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Abstract— In this paper, sufficient conditions which guar-
antee that the discrete-time singular systems with actuator
saturation are admissible with γ- disturbance attenuation are
established. With these conditions, the estimation of stability
region, state feedback design and H∞ state feedback controllers
are obtained by solving corresponding LMIs optimization
problems. A numerical example to illustrate the effectiveness
of the proposed methods is given.

I. INTRODUCTION

Singular systems, which are also referred to as implicit

systems, descriptor systems, have extensive applications in

many practical systems, such as circuit boundary control

systems, chemical processes, economy systems, and other

areas [1]. Hence a great number of fundamental notions

and results in control and system theory based on standard

state-space systems have been extended to singular systems,

such as stability, stabilization and H∞ control problems

[2-7]. On the other hand, actuator saturation can lead to

poor performance of the closed-loop system and sometimes

destabilizes the system. The analysis and design for systems

with actuator saturation have received a lot of attentions

[8-11]. For singular systems with actuator saturation, read-

ers may refer to [12-15]. In particular, [12] discussed the

semiglobal stabilization and output regulation problems of

singular systems with actuator saturation. [13] gave sufficient

conditions for the stability of closed-loop systems with

actuator saturation. [14] not only gave the sufficient con-

ditions for the stability of closed-loop systems with actuator

saturation, but also the estimation the domain of attraction

and the design of state feedback gain matrix via linear matrix

inequality (LMI) technique. [15] discussed the L2 and L∞

problem of closed-loop systems with actuator saturation. All

the results mentioned above are for continuous-time singular

systems with actuator saturation. For discrete-time singular

systems with actuator saturation, since the Lyapunov matrix

is indefinite, it is more difficult to deal with the stability

of the closed-loop systems and to design the controller

compared to continuous-time singular systems with actuator

saturation by using similar LMI method. To the best of

our knowledge, the stability condition and H∞ control for

discrete-time singular systems with actuator saturation is an

important but unexplored research topic.

In this paper, the stability and H∞ control for discrete-time

singular systems with actuator saturation are discussed. First,
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El-Kébir Boukas is with Mechanical Engineering Department, École
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a sufficient condition which guarantees that the discrete-time

singular systems with actuator saturation are admissible is

established. Using this condition, the estimation of stability

region and the state feedback design are obtained by solving

a convex optimization problem. Then, the condition and

the convex optimization problem such that the discrete-time

singular systems with actuator saturation are admissible with

γ- disturbance attenuation are obtained. Finally, a numeri-

cal example to illustrate the effectiveness of the proposed

method is given.

II. PROBLEM DESCRIPTION AND

PRELIMINARIES

Consider a discrete-time singular system subject to actua-

tor saturation with the following dynamics
{

Ex(k + 1) = Ax(k) + Bsat(u(k)) + Bww(k),
z(k) = Cx(k) + Dsat(u(k)) + Dww(k),

(1)

where k ∈ Z , x(k) ∈ R
n is the system state, u(k) ∈ R

p is

the control input, and sat: R
p → R

p is the standard saturation

function defined as follows:

sat(u(k)) = [sat(u1(k)) sat(u2(k)) · · · sat(up(k))]
T

,

where sat(ui(k)) = sign(ui(k))min{1, |ui(k)|}. Here the

notation of sat(·) is abused to denote the scalar values and

the vector valued saturation functions [9,10]. w(k) ∈ R
q

is the disturbance input which belongs to l2 = {{ak, k ∈

Z}|
∞
∑

k=0

‖ak‖
2 < ∞}, z(k) ∈ R

m is the controlled output.

The matrix E ∈ R
n×n is singular, and rank(E) = r < n.

A, B, Bw, C, D, Dw are known constant matrices with

appropriate dimensions.

Remark 1. In this paper, only the case of |ui(k)| ≤ 1, i =
1, 2, · · · , p is discussed. If |ui(k)| ≤ ũi, let ûi(k) = 1

ũi
ui(k),

then |ûi(k)| ≤ 1.

Definition 1 [1]. System Exk+1 = Axk (or the pair

(E, A)) is said to be regular if det(zE − A) 6≡ 0. The

pair (E, A) is said to be causal if it is regular and

degree (det(zE−A))) = rank(E). The pair (E, A) is said to

be stable, if it is regular, and all the roots of det(zE−A) = 0
lie inside the unit disk with center at the origin.

Definition 2 [2,3]. The pair (E, A) is said to be admissible

if it is regular, causal and stable.

Definition 3. System (1) with uk = 0 is said to be admis-

sible with γ - disturbance attenuation, if it is admissible, and

for a given scalar γ > 0, for any disturbance wk ∈ l2, the

H∞ performance
∞
∑

k=0

‖z(k)‖2 < γ2
∞
∑

k=0

‖w(k)‖2 is satisfied

with the zero initial conditions.
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In this paper, we study the design of the state feedback

controller of the following form:

u(k) = Fx(k), F = F̄E, (2)

where F ∈ R
p×n and F̄ ∈ R

p×n.

Remark 2. In general, the state feedback is taken as

u(k) = Fx(k), and there is no structural restriction on the

feedback gain matrix F . However, for singular system (1),

the general state feedback case may lead to that the solution

is not unique, hence the feedback gain matrix is assumed

to be of the structure F = F̄E to overcome this. To show

that is required to guarantee the uniqueness of the solution

of (1), notice that since rank(E) = r < n, there exist two

nonsingular matrices M, N ∈ R
n×n such that























MEN =

[

Ir 0
0 0

]

, MAN =

[

A1 A2

A3 A4

]

,

FN =
[

F1 F2

]

, F̄M−1 =
[

F̄1 F̄2

]

,

MBN =

[

B1

B2

]

, x(k) = N

[

x1(k)
x2(k)

]

,

(3)

where x1(k) ∈ R
r, x2(k) ∈ R

n−r. If u(k) = Fx(k) and

there is no structural assumption on F , then system (1) with

w(k) = 0 is r.s.e. (restricted system equivalent) [1] to the

following system

x1(k + 1) = A1x1(k) + A2x2(k)
+B1sat(F1x1(k) + F2x2(k)),

0 = A3x1(k) + A4x2(k) + B2sat(F1x1(k) + F2x2(k)).
(4)

If x1(0) is given, since x2(0) is in the function sat, from the

second equation of (4), the unique solution of x2(0) cannot

be obtained directly even A4 is nonsingular. So system (4)

has unique solution if B2 = 0, that is, B satisfies that B =
EB̄. If u(k) = F̄Ex(k), then system (1) is r.s.e. to

x1(k + 1) = A1x1(k) + A2x2(k) + B1sat(F̄1x1(k)),
0 = A3x1(k) + A4x2(k) + B2sat(F̄1x1(k)),

(5)
the unique solution of state x2(k) can be obtained when A4

is nonsingular.

Remark 3. For system (1) with the state feedback in

(2), if the initial condition is given as x(0), then from (3),
[

x1(0)
x2(0)

]

= N−1x(0), and from the second equation of (5),

another x2(0) is obtained. In general, these two x2(0) are

different. In such case, the initial condition is not compatible,

in order to guarantee that the initial condition for system (1)

is compatible, the initial condition is given as Ex(0) = x0,

in this case, only x1(0) is given, and x2(0) is obtained by

0 = A3x1(0) + A4x2(0) + B2sat(F̄1x1(0)). (6)

In this paper, two objectives will be achieved. The first one

is to obtain a stability condition for the closed-loop system

Ex(k + 1) = Ax(k) + Bsat(F̄Ex), (7)

and design a state feedback controller of the form (2) such

that the closed-loop system (7) is admissible. The second

one is to design a state feedback controller of the form (2)

for system (1) such that the closed-loop system is admissible

with γ- disturbance attenuation.

For the rest of our paper, let us recall some important

notions and results which have been given in [9,10].

For a matrix F ∈ R
p×n, denote the ith row of F as fi

and define L(F ) as

L(F ) = {x(k) ∈ R
n : |fix(k)| ≤ 1, i = 1, 2, · · · , p}.

Let P ∈ R
n×n be a symmetric matrix and ET PE ≥ 0, and

denote by Ω(P ) the following set:

Ω(ET PE) = {x(k) ∈ R
n : xT (k)ET PEx(k) ≤ 1}.

Let D be the set of p× p diagonal matrices whose diagonal

elements are either 1 or 0. Suppose each element of D is

labelled as Di, i = 1, 2, · · · , 2p, and denote D−

i = I − Di.

Clearly, if Di ∈ D, then D−

i ∈ D.

Lemma 1 [9]. Let F, H ∈ R
p×n. Then for any x(k) ∈

L(H)

sat(Fx(k)) ∈ co{DiFx(k) + D−

i Hx(k), i = 1, 2, · · · , 2p}

or, equivalently,

sat(Fx(k)) =
2p

∑

i=1

αi(k)(DiF + D−

i H)x(k)

where co stands for the convex hull, αi(k) for i =
1, 2, · · · , 2p are some scalars which satisfy 0 ≤ αi(k) ≤ 1

and
2p
∑

i=1

αi(k) = 1.

The following lemma also will be used in the state

feedback controller design.

Lemma 2. Given matrices X, Y, Z with appropriate di-

mensions, and Y is symmetric. Then there exists scalar

ρ > 0, such that ρI + Y > 0 and

−XT Z − ZT X − ZT Y Z ≤ XT (ρI + Y )−1X + ρZT Z.

If Y > 0, then ρ can be taken as ρ = 0 [16].

III. STABILITY CONDITION AND CONTROLLER

DESIGN

In this section, first of all, we consider the stability

condition for system (7).

Theorem 1. Let F = F̄E be the state feedback controller

gain matrix. If there exist a symmetric matrix P and matrices

F̄ , H such that

ET PE ≥ 0, (8)

AT
iF PAiF − ET PE < 0, i = 1, 2, · · · , 2p (9)

and Ω(ET PE) ⊂ L(H), then the closed-loop system (7) is

admissible within Ω(ET PE), where

AiF = A + B(DiF̄E + D−

i H). (10)

Proof. First, let us prove that the closed-loop system (7)

is regular and causal. Let

M−T PM−1 =

[

P1 P2

PT
2 P3

]

,HN =
[

H1 H2

]

. (11)
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From (8), together with (3), it follows that

NT ET PEN =

[

P1 0
0 0

]

≥ 0,

it is obtained that P1 ≥ 0. From the set inclusion condition

Ω(ET PE) ⊂ L(H), it is obtained that H2 = 0. Otherwise,

let x(k) = N

[

x1(k)
x2(k)

]

, x1(k) = 0 and |h2ix2(k)| > 1,

then xT (k)ET PEx(k) = 0, |hix(k)| = |h2ix2(k)| >

1, it contradicts that Ω(ET PE) ⊂ L(H), where h2i, hi

are the ith row of matrices H2, H , respectively. Pre- and

postmultiply inequality (9) by NT and N , respectively, and

together with (3), it follows that
[

Ā1 A2

Ā3 A4

]T [

P1 P2

PT
2 P3

] [

Ā1 A2

Ā3 A4

]

−

[

P1 0
0 0

]

< 0,

(12)
where

Ā1 = A1 + B1DiF̄1 + B1D
−

i H1,

Ā3 = A3 + B2DiF̄1 + B2D
−

i H1.

From Dai [1], the closed-loop system (7) is regular and

causal if and only if A4 is nonsingular. If A4 is singular,

then there exists a vector ξ ∈ R
n−r and ξ 6= 0 such that

A4ξ = 0. Let ζ = [0 ξT ]T ∈ R
n, then pre- and postmultiply

inequality (12) by ζT and ζ, respectively, it is obtained that

ξT AT
2 P1A2ξ < 0, which contradicts P1 ≥ 0.

Next, we prove that system (7) is stable. Since A4 is

nonsingular, let Ti =

[

Ir 0
−A−1

4 Ā3 In−r

]

, then pre- and

postmultiply inequality (12) by TT
i and Ti, respectively,

it is obtained that

[

Q1 ⋆

⋆ ⋆

]

< 0, where Q1 = (Ā1 −

A2A
−1
4 Ā3)

T P1(Ā1 −A2A
−1
4 Ā3)−P1, and ⋆ represents the

matrix block we do not need. From Q1 < 0, it follows

that P1 > 0. On the other hand, from Lemma 1, for every

x(k) ∈ Ω(ET PE), we have

sat(F̄Ex(k)) ∈ co{(DiF̄E+D−

i H)x(k), i = 1, 2, · · · , 2p}.

It follows that

Ax(k) + Bsat(F̄Ex(k)) ∈ co{AiF x(k), i = 1, 2, · · · , 2p}.

Define the Lyapunov function candidate as

V (x(k)) = xT
1 (k)P1x1(k) = xT (k)ET PEx(k),

then

∆V (k) = V (x(k + 1)) − V (x(k))
= xT (k + 1)ET PEx(k + 1) − xT (k)ET PEx(k)
= (Ax(k) + Bsat(F̄Ex(k)))T P

·(Ax(k) + Bsat(F̄Ex(k))) − xT (k)ET PEx(k)
≤ max

i∈[1,2p]
xT (k)AT

iF PAiF x(k) < 0,

∀x(k) ∈ Ω(ET PE) \ 0,

which indicates that the closed-loop system (7) is stable

within Ω(ET PE). The proof is completed. ¤

Theorem 2. Let F = F̄E be the state feedback controller

gain matrix. If there exist a positive definite matrix X , a

symmetric matrix S and matrices F̄ , H such that

AT
iF (X−LT SL)AiF−ET XE < 0, i = 1, 2, · · · , 2p, (13)

and Ω(ET XE) ⊂ L(H), then the closed-loop system (7)

is admissible within Ω(ET XE), where L ∈ R
n×n is any

constant matrix satisfying LE = 0, rank(L) = n − r.

Proof. If (10) holds, let P = X −LT SL, then ET PE =
ET XE ≥ 0, Ω(ET XE) = Ω(ET PE) and (13) is equiva-

lent to (9). The proof is completed. ¤

In the following, we give the estimation of the set

Ω(ET XE) with respect to a shape reference set XR. It can

be solved by the following optimization problem

OP1 :
sup

X>0,S,F̄ ,H

α

subject to (i) αXR ⊂ Ω(ET XE)
(ii) (13)
(iii) Ω(ET XE) ⊂ L(H)

The above optimization problem is non-convex, in order

to formulate this problem into a convex one, we have the

following discussion. If XR has the form as

XR = co{r1, r2, · · · , rl}, ri ∈ R
n

then (i) is equivalent to

α2rT
i ET XEri ≤ 1, i = 1, 2, · · · , l,

by Schur complement, which is equivalent to
[

α−2 rT
i ET X

XEri X

]

≥ 0, i = 1, 2, · · · , l. (14)

If XR has the following form

XR = {x(k) ∈ R
n : xT (k)ET R̄Ex(k) ≤ 1},

where R̄ > 0. Let

M−T XM−1 =

[

X1 X2

XT
2 X3

]

, X1 > 0,

M−T R̄M−1 =

[

R̄1 R̄2

R̄T
2 R̄3

]

, R̄1 > 0,

then
xT (k)ET XEx(k) = xT

1 (k)X1x1(k),
xT (k)ET R̄Ex(k) = xT

1 (k)R̄1x1(k).

(i) is equivalent to α2X1 ≤ R̄1, that is, α2ET XE ≤
ET R̄E, which is equivalent to

[

α−2ET R̄E ET X

XE X

]

≥ 0 (15)

by Schur complement.

Consider (ii), by Lemma 2, for any scalars ǫ1, there exists

ρ > 0 such that

ρI + S > 0, (16)

−AT
iF LT SLAiF ≤ ǫ1A

T
iF LT + ǫ1LAiF

+ǫ21(ρI + S)−1 + ρAT
iF LT LAiF .

(17)
By Schur complement, and from (16), (17), if









Θ11 AT
iF ǫ1In ρAT

iF LT

∗ −X−1 0 0
∗ ∗ −ρI − S 0
∗ ∗ ∗ −ρI









< 0,

i = 1, 2, · · · , 2p

(18)
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where

Θ11 = −ET XE + ǫ1A
T
iF LT + ǫ1LAiF (19)

holds, then condition (ii) holds. Here, two methods can be

used to deal with X−1 in (18). One consists of using the

following inequality

−X−1 ≤ −2ǫ2I + ǫ22X (20)

obtained by Lemma 2, therefore, if








Θ11 AT
iF ǫ1In ρAT

iF LT

∗ −2ǫ2I + ǫ22X 0 0
∗ ∗ −ρI − S 0
∗ ∗ ∗ −ρI









< 0,

i = 1, 2, · · · , 2p

(21)
holds, then (18) holds. Another is letting X−1 = Z directly,

XZ = I , then (18) is transformed into








Θ11 AT
iF ǫ1In ρAT

iF LT

∗ −Z 0 0
∗ ∗ −ρI − S 0
∗ ∗ ∗ −ρI









< 0,

i = 1, 2, · · · , 2p.

(22)

From

xT (k)ET XEx(k) = xT
1 (k)X1x1(k),Hx(k) = H1x1(k),

the condition (iii) is equivalent to

h1iX
−1
1 hT

1i ≤ 1, i = 1, 2, · · · , p,

by Schur complement, which is equivalent to
[

1 h1i

hT
1i X1

]

≥ 0, i = 1, 2, · · · , p

or




1 [h1i 0]

[h1i 0]
T

[

Ir 0
0 0

] [

X1 X2

XT
2 X3

] [

Ir 0
0 0

]



 ≥ 0,

i = 1, 2, · · · , p. (23)

Pre- and postmultiply inequality (23) by diag{1, N−T } and

diag{1, N−1}, respectively, together with (3), it follows that
[

1 hi

hT
i ET XE

]

≥ 0, i = 1, 2, · · · , p. (24)

Notice that H2 = 0, [h1i 0] = [h1i ⋆]

[

Ir 0
0 0

]

, (24)

is also equivalent to
[

1 h̄iE

ET h̄T
i ET XE

]

≥ 0, i = 1, 2, · · · , p, (24′)

where h̄i is the ith row of H̄ and H = H̄E.

Remark 4. If ǫ1, ǫ2 > 0 and ρ > 0 are given first in

(21) and (22), then (21) is a LMI, and (22) can be solved

by cone complement method [17]. The optimal values of ǫ1,

ǫ2 and ρ can be obtained by using a numerical optimization

algorithm, such as fminsearch in Optimization Toolbox.

Then the optimization problem OP1 can be transformed

to the following LMI problem:

OP2 :
inf

X>0,S,F̄ ,H
β

subject to inequalities (14)(or (15)), (21)
and (24)(or (24′)),

or

OP2 ′ :
inf

X>0,Z>0,S,F̄ ,H
β

subject to inequalities (14)(or (15)), (22)
with XZ = I and (24)(or (24′)),

where β = α−2, ǫ1, ǫ2 > 0 and ρ > 0 are given scalars.

The optimal state feedback controller gain F = F̄E can be

obtained by solving OP2 or OP2′, directly.

IV. H∞ CONTROLLER DESIGN

In this section, we consider the admissibility with γ-

disturbance attenuation for system (1) with u(k) = F̄Ex(k).
First, in order to solve this problem by using LMI approach,

we assume that q = n.

Remark 5. Generally, q 6= n. If q < n, then let ŵ(k) =
[

w(k)
w̄(k)

]

∈ R
n×n, and B̄w = [Bw 0], D̄w = [Dw 0];

If q > n, then let x̂(k) =

[

x(k)
x̄(k)

]

∈ R
q×q, and Ê =

[

E 0
0 0

]

, Â =

[

A 0
0 0

]

, B̂ =

[

B

0

]

, C̄ = [C 0],

B̂w =

[

Bw

0

]

. Therefore, the input-output relation of

system (1) does not change.

The closed-loop system of system (1) with u(k) =
F̄Ex(k) is

{

Ex(k + 1) = Ax(k) + Bsat(F̄Ex(k)) + Bww(k),
z(k) = Cx(k) + Dsat(F̄Ex(k)) + Dww(k).

(25)

Theorem 3. For given scalars γ > 0, ǫ1, ǫ2 > 0, ǫ3 and

ρ > 0, if there exists matrices X > 0, S, F̄ and H such that

Ψ =

















Θ11 ǫ3A
T
iF LT + ǫ1LBw CT

iF

∗ −γ2I + ǫ3Bw + ǫ3B
T
w DT

w

∗ ∗ −I

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

AT
iF ǫ1In ρAT

iF LT

BT
w ǫ3In ρBT

wLT

0 0 0
−X−1 0 0

∗ −ρI − S 0
∗ ∗ −ρI

















< 0, (26)

i = 1, 2, · · · , 2p
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and Ω(ET XE) ⊂ L(H), then the closed-loop system

(25) is admissible with γ- disturbance attenuation within

Ω(ET XE), where

CiF = C + D(DiF̄E + D−

i H). (27)

Proof. First, from (26), it follows that (18) holds, then

from Theorem 2, system (25) with w(k) = 0 is admissible

within Ω(ET XE). Next, let us prove that system (25) satisfy

H∞ performance. Let P = X − LT SL, construct the

Lyapunov function as V (x(k)) = xT (k)ET PEx(k), from

Lemma 1, it is obtained that

∆V (k) = [
2p
∑

i=1

αi(k)(AiF x(k) + Bww(k))]T

·P [
2p
∑

i=1

αi(k)(AiF x(k) + Bww(k))]

−xT (k)ET PEx(k).

Then, it follows that

J =
∞
∑

k=0

(zT (k)z(k) − γ2wT (k)w(k))

≤
∞
∑

k=0

(zT (k)z(k) − γ2wT (k)w(k) + ∆V (k))

=
∞
∑

k=0

[

xT (k) wT (k)
]

Φ
[

xT (k) wT (k)
]T

,

(28)
where

Φ = (
2p
∑

i=1

αi(k)

[

CT
iF

DT
w

]

)(
2p
∑

i=1

αi(k)

[

CT
iF

DT
w

]T

)

+

[

−ET PE 0
0 −γ2I

]

+(
2p
∑

i=1

αi(k)

[

AT
iF

BT
w

]

)P (
2p
∑

i=1

αi(k)

[

AT
iF

BT
w

]T

).

If Φ < 0, then system (25) satisfies the H∞ performance.

Notice that from (26), it can be obtained that

2p

∑

i=1

αi(k)Ψ < 0. (29)

According to the Schur complement, (29) is equivalent to

Ψ̄ =





2p
∑

i=1

αi(k)Θ11

2p
∑

i=1

αi(k)ǫ3A
T
iF LT + ǫ1LBw

∗ −γ2I + ǫ3B
T
w + ǫ3Bw





+(
2p
∑

i=1

αi(k)

[

CT
iF

DT
w

]

)(
2p
∑

i=1

αi(k)

[

CT
iF

DT
w

]T

)

+(
2p
∑

i=1

αi(k)

[

AT
iF

BT
w

]

)X(
2p
∑

i=1

αi(k)

[

AT
iF

BT
w

]T

)

+ρ(
2p
∑

i=1

αi(k)

[

AT
iF

BT
w

]

)LT XL(
2p
∑

i=1

αi(k)

[

AT
iF

BT
w

]T

)

+

[

ǫ1I

ǫ3I

]

(ρI + S)−1

[

ǫ1I

ǫ3I

]T

< 0

and ρI + S > 0. From Lemma 2 and P = X − LT SL,

it is obtained that Φ < Ψ̄. Therefore, Φ < 0. The proof is

completed. ¤

Notice that we have X and X−1 in (26) at the same time,

we can deal with X−1 in (26) similarly to the method used

in (18). The first one, from (20), let X−1 be replaced by

−2ǫ2I + ǫ22X , and another is that let X−1 = Z, XZ = I .

Theorem 4. For given scalars γ > 0, ǫ1, ǫ2 > 0, ǫ3 and

ρ > 0, if the following optimization problem

OP3 :
inf

X>0,S,F̄ ,H
β

subject to inequalities (14)(or (15)),
(26) with X−1 being replaced by − 2ǫ2I + ǫ22X

and (24)(or (24′)),

or
OP3 ′ :

inf
X>0,Z>0,S,F̄ ,H

β

subject to inequalities (14)(or (15)),
(26) with X−1 = Z and (24)(or (24′)),

have solution, then there exists a H∞ state feedback con-

troller of the form as (2), and the feedback gain is taken as

F = F̄E.

Remark 6. The conditions given in Theorems 1-4 and

OP1 -OP3 are also valid for the case of B = EB̄. In this

case, it needs only to replaced B, F̄E with EB̄, F in all

the conditions, respectively, and the state feedback controller

gain matrix is F .

V. EXAMPLE

Consider the stability and H∞ control for system (1) with

the following coefficient matrices

E =





5 10 5
0 2.5 2.5
0 0 0



 , A =





10 12 6
9 5.5 5.5

2.5 1 2.5



 ,

B =
[

3 2 0.5
]T

, Bw =
[

0.1 0.2 0.3
]T

,

C =
[

0.2 0 0.5
]

, D = 0.1, Dw = 0.1.

Let γ = 0.8, R̄ = I3, L =





0 0 1
0 0 1
0 0 1



 .

1. The stability problem. Let ǫ1 = −11, ǫ2 = 1, ρ = 0.01.

Solve OP2 subject to (15), (21) and (24), it is obtained that

βinf = 0.6019, and

X =





0.5246 −0.0567 −0.0277
−0.0567 0.5579 −0.0267
−0.0277 −0.0267 0.1886



 ,

the controller gain matrix is given by

F =
[

−1.6397 −1.4403 0.1995
]

.

The bigger ellipsoid shown in Figure 1 is the ellipsoid

Ω(ET XE, 1) for stability under the transformation

y(k) = N̄x(k), N̄ =





1 2 1
0 1 1
0 0 1



 . (30)

Figure 2 gives the controller u(k) behavior with respect

to time. Figures 3 and 4 give simulations for the state
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trajectories of the open-loop system and the closed-loop

system, respectively, the initial condition values are Ex(0) =
[

−1 0.75 0
]T

. It can be seen the designed controller

stabilizes on system.

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

−0.4

−0.2

0

0.2

0.4

0.6

y1

y2

Figure 1. The ellipsoids Ω(ET XE, 1) for stability and

H∞ control, respectively
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Figure 2. The controller u(k)
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Figure 3. The state trajectories of the open-loop system
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Figure 4. The state trajectories of the closed-loop system

2. The H∞ control problem. Let ǫ1 = −11, ǫ2 = 1,ǫ3 =
−0.01, ρ = 0.01. Since q = 1, n = 3, q < n. From Remark

7, let Bw =





0.1 0 0
0.2 0 0
0.3 0 0



, Dw =
[

0.1 0 0
]

, then

solving OP3 subject to (15), (26) with X−1 being replaced

by −2ǫ2I + ǫ22X and (24), it is obtained that βinf = 0.7643,

and

X =





0.6057 −0.1373 0.2108
−0.1373 0.6446 0.1883

0.2108 0.1883 0.1922



 ,

and the controller gain matrix is given by

F =
[

−1.5489 −1.1684 0.3804
]

.

The smaller ellipsoid (in dash) shown in Figure 1 is

the ellipsoid Ω(ET XE, 1) for the H∞ control under the

transformation (30).

VI. CONCLUSIONS

In this paper, the stability and the H∞ control problems

for discrete-time singular systems with actuator saturation are

discussed. The sufficient conditions which guarantee that the

discrete-time singular systems with actuator saturation are

admissible, admissible with γ- disturbance attenuation are

established. With these conditions, the estimation of stability

region and the state feedback controller, and the H∞ state

feedback controller are obtained by solving corresponding

LMIs optimization problems.
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