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Abstract—A novel control design is presented for the adap-
tive control of a general MIMO system with a gradient-based
composite adaptive update law. The composite update law is
driven by tracking and prediction errors with a fixed adap-
tation gain. An innovative scheme is developed in a swapping
procedure that makes use of the recently developed Robust
Integral of the Sign of the Error (RISE) technique to generate
the prediction error even in the presence of nonlinear-in-the-
parameter uncertainties. A Lyapunov-based stability analysis
is used to derive sufficient gain conditions under which the
proposed controller yields semi-global asymptotic stability for
the tracking errors.

I. INTRODUCTION
Adaptive, robust adaptive, and function approximation

methods typically use tracking error feedback to update the
adaptive estimates. In general, the use of the tracking error
is motivated by the need for the adaptive update law to
cancel cross-terms in the closed-loop tracking error system
within a Lyapunov-based analysis. As the tracking error
converges, the rate of the update law also converges, but
drawing conclusions about the convergent value (if any) of
the parameter update law is problematic. This problem led
to the development of adaptive update laws that are driven,
in part, by a prediction error.
The prediction error is defined as the difference between

the predicted parameter estimate value and the actual system
uncertainty. Including feedback of the estimation error in the
adaptive update law enables improved parameter estimation.
For example, some classic results [1]–[3] have proven the
parameter estimation error is square integrable and may con-
verge to the actual uncertain parameters. Since the prediction
error depends on the unmeasurable system uncertainty, the
swapping lemma [1], [4]–[7] is central to the prediction error
formulation. The swapping technique (also described as input
or torque filtering in some literature) transforms a dynamic
parametric model into a static form where standard parameter
estimation techniques can be applied. In [2] and [3], a non-
linear extension of the swapping lemma was derived, which
was used to develop the modular z-swapping and x-swapping
identifiers via an input-to-state stable (ISS) controller for
systems in parametric strict feedback form. The advantages
provided by prediction error based adaptive update laws led
to several results that use either the prediction error or a
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composite of the prediction error and the tracking error (cf.
the recent results in [8]–[14] and the references within).
Although prediction error based adaptive update laws have

existed for approximately two decades, no stability result
has been developed for systems with non-LP disturbances.
In general, the inclusion of non-LP disturbances reduces
the steady-state performance of continuous controllers to a
uniformly ultimately bounded (UUB) result. In addition to
a UUB result, the inclusion of non-LP disturbances may
cause unbounded growth of the parameter estimates [15] for
tracking error-based adaptive update laws without the use of
projection algorithms or other update law modifications such
as σ-modification [16]. The problem of non-LP disturbances
is magnified for control methods based on prediction error
based update laws, because the formulation of the prediction
error requires the swapping (or control filtering) method.
Applying the swapping approach to dynamics with non-LP
disturbances is problematic because the unknown disturbance
terms also get filtered and included in the filtered control
input. This problem motivates the question of how can a
prediction error based adaptive update law be developed for
systems with additive non-LP disturbances.
To address this motivating question, a general Euler-

Lagrange-like MIMO system is considered with structured
and unstructured (non-LP) uncertainties, and a gradient-
based composite adaptive update law is developed that is
driven by both the tracking error and the prediction error.
The control development is based on the recent continuous
Robust Integral of the Sign of the Error (RISE) [17] tech-
nique that was originally developed in [18] and [19]. The
RISE architecture is adopted since this method can accom-
modate for C2 disturbances and yield asymptotic stability.
For example, the RISE technique was used in [20] to develop
a tracking controller for nonlinear systems in the presence of
additive disturbances and parametric uncertainties. Since the
swapping method will result in non-LP disturbances in the
prediction error (the main obstacle that has previously limited
this development), an innovative use of the RISE structure
is also employed in the prediction error update (i.e., the
filtered control input estimate). Sufficient gain conditions are
developed under which this unique double RISE controller
guarantees semi-global asymptotic tracking.

II. DYNAMIC SYSTEM AND PROPERTIES

Consider a class of MIMO nonlinear systems of the
following form:

x(m) = f(x, ẋ, ..., x(m−1)) +G(x, ẋ, ..., x(m−2))u+ h (t)
(1)
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where (·)(i) (t) denotes the ith derivative with respect to
time, x(i) (t) ∈ Rn, i = 0, ...,m − 1 are the system states,
u (t) ∈ Rn is the control input, f

¡
x, ẋ, ..., x(m−1)

¢
∈ Rn

and G
¡
x, ẋ, ..., x(m−2)

¢
∈ Rn×n are unknown nonlinear

C2 functions, and h (t) ∈ Rn denotes a general nonlinear
disturbance (e.g., unmodeled effects). The outputs of the
system are the system states. Throughout the paper, |·|
denotes the absolute value of the scalar argument, k·k denotes
the standard Euclidean norm for a vector or the induced
infinity norm for a matrix.
Property 1: G (·) is symmetric positive definite, and satisfies
the following inequality ∀y(t) ∈ Rn:

g kyk2 ≤ yTG−1y ≤ ḡ(x, ẋ, ..., x(m−2)) kyk2 (2)

where g ∈ R is a known positive constant, and
ḡ(x, ẋ, ..., x(m−2)) ∈ R is a known positive function.
Property 2: The functions G−1(·) and f(·) are second order
differentiable such that G−1, Ġ−1, G̈−1, f, ḟ , f̈ ∈ L∞ if
x(i) (t) ∈ L∞, i = 0, 1, ...,m+ 1.
Property 3: The nonlinear disturbance term and its first two
time derivatives are bounded by known constants.
Property 4: The unknown nonlinearities G−1(·) and f(·)
are linear in terms of unknown constant system parameters.
Property 5: The desired trajectory xd(t) ∈ Rn is assumed
to be designed such that x(i)d (t) ∈ L∞, i = 0, 1, ...,m+ 2.

III. CONTROL OBJECTIVE
The objective is to design a continuous composite adaptive

controller which ensures that the system state x (t) tracks
a desired time-varying trajectory xd(t) despite uncertainties
and bounded disturbances in the dynamic model. To quantify
this objective, a tracking error, denoted by e1(t) ∈ Rn, is
defined as

e1 , xd − x. (3)

To facilitate a compact presentation of the subsequent control
development and stability analysis, auxiliary error signals
denoted by ei (t) ∈ Rn, i = 2, 3, ...,m are defined as

e2 , ė1 + α1e1

e3 , ė2 + α2e2 + e1 (4)

...

em , ėm−1 + αm−1em−1 + em−2

where αi ∈ R, i = 1, 2, ...,m − 1 denote constant positive
control gains. The error signals ei (t) , i = 2, 3, ...,m can be
expressed in terms of e1 (t) and its time derivatives as

ei =
i−1X
j=0

bi,je
(j)
1 , bi,i−1 = 1 (5)

where the constant coefficients bi,j ∈ R can be evaluated by
substituting (5) in (4), and comparing coefficients. A filtered
tracking error [15], denoted by r(t) ∈ Rn, is also defined as

r , ėm + αmem (6)

where αm ∈ R is a positive, constant control gain. The
filtered tracking error r (t) is not measurable since the
expression in (6) depends on x(m).

IV. CONTROL DEVELOPMENT

The open-loop tracking error system is developed by
premultiplying (6) by G−1 (·) and utilizing the expressions
in (1), (4), (5) as

G−1r = Ydθ + S1 −G−1d h− u. (7)

In (7), Ydθ ∈ Rn is defined as

Ydθ , G−1d x
(m)
d −G−1d fd (8)

where Yd(xd, ẋd, ..., x
(m)
d ) ∈ Rn×p is a desired regression

matrix, and θ ∈ Rp contains the constant unknown system
parameters. In (8), the functions G−1d (xd, ẋd, ..., x

(m−2)
d ) ∈

Rn×n, and fd(xd, ẋd, ..., x(m−1)d ) ∈ Rn are defined as

G−1d , G−1(xd, ẋd, ..., x
(m−2)
d ) (9)

fd , f(xd, ẋd, ..., x
(m−1)
d ).

Also in (7), the auxiliary function S1
¡
x, ẋ, ..., x(m−1), t

¢
∈

Rn is defined as

S1 , G−1(
m−2X
j=0

bm,je
(j+1)
1 + αmem) +G−1x

(m)
d (10)

−G−1d x
(m)
d −G−1f +G−1d fd −G−1h+G−1d h

where the fact that bm,m−1 = 1 was used. Based on the
open-loop error system in (7), the control torque input is
composed of an adaptive feedforward term plus the RISE
feedback term as

u , Ydθ̂ + μ1 (11)

where θ̂ (t) ∈ Rp denotes a parameter estimate vector gen-
erated by the following gradient-based composite adaptive
update law [21]–[23]:

·
θ̂ = ΓẎ T

d r + ΓẎ T
df ε (12)

where Γ ∈ Rp×p is a positive definite, symmetric, constant
gain matrix. In (12), Ydf (xd, ẋd, ..., x

(m)
d ) ∈ Rn×p is a sub-

sequently designed filtered regression matrix, and ε (t) ∈ Rn
denotes a measurable prediction error. In (11), μ1(t) ∈ Rn
denotes the RISE feedback term defined as

μ1 (t) , (k1 + 1)em(t)− (k1 + 1)em(0) (13)

+

tZ
0

{(k1 + 1)αmem(σ) + β1sgn(em(σ))}dσ

where k1, β1 ∈ R are positive constant control gains, and
αm ∈ R was introduced in (6).
Remark 1: The parameter estimate update law in (12)

depends on the unmeasurable signal r (t), but the parameter
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estimates are independent of r (t) as can be shown by directly
solving (12) as

θ̂ (t) = θ̂ (0) + ΓẎ T
d (σ)em(σ)

¯̄̄t
0
+

Z t

0

ΓẎ T
df (σ) ε (σ) dσ

−
tZ
0

n
ΓŸ T

d (σ)em(σ)− αmΓẎ
T
d (σ)em(σ)

o
dσ.

The closed-loop tracking error system can be developed
by substituting (11) into (7) as

G−1r = Ydθ̃ + S1 −G−1d h− μ1 (14)

where θ̃ (t) ∈ Rp denotes the parameter estimate mismatch
defined as

θ̃ , θ − θ̂. (15)

To facilitate the subsequent composite adaptive control de-
velopment and stability analysis, the time derivative of (14)
is expressed as

G−1ṙ = −1
2
Ġ−1r + Ẏdθ̃ − YdΓẎ

T
df ε+ Ñ1 (16)

+N1B − (k1 + 1)r − β1sgn(em)− em

where (12) and the fact that the time derivative of (13) is
given as

μ̇1 = (k1 + 1)r + β1sgn(em) (17)

was utilized. In (16), the unmeasurable/unknown auxiliary
terms Ñ1(e1, e2, ..., em, r, t) and N1B (t) ∈ Rn are defined
as

Ñ1 , −
1

2
Ġ−1r + Ṡ1 + em − YdΓẎ

T
d r (18)

where (12) was used, and

N1B , −Ġ−1d h−G−1d ḣ. (19)

The structure of (16) and the introduction of the auxiliary
terms in (18) and (19) is motivated by the desire to segregate
terms that can be upper bounded by state-dependent terms
and terms that can be upper bounded by constants. In a
similar manner as in [19], the Mean Value Theorem can be
used to develop the following upper bound for the expression
in (18): °°°Ñ1(t)

°°° ≤ ρ1 (kzk) kzk (20)

where the bounding function ρ1(·) ∈ R is a positive, globally
invertible, nondecreasing function, and z(t) ∈ Rn(m+1) is
defined as

z(t) ,
£
eT1 eT2 ... eTm rT

¤T
. (21)

Using Properties 2 and 3, the following inequalities can
be developed based on the expression in (19) and its time
derivative:

kN1B(t)k ≤ ζ1 ,
°°°Ṅ1B(t)

°°° ≤ ζ2 (22)

where ζi ∈ R, i = 1, 2 are known positive constants.

V. SWAPPING
A measurable form of the prediction error ε (t) ∈ Rn, used

in the composite adaptive update law in (12), is defined as
the difference between the filtered control input uf (t) ∈ Rn
and the estimated filtered control input ûf (t) ∈ Rn as

ε , uf − ûf , (23)

where the filtered control input uf (t) ∈ Rn is generated by

u̇f + ωuf = ωu uf (0) = 0, (24)

where ω ∈ R is a known positive constant, and ûf (t) ∈ Rn
is subsequently designed. The differential equation in (24)
can be directly solved to yield

uf = v ∗ u, (25)

where ∗ is used to denote the standard convolution operation,
and the scalar function v (t) is defined as

v , ωe−ωt. (26)

Using (1), the expression in (25) can be rewritten as

uf = v ∗
³
G−1x(m) −G−1f −G−1h

´
. (27)

Since the system dynamics in (1) include non-LP bounded
disturbances h (t), they also get filtered and included in the
filtered control input in (27). To compensate for the effects
of these disturbances, the typical prediction error formulation
is modified to include a RISE-like structure in the design of
the estimated filtered control input. With this motivation, the
open-loop prediction error system is engineered to facilitate
the RISE-based design of the estimated filtered control input.
Adding and subtracting the term G−1d x

(m)
d + G−1d fd +

G−1d h to the expression in (27) yields

uf = v ∗ (G−1d x
(m)
d +G−1d fd +G−1x(m) −G−1d x

(m)
d

−G−1f −G−1d fd −G−1h+G−1d h−G−1d h). (28)

Using (8), the expression in (28) is simplified as

uf = v ∗
¡
Ydθ + S − Sd −G−1d h

¢
(29)

where S(x, ẋ, ..., x(m)), Sd(xd, ẋd, ..., x
(m)
d ) ∈ Rn are de-

fined as
S , G−1x(m) −G−1f −G−1h (30)

Sd , G−1d x
(m)
d −G−1d fd −G−1d h. (31)

The expression in (29) is further simplified as

uf = Ydfθ + v ∗ S − v ∗ Sd + hf (32)

where the filtered regressor matrix Ydf (xd, ẋd, ..., x
(m)
d ) ∈

Rn×p is defined as

Ydf , v ∗ Yd (33)

and the disturbance hf (t) ∈ Rn is defined as

hf , −v ∗G−1d h.
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The term v∗S(x, ẋ, ..., x(m)) ∈ Rn in (32) depends on x(m).
Using the following property of convolution [15]:

g1 ∗ ġ2 = ġ1 ∗ g2 + g1 (0) g2 − g1g2 (0) (34)

an expression independent of x(m) can be obtained. Consider

v ∗ S = v ∗
³
G−1x(m) −G−1f −G−1h

´
which can be rewritten as

v ∗ S = v ∗ ( d
dt
(G−1x(m−1))− Ġ−1x(m−1) (35)

−G−1f −G−1h).

Applying the property in (34) to the first term of (35) yields

v ∗ S = Sf +W (36)

where the state-dependent terms are included in the auxiliary
function Sf (x, ẋ, ..., x(m−1)) ∈ Rn, defined as

Sf , v̇ ∗
³
G−1x(m−1)

´
+ v (0)G−1x(m−1) (37)

−v ∗ Ġ−1x(m−1) − v ∗G−1f − v ∗G−1h

and the terms that depend on the initial states are included
in W (t) ∈ Rn, defined as

W , −vG−1
³
x (0) , ẋ (0) , ..., x(m−2) (0)

´
x(m−1) (0) .

(38)
Similarly, following the procedure in (35)-(38), the expres-
sion v ∗ Sd in (32) is evaluated as

v ∗ Sd = Sdf +Wd (39)

where Sdf (xd, ẋd, ..., x
(m−1)
d ) ∈ Rn is defined as

Sdf , v̇ ∗ (G−1d x
(m−1)
d ) + v (0)G−1d x

(m−1)
d (40)

−v ∗ Ġ−1d x
(m−1)
d − v ∗G−1d fd − v ∗G−1d h

and Wd (t) ∈ Rn is defined as

Wd , −vG−1d (xd (0) , ẋd (0) , ..., x
(m−2)
d (0))x

(m−1)
d (0) .

(41)
Substituting (36)-(41) into (32), and then substituting the
resulting expression into (23) yields

ε = Ydfθ + Sf − Sdf +W −Wd + hf − ûf . (42)

Based on (43) and the subsequent analysis, the filtered
control input estimate is designed as

ûf = Ydf θ̂ + μ2, (43)

where μ2 (t) ∈ Rn is a RISE-like term defined as

μ2 (t) ,
tZ
0

[k2ε(σ) + β2sgn(ε(σ))]dσ, (44)

where k2, β2 ∈ R denote constant positive control gains. In
a typical prediction error formulation, the estimated filtered
control input is designed to include just the first term Ydf θ̂
in (43). But as discussed earlier, due to the presence of
non-LP disturbances in the system model, the unmeasurable

form of the prediction error in (42) also includes the filtered
disturbances. Hence, the estimated filtered control input
is augmented with an additional RISE-like term μ2 (t) to
cancel the effects of disturbances in the prediction error
measurement as illustrated in the subsequent design and
stability analysis.
Substituting (43) into (42) yields the following closed-loop

prediction error system:

ε = Ydf θ̃ + Sf − Sdf +W −Wd + hf − μ2. (45)

To facilitate the subsequent composite adaptive control de-
velopment and stability analysis, the time derivative of (45)
is expressed as

ε̇ = Ẏdf θ̃−YdfΓẎ
T
df ε+ Ñ2+N2B − k2ε−β2sgn(ε), (46)

where (12) and the fact that

μ̇2 = k2ε+ β2sgn(ε) (47)

were utilized. In (46), the unmeasurable/unknown auxiliary
term Ñ2(e1, e2, ..., em, r, t) ∈ Rn is defined as

Ñ2 , Ṡf − Ṡdf − YdfΓẎ
T
d r, (48)

where the update law in (12) was utilized, and the term
N2B (t) ∈ Rn is defined as

N2B , Ẇ − Ẇd + ḣf . (49)

In a similar fashion as in (20), the following upper bound
can be developed for the expression in (48):°°°Ñ2(t)

°°° ≤ ρ2 (kzk) kzk , (50)

where the bounding function ρ2(·) ∈ R is a positive, globally
invertible, nondecreasing function, and z(t) ∈ Rn(m+1) was
defined in (21). Using Property 3, and the fact that v (t) is a
linear, strictly proper, exponentially stable transfer function,
the following inequality can be developed based on the
expression in (49) with a similar approach as in Lemma 2
of [7]:

kN2B(t)k ≤ ξ, (51)

where ξ ∈ R is a known positive constant.

VI. STABILITY ANALYSIS
Theorem 1: The controller given in (11) and (13) in

conjunction with the composite adaptive update law in (12),
where the prediction error is generated from (23), (24), (43),
and (44), ensures that all system signals are bounded under
closed-loop operation and that the position tracking error and
the prediction error are regulated in the sense that

ke1(t)k→ 0 and kε(t)k→ 0 as t→∞

provided the control gains k1 and k2 introduced in (13) and
(44) are selected sufficiently large (see the subsequent proof),
and the following conditions are satisfied:

αm−1 >
1

2
, αm >

1

2
, (52)
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β1 > ζ1 +
1

αm
ζ2 , β2 > ξ, (53)

where the gains αm−1 and αm were introduced in (4), β1
was introduced in (13), β2 was introduced in (44), ζ1 and
ζ2 were introduced in (22), and ξ was introduced in (51).
Proof: Let D ⊂ Rn(m+2)+p+2 be a domain containing

y(t) = 0, where y(t) ∈ Rn(m+2)+p+2 is defined as

y , [zT εT
p
P1

p
P2 θ̃

T
]T . (54)

In (54), the auxiliary function P1(t) ∈ R is defined as

P1 (t) , β1

nX
i=1

|emi(0)|− em(0)
TN1B(0)−

Z t

0

L1(τ)dτ,

(55)
where emi (0) ∈ R denotes the ith element of the vector
em (0), and the auxiliary function L1(t) ∈ R is defined as

L1 , rT (N1B − β1sgn(em)), (56)

where β1 ∈ R is a positive constant chosen according to the
sufficient condition in (53). Provided the sufficient condition
introduced in (53) is satisfied, the following inequality is
obtained [19]:Z t

0

L1(τ)dτ ≤ β1

nX
i=1

|emi(0)|− em(0)
TN1B(0). (57)

Hence, (57) can be used to conclude that P1(t) ≥ 0. Also in
(54), the auxiliary function P2(t) ∈ R is defined as

P2 (t) , −
Z t

0

L2(τ)dτ, (58)

where the auxiliary function L2(t) ∈ R is defined as

L2 , εT (N2B − β2sgn(ε)), (59)

where β2 ∈ R is a positive constant chosen according to the
sufficient condition in (53). Provided the sufficient condition
introduced in (53) is satisfied, then P2(t) ≥ 0.
Let VL(y, t) : D × [0,∞) → R be a continuously

differentiable, positive definite function defined as

VL , 1

2

mX
i=1

eTi ei +
1

2
rTG−1r +

1

2
εT ε (60)

+P1 + P2 +
1

2
θ̃
T
Γ−1θ̃

which satisfies the inequalities

U1(y) ≤ VL(y, t) ≤ U2(y) (61)

provided the sufficient conditions introduced in (53) are satis-
fied. In (61), the continuous positive definite functions U1(y),
U2(y) ∈ R are defined as U1(y) , λ1 kyk2 and U2(y) ,
λ2(x, ẋ, ..., x

(m−2)) kyk2, where λ1, λ2(x, ẋ, ..., x(m−2)) ∈
R are defined as

λ1 , 1

2
min

©
1, g, λmin

©
Γ−1

ªª
(62)

λ2 , max{1
2
ḡ(x, ẋ, ..., x(m−2)),

1

2
λmax

©
Γ−1

ª
, 1}

where g, ḡ(x, ẋ, ..., x(m−2)) are introduced in (2), and
λmin {·} and λmax {·} denote the minimum and maximum
eigenvalue of the arguments, respectively. After using (4),
(6), (12), (16), (46), (55), (56), (58) and (59), the time
derivative of (60) can be expressed as

V̇L = −
mX
i=1

αie
T
i ei + eTm−1em − rT r − k1r

T r (63)

+rT Ẏdθ̃ + rT Ñ1 + rTN1B − rTYdΓẎ
T
df ε

−β1rT sgn(em) + εT Ẏdf θ̃ + εT Ñ2 + εTN2B

−k2εT ε− εTYdfΓẎ
T
df ε− β2ε

T sgn(ε)

−rT (N1B − β1sgn(em))− εTN2B

+εTβ2sgn(ε)− θ̃
T
Γ−1(ΓẎ T

d r + ΓẎ T
df ε).

After canceling the similar terms and using the fact that
aT b ≤ 1

2(kak
2
+ kbk2) for some a, b ∈ Rn, the expression

in (63) is upper bounded as

V̇L ≤ −
mX
i=1

αie
T
i ei +

1

2
kem−1k2 +

1

2
kemk2

− krk2 − k1 krk2 + rT Ñ1 − rTYdΓẎ
T
df ε

+εT Ñ2 − k2ε
T ε− εTYdfΓẎ

T
df ε.

Using the following upper bounds:°°°YdΓẎ T
df

°°° ≤ c1,
°°°YdfΓẎ T

df

°°° ≤ c2,

where c1, c2 ∈ R are positive constants, V̇L(y, t) is upper
bounded using the squares of the components of z(t) as

V̇L ≤ −λ3 kzk2 − k1 krk2 + krk
°°°Ñ1

°°° (64)

+c1 kεk krk+ kεk
°°°Ñ2

°°°− (k2 − c2) kεk2

where

λ3 , min{α1, α2, ..., αm−2, αm−1 −
1

2
, αm −

1

2
, 1}.

Letting
k2 = k2a + k2b

where k2a, k2b ∈ R are positive constants, and using the
inequalities in (20) and (50), the expression in (64) is upper
bounded as

V̇L ≤ −λ3 kzk2 − k2b kεk2 (65)

−
h
k1 krk2 − ρ1(kzk) krk kzk

i
−
h
(k2a − c2) kεk2 − (ρ2(kzk) + c1) kεk kzk

i
.

Completing the squares for the terms inside the brackets in
(65) yields

V̇L ≤ −λ3 kzk2 − k2b kεk2

+
ρ21(kzk) kzk

2

4k1
+
(ρ2(kzk) + c1)

2 kzk2

4 (k2a − c2)

≤ −λ3 kzk2 +
ρ2(kzk) kzk2

4k
− k2b kεk2

≤ −U(y), (66)
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where k ∈ R is defined as

k , k1 (k2a − c2)

max {k1, (k2a − c2)}
, (67)

and ρ(·) ∈ R is a positive, globally invertible, nondecreasing
function defined as

ρ2(kzk) , ρ21(kzk) + (ρ2(kzk) + c1)
2
.

In (66), U(y) = c
°°°£zT εT

¤T°°°2, for some positive constant
c, is a continuous, positive semi-definite function that is
defined on the domain

D ,
n
y (t) ∈ Rn(m+2)+p+2 | kyk ≤ ρ−1

³
2
p
λ3k

´o
.

The inequalities in (61) and (66) can be used to show
that VL(y, t) ∈ L∞ in D; hence, ei(t) ∈ L∞ and
ε (t) , r(t), θ̃ (t) ∈ L∞ in D. Given that ei(t) ∈ L∞ and
r(t) ∈ L∞ in D, standard linear analysis methods can be
used to prove that ėi(t) ∈ L∞ in D from (4) and (6).
Since ei(t) ∈ L∞, and r(t) ∈ L∞ in D, Property 5 can
be used along with (3)-(6) to conclude that x(i)(t) ∈ L∞,
i = 0, 1, ...,m in D. Since θ̃ (t) ∈ L∞ in D, (15) can be
used to prove that θ̂(t) ∈ L∞ in D. Since x(i)(t) ∈ L∞,
i = 0, 1, ...,m in D, Property 2 can be used to conclude that
G−1(·) and f(·) ∈ L∞ in D. Thus, from (1) and Property 3,
we can show that u(t) ∈ L∞ in D. Therefore, uf (t) ∈ L∞
in D, and hence, from (23), ûf (t) ∈ L∞ in D. Given that
r(t) ∈ L∞ in D, (17) can be used to show that μ̇1(t) ∈ L∞
in D, and since Ġ−1(·) and ḟ(·) ∈ L∞ in D, (16) can be
used to show that ṙ(t) ∈ L∞ in D, and (46) can be used
to show that ε̇(t) ∈ L∞ in D. Since ėi(t) ∈ L∞, ṙ(t), and
ε̇ (t) ∈ L∞ in D, the definitions for U(y) and z(t) can be
used to prove that U(y) is uniformly continuous in D.
Let S ⊂ D denote a set defined as

S ,
½
y(t)⊂ D | U2(y(t)) < λ1

³
ρ−1

³
2
p
λ3k

´´2¾
.

(68)
The region of attraction in (68) can be made arbitrarily large
to include any initial conditions by increasing the control
gain k (i.e., a semi-global stability result). Theorem 8.4 of
[24] can now be invoked to state that

c
°°°£zT εT

¤T°°°2 → 0 as t→∞ ∀y(0) ∈ S.
(69)

Based on the definition of z(t), (69) can be used to show
that

ke1(t)k → 0 as t→∞ ∀y(0) ∈ S (70)
kε(t)k → 0 as t→∞ ∀y(0) ∈ S.

VII. CONCLUSION
A novel approach for the design of a gradient-based com-

posite adaptive controller was proposed for generic MIMO
systems subjected to bounded disturbances. A model-based
feedforward adaptive component was used in conjunction
with the RISE feedback, where the adaptive estimates were
generated using a composite update law driven by both the
tracking and prediction error with the motivation of using

more information in the adaptive update law. To account
for the effects of non-LP disturbances, the typical prediction
error formulation was modified to include a second RISE-
like term in the estimated filtered control input design. Using
a Lyapunov stability analysis, sufficient gain conditions were
derived under which the proposed controller yields semi-
global asymptotic stability.
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