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Abstract—This paper develops mobility control strategies for
robotic agents to provide quality of service of information while
carrying out active sensing tasks. Like wireless communication
concepts of quality of service, a new metric is developed to
encapsulate an aggregate measure of information gathering as
a network service. This metric states that a given amount
of information will be achieved in given time with a given
probability. Conditions are given for when two of the three
components can be specified independently with the third to be
determined from them. Simulation results verify the ability of
this new metric to bound system behavior.

I. INTRODUCTION

Active sensing in robot networks takes advantage of robot

mobility to optimize or improve information gathering ac-

tivities. A key component of active sensing systems is the

dependence of information-gathering on robot motion and

the ability to predict in advance the effect of robot motion

on the quality of information that is collected. For model-

based sensing tasks (e.g. feature localization, target tracking,

and diffuse target tracking) information-theoretic concepts

such as mutual information, Fisher information, and entropy

are used to quantify the sensitivity of the sensing task to

robot motion and planning algorithms can explicitly formulate

sensing objectives in terms of these criteria. Active sensing

concepts have been applied to the design of trajectories for

different applications ranging from passive sonar [1], vision-

based geo-location [2], and active sensor networks [3].

Active sensing works when the performance of a nonlinear

estimation process is a function of the system input. In many

cases the optimal result is a function of the estimate of the

state or parameters of interest [4]. Typical solutions invoke

the certainty equivalence principle to neglect the probability

distribution of these variables and the fact that the Fisher

Information Matrix (FIM) itself is a random variable [3].

Active sensing does not fully address its inherent conundrum:

the plans generated to optimize the uncertainty in an estimation

process are dependent on the uncertain parameters they need

to estimate. Thus, active sensing concepts need to be applied

to expectation or minimax costs of the information criterion.

Calculation of information measures for general nonlinear

estimation problems is extremely challenging. Measures such

as mutual information are expectations over future random

observations and process noise terms. Even in cases where

state dynamics are linear and noise probability distributions

are Gaussian, calculation of terms like mutual information

over finite future time horizons can be challenging. Calculating

information measures for general distributions is usually not

possible analytically and must be approximated [5]–[7].

This work investigates the development of a quality of ser-

vice (QoS) metric for information gain through active sensing.

Rather than using the expectation of information, a proba-

bilistic bound is described such that performance surpasses

a specified limit some percentage of the time (or with some

probability). Information is described based on a prediction

of the estimate error covariance matrix. This metric is well

suited for systems with unimodal probability distributions,

even if they are not Gaussian. Simulations of geolocalization

and target tracking demonstrate the effectiveness of the QoS

concept developed in this paper.

II. INFORMATICS AND ACTIVE SENSING

Consider a discrete time nonlinear estimation problem. Let

the state vector xk evolve according to the state equation

xk+1 = f(xk,uk,wk) (1)

where k is the discrete time, uk is the vector of deterministic

inputs, and wk is a random disturbance vector. Furthermore,

let zk denote the measurement vector with

zk = h(xk,uk) + vk (2)

where h(xk,uk) is the measurement function and vk is

random measurement noise. Finally, assume some unbiased a

priori statistical information about x0 is given with probability

density function p(x0). Often the initial state information

is assumed to have a Gaussian distribution which can be

completely determined by the mean x̂0 = E[x0] and estimate

error covariance matrix E[(x̂0 − x0)(x̂0 − x0)
T ] = P0.

Ideally, optimal sensing is achieved by maximizing the

information contained in the estimate of the state vector at

some later time k+T . Different measures of information used

for active sensing tasks include the entropy of the probability

distribution, mutual information between the current and pre-

dicted distributions, or the expected estimate error covariance

matrix E[Pk+T |k] [3], [5], [6]. In practice calculating these

terms for general nonlinear problems is challenging.

For the purposes of planning, this work uses the Extended

Information Filter (EIF) framework to derive a measure of

information from the matrix norm of the information matrix

Yk|k = P−1
k|k which is the inverse of the estimate error

covariance matrix. If the estimation process is consistent and

efficient then the information matrix accurately reflects the
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second moment of the probability density function of the

estimate error. Otherwise it serves only as an approximation.

From the EIF framework, the dynamics of the information

matrix are

Yk+1|k+1 = (ΓkQkΓ
T
k + ΦkY

−1
k|kΦ

T
k )−1 + Ik+1 (3)

where Ik+1 is the measurement contribution to the information

matrix

Ik+1 = HT
k+1R

−1
k+1Hk+1 (4)

with

Γk = ∇wf(xk,uk, 0), (5)

Φk = ∇xf(xk,uk, 0), (6)

Hk = ∇xh(xk,uk), (7)

Qk = E[wkw
T
k ], and Rk = E[vkv

T
k ]. The subscript Ya|b

denotes the information matrix at discrete time a based on all

measurements collected through time b.
So far the derivation has been general to any nonlinear

estimation problem. Two additional assumptions are made to

apply (3) to robotic active sensing applications. In the context

of the general system description of (1) and (2), the input

vector is the concatenation of robot state vectors such that

uk = [u1
k; · · · ;ui

k; · · · ;un
k ] where ui

k = xi
robot,k is the robot

position. For the sake of generalization to different active

sensing tasks, it is assumed that the components of the input

vector can evolve according to another dynamic equation

ui
k+1 = gi(u

i
k, r

i
k) (8)

where ri
k is the input to that system. Furthermore, it is assumed

that the measurement vector is the concatenation of terms from

multiple robots such that zk = [z1
k; · · · ; zi

k; · · · ; zn
k ] where

zi
k = hi(xk,u

i
k) + vi

k. Assuming the measurements taken by

each robot are independent, the measurement contribution to

the information matrix becomes

Ik+1 =

n
∑

i=1

(Hi
k)T R−1

k,iH
i
k, (9)

Hi
k = ∇xhi(xk,u

i
k) (10)

and Ri
k = E[vi

kv
i,T

k ]
An objective function can be developed by taking any norm

of the information matrix. Common objectives include the

determinant, trace, minimum diagonal element, or minimum

singular value. This work uses the determinant due to the

fact that it is proportional to the square of the volume of the

hyperellipsoid defined by level sets of the estimate confidence.

In particular, the information measure ζk is defined as

ζk|k = |Yk|k|. (11)

The goal of active sensing is to exploit the depen-

dence of the informatics of (1) - (11) on the sys-

tem input uk (or ri
k ∀i), where the dependency enters

through the Jacobian matrices defined by (5) - (7). A typ-

ical active sensing problem involves choosing system in-

puts to maximize a prediction of the performance metric

E[ζk+T |k(xk,Yk|k,uk:k+T−1,wk:k+T−1, zk+1:k+T )] where

uk:k+T−1 denotes the input sequence from current time k to

future time k + T − 1 and the expectation is with respect

to the current state xk, the sequence of future process noise

wk:k+T−1, and the sequence of future measurements zk:k+T .

In order to simplify the active sensing problem, this work

ignores the dependence of the expectation of the informa-

tion measure on the future process noise and measurement

sequences. The prediction of the estimate of the system is

x̂k+t+1|k = f(x̂k+t|k,uk+t, 0) (12)

and the Jacobians Γk+t, Φk+t, and Hk+t are all calculated

based on x̂k+t|k. It should be noted that the impact of the

noise terms in the expectation of the information measure

has a second order effeect since the information matrix still

contains terms that describe how the process noise (ΓkQkΓ
T
k )

and measurements (Ik+1) contribute information.

Two active sensing problems can now be defined based on

the information matrix norm |ζk+T |k|. The first will be referred

to as the fixed time, maximum information (FTMI) problem.

Given an estimate of the current state xk and a fixed time

horizon T , determine the sequence of inputs1

u∗
k:k+T−1 = arg max

u(·)
E

[

ζk+T |k(xk,Yk|k,uk:k+T−1)
]

.

(13)

The second problem is referred to as fixed information,

minimum time (FIMT). Given an estimate of the current state

xk and a predefined level of information ζ0, determine the

sequence of inputs

u∗
k:k+T−1 = arg min

u(·)
T (14)

subject to E
[

ζk+T |k(xk,Yk|k,uk:k+T−1)
]

≥ ζ0. (15)

III. QUALITY OF SERVICE OF INFORMATION

While the two problem formulations described in the pre-

ceding section are commonly used to perform active sensing,

they are both incomplete in terms of long term performance

guarantees and practical usage. The FTMI formulation is the

most common active sensing problem and the least useful in

practical terms. For many applications more information is

only better up to a point. For example, successful navigation

through a cluttered environment can be achieved by different

robots given different levels of map accuracy. Planning to

gather the optimal amount of information wastes resources.

The time-optimal FIMT problem is more practical since it

attempts to achieve a given level of information as quickly

as possible. This problem is not nearly as common in the

literature as the FTMI problem. It’s solution is still limited

since it only optimizes the time to reach the expected infor-

mation level. There are no guarantees that the system actually

achieves that level. One would expect that half the time the

FIMT solution does not actually achieve the specified level.

1For simplicity the optimization will always be written as a function of
the input vector u with the understanding that it may actually be solved by
selection of the inputs r

i when appropriate.
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In order to address the shortcomings of both the FTMI

and FIMT active sensing problems, this paper presents a

new quality of service objective. The stochastic nature of the

active sensing problem necessitates a probabilistic framework,

however better bounds on performance can be given that can

be utilized by higher level processes.

The concept of quality of service of information is drawn

from networked communication metrics using the same term.

In networking, QoS describes the aggregate performance of the

network by combining absolute and probabilistic measures.

A common QoS statement of network performance would

state that “XX percentage of data packets of size YY will

be delivered with delay less than ZZ seconds.”

This work creates a similar measure for information gather-

ing activities by robotic agents. In particular, quality of service

of information is defined by three different parameters:

Definition 1: Quality of Service of Information At least

Pqos% percent of the time (or with probability pqos or greater,

or with confidence cqos or greater) the active sensing problem

will be solved such that ζqos or more information is obtained

in Tqos seconds or less.

Unlike the objectives for the FTMI and FIMT problems,

the notion of QoS puts performance bounds on the solution

of the active sensing problem. These bounds are important

because they allow higher level processes to reason about

the outcome of active sensing problem. This capability is

important for resource allocation and scheduling of multiple

robots in complex environments with multiple active sensing

tasks. For example, if a task scheduler can count on a given

active sensing task being achieved by some future time, it can

schedule the robot devoted to the initial task for that time.

Neither the FTMI nor FIMT problem formulations allows for

this higher level reasoning.

Given this notion of quality of service, the next issue is solv-

ing the trajectory optimization problem to achieve it. Assume

the desired QoS is given by the tuple q = {pqos, ζqos, Tqos}
and that this QoS demand can be achieved by the system.

In order to solve the trajectory optimization problem two

new deterministic optimization problems are defined that are

related to the original FTMI and FIMT problems.

For the moment assume the system state is not a random

variable, but is still uncertain. Let the true state xk ∈ Xk

belong to a set Xk ⊂ ℜn. Rather than optimize over the

expectation of the true state, two new optimization problems

are defined based on this restricted set Xk. In particular,

the first will be referred to as the deterministic fixed time,

maximum information (D-FTMI) problem. Given the set Xk

that is known to contain the current state and a fixed time

horizon T , determine the sequence of inputs

u∗
k:k+T−1 = arg max

u(·)
min

xk∈Xk

ζk+T |k(xk,Yk|k,uk:k+T−1)

(16)

with

ζ∗DFTMI = max
u(·)

min
xk∈Xk

ζk+T |k(xk,Yk|k,uk:k+T−1). (17)

Likewise, the second is the deterministic fixed information,

minimum time (D-FIMT) problem. Given the set Xk and

information level ζ0, determine the sequence of inputs

u∗
k:k+T−1 = arg max

u(·)
T (18)

subject to min
xk∈Xk

ζk+T |k(xk,Yk|k,uk:k+T−1) ≥ ζ0 (19)

with

T ∗
DFIMT = max

u(·)
T. (20)

The advantage of these two new problem formulations is

that performance bounds can now be extracted. Assuming the

true target state is actually in the set Xk, the maximin objective

functions ensure that the achieved value function must be as

good as or better than the initial solution. Careful selection

of the region Xk will enable trajectory design to satisfy QoS

demands based on the DFTMI and DFIMT problems.

Let pk(xk) be the probability density function for the

current state estimate. The region Xqos,k is selected such that
∫

Xqos,k

pk(x)dx = pqos. (21)

Thus, by (21) the true target state has a probability of pqos

of being in Xqos,k. The above definition places no restrictions

on the number of disjoint regions comprising Xqos,k or on the

inclusion of any specific point, e.g the state estimate x̂k, in

the region. Note, an infinite number of regions satisfy (21).

Given that the region Xqos,k was selected such that xk ∈
Xqos,k with probability pqos, the DFTMI and DFIMT prob-

lems can be used to provide a trajectory that satisfies the QoS

demand by taking Xk = Xqos,k. Let ζ∗ be the value for

the solution u∗
DFTMI to the DFTMI problem when taking

T = Tqos. If the true state is in Xk and the QoS demand is

feasible, then ζ∗ ≥ ζqos. Since the true target state is in Xk

with probability pqos, the input sequence u∗
DFTMI satisfies the

QoS demand. Alternatively, let T ∗ be the time for the solution

u∗
DFIMT to the DFIMT problem when taking ζ0 = ζqos. If

the true state is in Xk and the QoS demand is feasible, then

T ∗ ≤ Tqos and the result of the DFIMT problem also satisfies

the QoS demand. Thus, either problem formulation can be

used to design a trajectory to provide the QoS.

IV. FEASIBLE QUALITY OF SERVICE DEMANDS

The previous section showed how the DFTMI and DFIMT

problems can be used to derive trajectories that satisfy feasible

QoS demands. In practice it may not be possible to specify an

arbitrary QoS demand that is feasible. However, this section

discusses the fact that any two of the three components of the

QoS specification can be arbitrarily set for certain classes of

active sensing problems.

A. Case 1

First, consider the case where pqos and Tqos are given. The

claim is that both variables can be arbitrarily set and there

will be a value for the final parameter ζqos that yields a full,

2162



feasible QoS specification. For this case, the claim is proven

by showing how to calculate ζqos.

Let Xk = Xqos,k be defined by (21) based on the first

parameter pqos. Further, let T = Tqos be the time specified for

the DFTMI problem. Solve (17) to yield the information level

ζ∗DFTMI . Although it is possible that ζ∗DFTMI < ζk, i.e. that

information is lost, it still represents the best possible informa-

tion level that can be guaranteed for a target in Xk. Since the

level is feasible, the QoS demand q1 = {pqos, ζ
∗
DFTMI , tqos}

is feasible.

B. Case 2

Next, consider the case where pqos and ζqos are given.

The logic of Case 1 cannot be applied directly here since

it is possible that the DFIMT based on ζqos is infeasible.

This could happen if ζqos > ζk and more information is

lost due to process noise and state dynamics than is gained

by the measurement contributions. Therefore to prove this

case we make the additional assumption that there always

exists a trajectory such that more information can be gained

through measurements than is lost due to process noise and

state dynamics. Localization of static targets using range and

bearing sensors is an example application that satisfies this

assumption. In this example, there is no process noise, the

state dynamics do not change the information matrix (Φk is

the identity matrix), and the measurements always contribute

information (Ik is positive definite).

Assuming information can always be gained, Let Xk =
Xqos,k be defined by (21) based on the first parameter pqos.

Further, let ζ0 = ζqos be the information level specified

for the DFIMT problem. Solve (20) to yield the optimal

time T ∗
DFIMT . The feasible QoS demand is then q2 =

{pqos, ζqos, T
∗
DFIMT } is feasible.

C. Case 3

Finally, consider the case where ζqos and Tqos are given. As

with Case 2, it is possible that the information level ζqos cannot

be reached in any amount of time. Thus another assumption

is needed on the amount of information that can be extracted

from the measurements.

In particular, consider a target tracking application and let

ri = ‖pi − ptar‖ be the distance between the target position

ptar and the robot position pi. Assume that the measurement

contribution to the information matrix Ik(ri) is a function of

the distance between the robot and target such that |Ik| →
∞ as ri → 0. For example, this assumption applies when a

bearing sensor is used. Further, assume the robot can move

with maximum speed vi > 0. Also, assume the information

lost due to process noise and state dynamics is bounded from

above and that the value of the probability density function is

greater than zero everywhere.

In order to show that ζqos and Tqos can be achieved as part

of a QoS demand for target tracking applications, it suffices to

show that there exists some region Xqos such that an arbitrarily

large amount of information can be achieved in an arbitrarily

short amount of time. For a target in that region, any other

worse pair of demands could also be achieved.

Based on the assumptions on the measurement contribu-

tion to information, arbitrarily large ζk can be achieved by

colocating the robot with the target position. Thus the region

Xqos should be defined as the set of locations that the robot

can reach. Given the time limit Tqos on reaching the QoS

level, the region Xqos corresponds t the forward reachable

set of the robot. The probability pqos to complete the QoS

demand is the solution to (21) with Xk = Xqos,k. For a target

located far away from the robot location, there can still be

some small finite probability, e.g. if a normal distribution is

used to describe the target position estimate, that the target is

in the region Xqos,k. In this case the region would not contain

the target estimate (i.e. the mean of the distribution).

V. EXAMPLES

This section considers motion planning for a nonholonomic

kinematic vehicle performing bearings-only geolocalization of

a stationary target and tracking of an uncertain moving target.

In these examples the state variable xk is the target position

(or position and velocity for a moving target) while the input

uk is the robot position which is driven by the vehicle turning

rate (which serves as the actual input rk). For the stationary

target case the state transition matrix Φk is the identity matrix.

For the case of a moving target with state x = [x, y, ẋ, ẏ]T

and sample time Ts, a constant velocity model is used with

noisy acceleration so

xk+1 = Φkxk+1 + Γkwk (22)

with

Φk =









1 0 Ts 0
0 1 0 Ts

0 0 1 0
0 0 0 1









(23)

and

Γk =









T 2
s /2 0
0 T 2

s /2
Ts 0
0 Ts









(24)

and Qk = 0.1 m2/s4.

Robot motion is modeled as the discrete version of a simple

unicycle such that:

xi
r,k+1 = xi

r,k +





u1 · Ts · sinc(φ) cos(ψk + φ)
u1 · Ts · sinc(φ) sin(ψk + φ)

u2 · Ts



 (25)

where xi
k = [xk, yk, φk]T is the robot state, u1 = 20.0 m/s

is the vehicle speed which is kept constant, and u2 is the

vehicle turning rate constrained by ωmax = 0.5 rad/sec, Ts

is the sample time, φ = 0.5 · u2 · Ts, and sinc(x) is the sine

cardinal function. The notation is changed slightly here such

that uk = xv and rk = uk in the original formulation.

2163



0 500 1000 1500
−200

0

200

400

600

X Pos [m]

Y
 P

o
s 

[m
]

 

 

Init path

Opt path

Target Est

True Targets

Fig. 1. Robot paths while performing bearings-only localization

This work considers bearing-only sensors. The measurement

obtained by a robot at state xi
k is:

zi
k = βi

k = arctan
( yk − yi

r,k

xk − xi
r,k

)

+ v (26)

where v is zero-mean Gaussian noise with covariance

E[vvT ] = R =
2π

180
rad. (27)

For a stationary target this measurement model yields the

state-dependent measurement matrix

Hi
k =

[

1
rk

sinβi
k − 1

rk
cosβi

k

]

(28)

and for the moving target

Hi
k =

[

1
rk

sinβi
k − 1

rk
cosβi

k 0 0
]

. (29)

The target set Xk is determined from the 2-σ level curves

of the initial estimate error distribution, which is assumed to

be Gaussian. Thus,

Xk =
{

x ∈ ℜd|(x − x̂)T · P−1
k · (x − x̂) ≤ 4

}

(30)

where Pk and the dimension d are problem-dependent.

For both examples presented below, estimation of the target

state is performed using a standard Sigma Point filter [8].

Details of the Sigma Point filter are beyond this paper and

are available in Ref [8].

A. Bearings-Only Target Localization

The first example considers a stationary target with initial

estimate located at [1000, 0] meters with covariance matrix

Pk =

[

2002 0
0 202

]

. (31)

The robot starts at the origin. Two paths are compared, each

comprised of twenty 2 second segments for a total duration of

40 seconds (see Fig. 1). The first is an s-shaped curve while

the second is the result of the DFTMI optimization using the

first as initial guess. The quality of service demand for the

paths is determined by computing the maximin cost for each.

The target set has probability ptar = 0.86 of containing the

true target state. Combined, the predicted quality of service

for the two paths are q1 =
{

0.86, 1.9 · 10−7, 40
}

and q2 =
{

0.86, 2.1 · 10−7, 40
}

.

To evaluate the accuracy of the quality of service prediction,

simulations were run drawing 500 samples from the initial
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Fig. 2. Robot paths while performing bearings-only localization
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Fig. 3. Robot paths while performing bearings-only localization

estimate error distribution to serve as the true target state (Fig.

1). The Sigma Point filter was used to derive state estimates

and estimate error information (covariance) matrices. For sake

of comparison, the determinant of each information matrix was

scaled by the predicted value ζqos. The results from all 500

runs are plotted for each path in Fig. 2 and Fig. 3.

For both paths, the information contained in the estimates

was always greater than predicted (noted by a ratio greater

than one). The main reason for this is the fact that the filter

generates Sigma Points and updates its estimates based on the

state estimate, not the true value. Thus, even when the true

target state was furthest from the robot (corresponding to the

worst case prediction) the measurement contribution to the

information was based on the closer estimate.

The second (red) lines at ratios of 4.1 and 5.0, on Fig. 2 and

Fig. 3, denote the predicted information value obtained when

invoking the certainty equivalence principle (CEP) to calculate

the information based only on the state estimate itself. The plot

shows that this value would be a poor approximation since it

is achieved only 52% and 51% of the time, respectively.

B. Bearings-Only Tracking

The second example considers a moving target with

initial position at [1000, 0] meters with initial velocity

[10/
√

(2), 10/
√

(2)] meters per second and covariance matrix

Pk =









2002 0 0 0
0 202 0 0
0 0 42 0
0 0 0 42









. (32)
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Fig. 5. Robot paths while performing bearings-only localization
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Fig. 6. Robot paths while performing bearings-only localization

The robot starts at the origin and two paths are compared, each

comprised of twenty 2 second segments for a total duration

of 40 seconds (see Fig. 4). Like the first example, the first

path is an s-shaped curve while the second is the result of

the DFTMI optimization using the first as initial guess. Here,

the target set has probability ptar = 0.60 of containing the

true target state. Combined, the predicted quality of service

for the two paths are q1 =
{

0.60, 5.6 · 10−11, 40
}

and q2 =
{

0.60, 4.1 · 10−11, 40
}

.

To evaluate the accuracy of the quality of service prediction,

simulations were run drawing 1000 samples from the initial

estimate error distribution. The Sigma Point filter was used to

derive state estimates and estimate error information (covari-

ance) matrices. The results from all runs are plotted for both

each path in Fig. 5 and Fig. 6.

For the optimized path (Fig. 5) all estimates contain more

information than predicted. By comparison, for the initial path

the QoS requirement is met only 67% of the time. This is still

greater than the QoS demand of 60%. The red lines again

correspond to the CEP solutions with ratios of 4.7 and 2.8, on

Fig. 5 and Fig. 6. In this case the information gain predicted

by the CEP solution is obtained 71% and 19% of the time,

respectively. These results suggest that for the moving target

case, where process noise decreases information, optimizing

the robot trajectory is much more important than the stationary

target case where information is never lost.

VI. CONCLUSION

This work presented a quality of service metric for active

sensing tasks that provides a performance bound in terms of

information collected over a given amount of time that will

be satisfied with some probability. Unlike other information

metrics, this quality of service demand is intended to predict

performance so that higher order planning algorithms can be

integrated into active sensing applications.

Derivation of the quality of service metric was based on a

deterministic, bounded formulation of information gathering.

In general, the three parameters in the quality of service

metric cannot be specified independently. In some cases any

two of the three parameters can be specified with the third

being dependent on them. In the case that the probability of

success and total time are given, a method for determining an

achievable information level was given.

Simulation results verified the quality of service concept

for geolocalization and bearings only tracking. In all cases the

metric correctly bounded the success rate of the estimation

process given robot paths. As expected, the quality of service

demand was conservative. The main reason was the fact that

prediction of the estimate error covariance did not account

for the fact that the estimate itself, which is used to linearize

the estimation process to determine information gain, changes

over time. Unexpectedly, the metric was much more conser-

vative for paths that were optimized for information gain.
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