters 
representing its polynomials can be expressed as 

  232)( csbsas ++=κ                          (9) 
Physically, the first and second derivatives of a curvature 
correspond to the lateral velocity and acceleration of a point 
(the vehicle) that is moving along the curve. Therefore, the 
curvature must be at least twice differentiable to meet the 
continuous velocity and acceleration requirement. The CS 
curve with curvature expression in (9) has second-order 
polynomials, is twice differential and can satisfy the 
continuity constraints.     

B. Maximum Curvature Constraints 
In CS expression of (7), the curvature is the only shape 

determining factor. By using the maximum curvature 
constraint, the kinematic acceleration of UAVs can be 

limited ensuring that the path designed can actually be 
traversed. Since the curvature is a parabolic function of the 
arc length, its maximum value points can only occur at one 
of three points: the initial point, the summit or bottom point, 
or the final point. Mathematically, the curvature values at 
those three points are 
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If the curvature at none of these three points exceeds the 
maximum value, then the curvature throughout the whole 
length will suitably constrained.  

C. Equal Length Constraint 
Simultaneous arrival of UAVs may enhance the chance of 

success of a mission. When one or more UAVs have 
malfunctions or are ortherwise eliminated, it is desired that 
the others can continue to complete the mission. All the 
UAVs in this problem are essentially identical, i.e., they are 
same model with the same capabilities and fly at the same 
constant speed. So, when starting and arriving is performed 
simultaneously, the flight paths of all UAVs should have the 
same length. From the CS arc length calculation in (6), it is a 
simple matter to express the arc length L as 

0ssL f −=                               (11) 

When all the CSs start from the original point, the flight 
length is just fs . As stated before, one CS curve is defined 

by four parameters a , b , c and ft . If all the path lengths 

are equal to each other, they can share one parameter ft . 

For N ( 2≥N ) UAVs, the planning path of the N CSs 
will include 13 +N  parameters like 

),,,,,,,( 111 fNNN tcbacbap K          (12) 

Any additional UAV included in this path planning will only 
add three more parameters to this system. The path length 

ft is the parameter they have in common.   

D. Minimum Distance Constraints 
Since the UAVs traverse their paths at the same rate and 

the paths are of equal length, to prevent collisions between 
any UAVs throughout the flight path, the minimum distance 
between any two planned paths should be larger than the 
safety separation distance sR . Before the CS parameters are 
determined, it is difficult to find the minimum distance 
points between two curves. But since all the UAVs are 
flying at the same constant speed, at any equal length point, 
the distance between any two of curves should be greater 
than the specified safety separation distance so that the 
collision can be avoided. An approximate way to do this is 
to calculate the distance between any two paths at a series of 
equal length points. For example, in the ith  and jth  UAV 
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paths, find m  pair points at their equal lengths. For all the 
m pair points, if the constraints 

sjgigjgigg Ryyxxd ≥−+−= 22 )()(           (13)                  

are satisfied for all Nji ,,1, K= , ji ≠  and 
mg ,,1K= , collision can be avoided. 

E. Boundary Condition Constraints 
The initial and final conditions are the equality constraints 

in the system. All the paths designed by the CS curve start 
from the original points, so the initial condition is satisfied 
by setting the initial position and heading angle as 
parameters in the CS curve 
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The final point is determined by integrating using the 
trapezoidal rule (introduced in the next section) to satisfy the 
specified final boundary conditions. 

At this point, all the constraints have been described. 
Some of them can be satisfied by the properties of the CS 
curve itself, others are expressed in corresponding equalities 
and inequalities. So the path planning problem is now a 
parameter optimization problem in which the parameters of 
the CS curvature expressions are identified while 
minimizing the path length with constraints.  

V. DIRECT COLLOCATION AND NONLINEAR PROGRAMMING 
SOLVER 

A. Trapezoidal Integration Rule 
Since the CS curve is calculated from the "Fresnel 

Integrals", which have singularities, it is important to find an 
accurate and simple integration rule to find its coordinates at 
different arc lengths. Before introducing the trapezoidal 
integration rule, it is convenient to review the idea of direct 
collocation (DC) [12]. The basic idea of DC is to discretize 
the continuous solution to a problem represented by state 
and control variables by using linear interpolation to satisfy 
the differential equations. In this way, an optimal control 
problem (OCP) is transformed into a nonlinear programming 
problem (NLPP). Since solution to the OCP is in terms of an 
infinitely many values of state and control variables, DC is 
an approximation. For a first order differential function 

),( txfx =& , the DC method will divide it into n  segments 
during the whole time interval such that: 

fn ttttt =<<<= +1210 L , where 0t  is the initial time 

and ft  is the final time and the 1+n  individual time points 

are called nodes. The value of the state vector at the i th 
node is represented by ix . All the NLP variables can be 
written in one vector as: 

[ ]1111321 ,,,,,,, +++= nnnii ttxxxxxxxx LL      (15) 
The trapezoidal integration rule defines the defect vector of 
phase ( )ni ,,1K=  as: 
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Here, iii tth −= +1 , if  and 1+if  is the system first-order 

derivative function at node i  and 1+i . The defect vectors 
on each node are forced to equal to zero, so that the states at 
those nodes are constrained to satisfy the system equations. 

The derivatives of the CS coordinates are trigonometric 
functions that can be easily calculated at known arc lengths. 
When the defect vector constraints are satisfied, the discrete 
points can approximately reproduce the CS curves. When 
each CS curve is discretized at equal step size ih , the nodes 
will have equal length intervals which is convenient to 
calculate the distance between any two curves at equal 
length. 

B.  Nonlinear Programming Solver 
The NLP solver used to solve the NLPP is SNOPT [13], 

which is based on a Sequential Quadrature Programming 
(SQP) algorithm.  SNOPT can be used to solve problems 
like the following: 
Minimize a performance index )(xJ , subject to constraints 
on individual state and/or control variables: 

UL xxx <<                                 (17) 
constraints defined by linear combinations of state and/or 
control variables: 

UL bAxb <<                              (18) 
and/or constraints defined by nonlinear functions of state 
and/or control variables: 

 UL cxcc << )(                           (19) 
With the above in mind, we can transfer the path planning 

problem  into the following simple form: 
Minimize fsJ =  with NLP variables set for each CS 

curve: 
[ ]fiiiniii scbaxxxiCS ,,,,,,,)( 1,2,1, += K         (20) 

where ( )Ni ,,1K= , subject to the equality constraints 

including the defect vector constraints, 0=== LUk ccd  

( nk K,2,1= ), and boundary conditions, 0P  and fP . 

These constraints will ensure all the coordinates on the CS 
curve will satisfy its differential function in trigonometric 
form. In addition, the inequality constraints to ensure the 
flyable and safe path can be set as: 
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VI. SIMULATION RESULTS 
Using the data provided in [3] for UAVs, a simulation of 

four UAVs starting and arriving with randomly selected 
positions and attitudes has been written and executed 
provided the safety radius from the starts and arrival points 
are satisfied. The data may be expressed as: 

)1203927(),124614(:4
)2023942(),74628(:3

)1133932(),3618(:2
)243922(),1268(:1

fi

fi

fi

fi

PPUAV
PPUAV
PPUAV
PPUAV

  

The maximum curvature is defined as 3/1max =κ  and the 

safety separation radii is 3=sR . The objective is to find 
four CS curves with the same minimum length with second 
order polynomial expression for the curvature. Each path is 
discretized into 18 nodes with 3 curvature parameters and 
one parameter of the path length in common. So all together, 
there are 85 NLP variables. Unlike the method used in [3] 
that requires adjustment of the planning paths with shorter 
lengths to match the maximum one, the path length is the 
common parameter in each planned curve and the solution is 
achieved without iterative adjustment.  

The simulation results including the planning paths, and 
their coordinate and curvature history with respect to the 
path length are shown in Fig.3 to Fig. 6, respectively. The 
minimum path length calculated here is 43.50 units with all 
the constraints satisfied. The optimal solution achieved here 
can be further improved with the introduction of higher 
order polynomial expressions for the path curvature which 
will possess more flexibility. But, since adding more 
parameters will increase the burden of calculation, there 
needs to be a compromise between them two.  

   

VII. CONCLUSION 
A group of simultaneous arriving UAV flying paths have 

been designed using the parameterized Cornu-Spirals. The 
planned paths have equal minimum length with continuous 
and bounded curvature. They can also prevent collision by 
satisfying the minimum distance constraints between any 
two paths. The algorithm includes all parameters as 
nonlinear programming variables in the nonlinear 
programming solver and gets the solution in one effort 
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Fig. 4. Simulation Results of four UAVs x coordiante along the path 
length 
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Fig. 3. Simulation Results of four UAVs planning paths starting and 
ending at designate positions and poses. 

0 5 10 15 20 25 30 35 40 45
5

10

15

20

25

30

35

40

Path Length s

y 
co

or
di

na
te

UAV1
UAV2
UAV3
UAV4

Fig. 5. Simulation Results of four UAVs y coordinate along the path 
length

2395



  

without tedious and iterative testing to adjust the coupled 
variables. This method is also reusable when more or less 
UAVs are included in the path planning. Without changing 
the algorithm, it is convenient and flexible to add or delete 
the same form of parameters in the new system to get the 
new solution. 
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