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Abstract— The quadratic control problem for discrete-time
singular Markov jump systems with parameter uncertainties is
discussed. The weighting matrix in quadratic cost function is
indefinite. For full and partial knowledge of transition proba-
bilities cases, state feedback controllers are designed based on
linear matrix inequalities (LMIs) methods which guarantee that
the closed-loop discrete-time singular Markov jump systems are
regular, causal and stochastically stable, and the cost value has
a zero lower bound and a finite upper bound. A numerical
example to illustrate the effectiveness of the method is given in
the paper.

I. INTRODUCTION

In practice, many dynamical systems can not be repre-

sented by the class of linear time-invariant model since the

dynamics of these systems is random with some features,

for example, abrupt changes, breakdowns of components,

changes in the interconnections of subsystems, etc. Such

class of dynamical systems can be adequately described by

the class of stochastic hybrid systems. A special class of

hybrid systems referred to as Markov jump systems, systems

with random structures, has attracted a lot of researchers

and many problems have been solved, such as stability

and stabilization problems [1-4], LQ control problem [5-8],

guaranteed cost problem [9], and H∞ control problem [10].

Most of results for Markov jump systems are obtained under

known transition probabilities [1, 5-9], but in many practical

systems, the transition probabilities can not known exactly

and therefore they may have uncertainties, so it is also very

important to discuss this kind of systems [2-3, 10].

Singular systems, which are also referred to as implicit

systems, descriptor systems, differential-algebraic systems,

have extensive applications in many practical systems, such

as electrical networks [11], power systems [12], economy

systems [13], and other areas [14]. So great progress has been

made in the theory and applications of the class of systems

since 1970s [14-22]. For example, singular LQ problem was

discussed in [15]. The robust stability and robust stabilization

for discrete singular systems were investigated in [16]. For

singular Markov jump systems, the stability problem and the

H∞ control problem for discrete-time singular Markov jump

systems were discussed in [17], [18], respectively based on

non strict LMIs conditions. [19] discussed the stability and

H∞ control problem for discrete-time singular Markov jump

systems by using equivalent system transformation and LMIs
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method. Boukas [20, 21] discussed the stability and output

feedback control for continuous-time singular Markov jump

systems. Lu et al [22] discussed guaranteed cost control for

continue-time singular Markov jump systems. To the best of

our knowledge, the robust quadratic cost control problem for

uncertain discrete-time singular Markov jump systems with

bounded transition probabilities and indefinite quadratic cost

has not been investigated in the literature, this problem is

important in both theory and practice.

In this paper, the robust quadratic cost control problem

for uncertain discrete-time singular Markov jump systems is

discussed. The weighting matrix in quadratic cost function

is indefinite. For full and partial knowledge of transition

probabilities cases, state feedback controllers are designed

via LMIs methods which guarantee that the closed-loop

discrete-time singular Markov jump systems are regular,

causal and stochastically stable, and the cost value has a zero

lower bound and finite upper one. A numerical example to

illustrate the effectiveness of the method is given.

Notations: Throughout this paper, I is the identity matrix

with appropriate dimension, Z denotes the set of non-

negative integer numbers, and E{·} denotes the mathematical

expectation.

II. DESCRIPTION OF PROBLEM

The discrete-time singular Markov jump system consid-

ered in this paper is described by the following dynamics:

Exk+1 = A(k, rk)xk + B(k, rk)uk, (1)

where k ∈ Z , xk ∈ R
n is the system state, uk ∈ R

p is the

control input. {rk, k ∈ Z} is a Markov chain taking values

in a finite space S = {1, 2, · · · , N}, with the following

transition probability from mode i at time k to mode j at

time k + 1, k ∈ Z:

pij = Pr{rk+1 = j|rk = i} (2)

with pij ≥ 0 for i, j ∈ S, and
N
∑

j=1

pij = 1. The matrix

E ∈ R
n×n is singular, and rank(E) = r < n. For each

i ∈ S, we have

A(k, i) = A(i) + δA(k, i), B(k, i) = B(i) + δB(k, i),

where A(i), B(i) are known constant matrices with appro-

priate dimensions; δA(k, i), δB(k, i) are unknown matrices,

denoting the uncertainties in the system.

The quadratic cost function is described as

J =
∞
∑

k=0

E{
[

xT
k uT

k

]

Q(rk)
[

xT
k uT

k

]T |r0}, (3)
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where the weighting matrix Q(i) ∈ R
(n+p)×(n+p) is known

symmetric and constant for each mode i ∈ S.

In this paper, the uncertainties are norm-bounded and are

assumed to be of the following form
[

δA(k, i) δB(k, i)
]

= D(i)∆(k, i) [Fa(i) Fb(i)] , (4)

where D(i), Fa(i), Fb(i) are known constant matrices with

appropriate dimensions, ∆(k, i) ∈ R
q×s are unknown time-

varying matrix function satisfying

∆T (k, i)∆(k, i) ≤ I, (5)

The transition probabilities are unknown, but the bounds

are known, we assume that the following is satisfied

0 < p
i
≤ pij ≤ p̄i < 1,∀i, j ∈ S (6)

where p
i

and p̄i are known parameters for each mode.

Definition 1 [17]. System Exk+1 = A(rk)xk (or the pair

(E, A(rk))) is said to be

(1) regular if det(zE −A(rk)) 6≡ 0 for any rk = i, i ∈ S .

(2) causal if it is regular and degree (det(zE−A(rk))) =
rank(E) for any rk = i, i ∈ S.

(3) stochastically stable, if for every initial state x0, the

condition E{
∞
∑

k=0

‖xk‖2|x0, r0} < ∞ is satisfied.

Remark 1. In this paper, the weighting matrix Q(rk) in

the quadratic cost function (3) is only symmetric, it does

not require positive definite or semi-positive definite, that is,

Q(rk) is indefinite. The problem we are addressing here is

different from the singular LQ problem discussed in [15] and

the guaranteed cost problem discussed in [22].

Remark 2. In practice, the transition probabilities for

some systems can not easily be obtained or known exactly.

Therefore discussing the stability and control problem for

Markov jump systems with partial knowledge of transition

probabilities is a very important issue for practical systems.

In this paper, we discuss the case of transition probabilities

are unknown but bounded with some known bounds.

The purpose of this paper is to design a state feedback

controller uk = K(rk)xk, develop LMI conditions and find

a constant J0 ≥ 0 such that the closed-loop system formed

by system (1) and uk = K(rk)xk is regular, causal and

stochastically stable, and the cost values 0 ≤ J ≤ J0 for all

uncertainties satisfying (4) and (5).

Lemma 1 [17]. System Exk+1 = A(rk)xk is regular,

causal and stochastically stable, if and only if there exist

symmetric matrix Pi such that

ET PiE ≥ 0, AT (i)P̄iA(i) − ET PiE < 0,

where P̄i =
N
∑

j=1

pijPj .

Lemma 2. Given matrices X, Y, Z with appropriate di-

mensions, and Y is symmetric. Then there exists scalar

ρ > 0, such that ρI + Y > 0 and

−XT Z − ZT X − ZT Y Z ≤ XT (ρI + Y )−1X + ρZT Z.

If Y > 0, then ρ can be taken as ρ = 0 [23].

Lemma 3 [24]. Given a symmetric matrix Ω and ma-

trices Γ, Ξ with appropriate dimensions, then Ω + Γ∆Ξ +
ΞT ∆T ΓT < 0 for all ∆ satisfying ∆T ∆ ≤ I , if and only if

there exists a scalar ǫ > 0 such that Ω+ǫΓΓT +ǫ−1ΞT Ξ < 0.

III. MAIN RESULTS

The closed-loop system formed by system (1) and the state

feedback uk = K(rk)xk is

Exk+1 = AK(k, rk)xk, (7)

where

AK(k, rk) = A(k, rk) + B(k, rk)K(rk)
= AK(rk) + D(rk)∆(k, rk)FK(rk),

AK(rk) = A(rk) + B(rk)K(rk),
FK(rk) = Fa(rk) + Fb(rk)K(rk),

and the quadratic cost function is changed to

J =
∞
∑

k=0

E{xT
k

[

In KT (rk)
]

Q(rk)
[

In KT (rk)
]T

xk|r0}

(8)
Lemma 4. For given matrix K(i), if there exist symmetric

matrices Zi > 0, Xi > 0 and Si satisfying the following set

of coupled LMIs:

Q(i)+
[

A(i) B(i)
]T

ΦT ZiΦ
[

A(i) B(i)
]

≥ 0, (9)

Πi = AT
K(i)X̄iAK(i) − AT

K(i)ΦT S̄iΦAK(i) − ET XiE

+
[

In KT (i)
]

Q(i)
[

In KT (i)
]T

< 0,
(10)

then system (7) with ∆(k, i) = 0 is regular, causal and

stochastically stable, and the cost value satisfies

0 ≤ J ≤ xT
0 ET Xr0

Ex0, (11)

where X̄i =
N
∑

j=1

pijXj , S̄i =
N
∑

j=1

pijSj , Φ ∈ R
n×n is any

constant matrix satisfying ΦE = 0, rank(Φ) = n − r.

Proof. First, let us prove that system (7) with ∆(k, i) = 0
is regular, causal and stochastically stable. Since (9) holds,

let α > 0 and αI − Zi > 0, it follows that

Q̄(i) =

Q(i) + α
[

A(i) B(i)
]T

ΦT Φ
[

A(i) B(i)
]

≥ 0,
(12)

then (10) can be written as

AT
K(i)

N
∑

j=1

pij(Xj − ΦT SjΦ − αΦT Φ)AK(i)

−ET XiE +
[

In KT (i)
]

Q̄(i)
[

In KT (i)
]T

< 0.

(13)

Let Pi = Xi−ΦT SiΦ−αΦT Φ, from Xi > 0, (12) and (13),

it follows that ET PiE = ET XiE ≥ 0, AT
K(i)P̄iAK(i) −

ET PiE < 0. From Lemma 1, it is obtained that system (7)

with ∆(k, i) = 0 is regular, causal and stochastically stable.

Next, to prove that the cost value satisfies (11). Construct

a stochastic Lyapunov functional candidate as V (k, rk) =
xT

k ET Xrk
Exk, where matrices Xrk

> 0. Let the mode at

time k be i, that is rk = i. Recall that at time k + 1, the
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system may jump to any mode rk+1 = j. One can then

obtain that

∆V (k) = E[V (k + 1, rk+1)|rk = i] − V (k, i)
= E[xT

k+1E
T Xrk+1

Exk+1|rk = i] − xT
k ET XiExk

= xT
k AT

K(i)X̄iAK(i)xk − xT
k ET XiExk.

(14)
From ΦE = 0, the following equation holds for any sym-

metric matrix Si with appropriate dimensions and rk = i:

0 = −
N
∑

j=1

pijx
T
k+1E

T ΦT SjΦExk+1

= −xT
k AT

K(i)ΦT S̄iΦAK(i)xk.

(15)

Then, adding (15) to (14), it is obtained that

∆V (k) = xT
k (AT

K(i)X̄iAK(i) − ET XiE

−AT
K(i)ΦT S̄iΦAK(i))xk.

(16)

Consider the quadratic cost function J , for rk = i, it follows

that

J =
∞
∑

k=0

E{xT
k

[

In KT (i)
]

Q(i)
[

In KT (i)
]T

xk|r0}

=
∞
∑

k=0

E{xT
k

[

In KT (i)
]

Q(i)
[

In KT (i)
]T

xk

+∆V (k)|r0} −
∞
∑

k=0

E{∆V (k)|r0}

=
∞
∑

k=0

E{xT
k Πixk|r0} + E{V (0)}

≤ E{V (0)} = xT
0 ET Xr0

Ex0.
(17)

Let

J1 =
∞
∑

k=0

E{
[

xT
k uT

k

]

Q̄(rk)
[

xT
k uT

k

]T |r0}, (18)

where Q̄(rk) is shown as in (12) for rk = i. Since (9) holds,

from (12), it follows that J1 ≥ 0, and

J1 =
∞
∑

k=0

E{
[

xT
k uT

k

]

(Q(rk) + α
[

A(rk) B(rk)
]T

·ΦT Φ
[

A(rk) B(rk)
]

)
[

xT
k uT

k

]T |r0}
=

∞
∑

k=0

E{
[

xT
k uT

k

]

Q(rk)
[

xT
k uT

k

]T

+α(A(rk)xk + B(rk)uk)T

·ΦT Φ(A(rk)xk + B(rk)uk)|r0}
=

∞
∑

k=0

E{
[

xT
k uT

k

]

Q(rk)
[

xT
k uT

k

]T

+αxT
k+1E

T ΦT ΦExk+1|r0} = J ≥ 0.
(19)

According to (17)-(19), it is obtained that (11) holds. The

proof is completed.

Remark 3. Although the weighting matrix Q(rk) in (3)

is indefinite for each rk = i, the cost value also can satisfy

J ≥ 0. This is determined by the singularity of the matrix

E. From (19), it is shown that the cost value of J1 has no

relation with the introduction of the scalar α. If Q(rk) ≥ 0,

then J ≥ 0 holds directly, and it only needs to consider the

upper bound of J .

Remark 4. The solvability of (9) is independence of (10),

and J ≥ 0 is guaranteed by (9). If (9) does not hold, then (12)

cannot hold, since Q(i) is indefinite, the regularity, causality

and stochastic stability cannot be obtained if only (10) holds.

From the proof of Lemma 4, we know that if (9) holds,

then J = J1 ≥ 0. So the following lemma can be obtained

by replacing Q(i) in (10) with Q̄(i) directly.

Lemma 5. For given matrix K(i), if there exist symmetric

matrices Zi > 0, Xi > 0, Si and a scalar α > 0 satisfying

(9) and

αI − Zi ≥ 0, (20)

AT
K(i)X̄iAK(i) − AT

K(i)ΦT S̄iΦAK(i) − ET XiE

+
[

In KT (i)
]

Q̄(i)
[

In KT (i)
]T

< 0, (21)

then system (7) with ∆(k, i) = 0 is regular, causal and

stochastically stable, and the cost value satisfies (11), where

Q̄(i) = Q(i) + α
[

A(i) B(i)
]T

ΦT Φ
[

A(i) B(i)
]

.

(22)
In the following, we consider system (7) and quadratic cost

function (8), we will design a state feedback controller and

find a scalar J0 ≥ 0 such that system (7) is regular, causal

and stochastically stable and 0 ≤ J ≤ J0 for all uncertainties

satisfying (4) and (5).

Theorem 1. For given scalars λi > 0, ρ > 0, ǫ1 and ǫ2, if

there exist matrices Vi, Zi > 0, Yi > 0, K̄(i), nonsingular

matrix Ri, symmetric matrix Si, and scalars α > 0, ǫ > 0
such that (20) and





Ψi11 Vi ViΦD(i)
∗ Zi 0
∗ ∗ ǫI



 ≥ 0, (23)

















Θi11 ΛT

1iWi ǫ1I ρΛT

1iΦ
T Θi15 Θi16 λiΛ

T

2i

∗ −Ȳ 0 0 0 W T

i D(i) 0
∗ ∗ Θi33 0 0 0 0
∗ ∗ ∗ −ρI 0 ρΦD(i) 0
∗ ∗ ∗ ∗ −I 0 0
∗ ∗ ∗ ∗ ∗ Θi66 0
∗ ∗ ∗ ∗ ∗ ∗ −λiI

















< 0, (24)

where

Ψi11 = Q(i) + [A(i) B(i)]
T

ΦT V T
i + ViΦ [A(i) B(i)]

−ǫ [Fa(i) Fb(i)]
T

[Fa(i) Fb(i)]
Λ1i = A(i)Ri + B(i)K̄(i), Λ2i = Fa(i)Ri + Fb(i)K̄(i),
Θi11 = ǫ1Λ

T
1iΦ

T + ǫ1ΦΛ1i + ǫ2R
T
i ET + ǫ2ERi + ǫ2Yi,

Θi15 =
[

RT
i K̄T (i)

]

Q̄
1
2 (i),

Θi16 = ǫ1ΦD(i) + αΛT
1iΦ

T ΦD(i),

Θi33 = −ρI − S̄i, S̄i =
N
∑

j=1

pijSj ,

Θi66 = −λiI + αDT (i)ΦT ΦD(i),
Wi =

[ √
pi1I · · · √

piNI
]

, Ȳ = diag{Y1, · · · , YN},
(25)

hold, then there exists a state feedback controller such that

system (7) is regular, causal and stochastically stable, and

the cost value satisfies

0 ≤ J ≤ xT
0 ET Y −1

r0
Ex0, (26)
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for all uncertainties satisfying (4) and (5), and the state

feedback controller is given by uk = K̄(i)R−1
i xk.

Proof. First, from (23), using Schur complement, it is

obtained that the following holds

Ξi = Ψi11 − ǫ−1ViΦD(i)DT (i)ΦV T
i − ViZ

−1
i V T

i ≥ 0.

(27)
Since Zi > 0, based on Lemma 2 and Lemma 3, it is

obtained that

Q̃(i) = Q(i) +
[

A(k, i) B(k, i)
]T

ΦT

·ZiΦ
[

A(k, i) B(k, i)
]

≥ Q(i) +
[

A(k, i) B(k, i)
]T

ΦT V T
i

+ViΦ
[

A(k, i) B(k, i)
]

− ViZ
−1
i V T

i

= Q(i) +
[

A(i) B(i)
]T

ΦT V T
i

+ViΦ
[

A(i) B(i)
]

− V T
i Z−1

i Vi

+
[

Fa(i) Fb(i)
]T

∆T (k, i)DT (i)ΦT V T
i

+ViΦD(i)∆(k, i)
[

Fa(i) Fb(i)
]

≥ Ξi ≥ 0.
(28)

Let

Q̂(i) = Q(i) + α
[

A(k, i) B(k, i)
]T

ΦT

·Φ
[

A(k, i) B(k, i)
]

= Q̄(i) + δQ̄(i)

(29)

where

δQ̄(i) = α
[

A(i) B(i)
]T

ΦT Φ
[

δA(k, i) δB(k, i)
]

+α
[

δA(k, i) δB(k, i)
]T

ΦT Φ
[

A(i) B(i)
]

+α
[

δA(k, i) δB(k, i)
]T

ΦT Φ
[

δA(k, i) δB(k, i)
]

.

From (20) and (28), it follows that Q̂(i) ≥ 0, and then

Q̄(i) ≥ 0.

Based on Lemma 2, for any matrix L1i with appropriate

dimensions, there exists ρ > 0 such that

ρI + S̄i > 0, (30)

−AT
K(k, i)ΦT S̄iΦAK(k, i)

≤ AT
K(k, i)ΦT LT

1i + L1iΦAK(k, i)
+L1i(ρI + S̄i)

−1LT
1i + ρAT

K(k, i)ΦT ΦAK(k, i).
(31)

Since Xi > 0, from Lemma 2, it is obtained that

−ET XiE ≤ ET LT
2i + L2iE + L2iX

−1
i LT

2i. (32)

From (29)-(32), it is obtained that

Π̂i = AT
K(k, i)X̄iAK(k, i) − AT

K(k, i)ΦT S̄iΦAK(k, i)

−ET XiE +
[

In KT (i)
]

Q̂(i)
[

In KT (i)
]T

≤ AT
K(k, i)X̄iAK(k, i) + AT

K(k, i)ΦT LT
1i

+L1iΦAK(k, i) + L1i(ρI + S̄i)
−1LT

1i + ET LT
2i

+ρAT
K(k, i)ΦT ΦAK(k, i) + L2iE + L2iX

−1
i LT

2i

+
[

In KT (i)
]

(Q̄(i) + δQ̄(i))
[

In KT (i)
]T

= Π̆i.
(33)

Applying Schur complement, Π̆i < 0 is equivalent to
















Θ̄i11 AT
K(k, i)Wi L1i ρAT

K(k, i)ΦT

∗ −Ȳ 0 0
∗ ∗ −ρI − S̄i 0
∗ ∗ ∗ −ρI

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

[In KT (i)]Q̄
1
2 (i) Θ̄i16

0 0
0 0
0 0
−I 0
∗ −α−1I

















< 0, (34)

holds, where

Θ̄i11 = AT
K(k, i)ΦT LT

1i + L1iΦAK(k, i)
+ET LT

2i + L2iE + L2iYiL
T
2i

+αΘ̄i16ΦAK(i) + αAT
K(i)ΦT Θ̄T

i16,

Θ̄i16 = (δA(k, i) + δB(k, i)K(i))T ΦT , Yi = X−1
i ,

from (33), if (34) holds, then Π̂i < 0. Let

Π̃i =

















Θ̃i11 AT
K(i)Wi L1i

∗ −Ȳ 0
∗ ∗ −ρI − S̄i

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

ρAT
K(i)ΦT [In KT (i)]Q̄

1
2 (i) 0

0 0 0
0 0 0

−ρI 0 0
∗ −I 0
∗ ∗ −α−1I

















,

where

Θ̃i11 = AT
K(i)ΦT LT

1i + L1iΦAK(i)
+ET LT

2i + L2iE + L2iYiL
T
2i.

From (4), (34) can be rewritten as

Π̃i + Ω1i∆(k, i)Ω2i + (Ω1i∆(k, i)Ω2i)
T < 0, (35)

where

ΩT
1i =

[

(L1iΦD(i) + αAT
K(i)ΦT ΦD(i))T

(WT
i D(i))T 0 ρ(ΦD(i))T 0 (ΦD(i))T

]

,

Ω2i =
[

FK(i) 0 0 0 0 0
]

.

From Lemma 3, a necessary and sufficient condition guar-

anteeing (35) is that there exists a scalar λi > 0 such that

Π̃i + λ−1
i Ω1iΩ

T
1i + λiΩ

T
2iΩ2i < 0, (36)

Using now Schur complement, (36) becomes




Π̃i Ω1i λiΩ
T
2i

∗ −λiI 0
∗ ∗ −λiI



 < 0. (37)
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Let

L1i = ǫ1Li, L2i = ǫ2Li, Ri = L−T
i , K̄(i) = K(i)Ri,

From (37), it follows that

Θ̃i11 = (ǫ1A
T
K(i)ΦT + ǫ2E

T )LT
i

+Li(ǫ1ΦAK(i) + ǫ2E) + ǫ22LiYiL
T
i < 0

then Li is nonsingular. Let Ti = diag{L−1
i , I, I, I, I, I, I, I},

pre- and postmultiply (37) by Ti and TT
i , and by using

Schur complement, (37) is equivalent to (24). Then Π̂i < 0,

together with (28), (20), and Yi = X−1
i , K̄(i) = K(i)Ri,

and by Lemma 5, the conclusion is obtained. The proof is

completed.

Theorem 2. For given scalars λi > 0, ρ > 0, ǫ1 and ǫ2, if

there exist matrices Vi, Zi > 0, Yi > 0, K̄(i), nonsingular

matrix Ri, symmetric matrix Si, and scalars α > 0, ǫ > 0
such that (20), (23) and
















Θi11 ΛT

1iW̄i ǫ1I ρΛT

1iΦ
T Θi15 Θi16 λiΛ

T

2i

∗ −Ȳ 0 0 0 W̄ T

i D(i) 0

∗ ∗ Θ̂i33 0 0 0 0
∗ ∗ ∗ −ρI 0 ρΦD(i) 0
∗ ∗ ∗ ∗ −I 0 0
∗ ∗ ∗ ∗ ∗ Θi66 0
∗ ∗ ∗ ∗ ∗ ∗ −λiI

















< 0, (38)

ρI + Sj > 0 (39)

where

W̄i =
[ √

p̄iI · · · √
p̄iI

]

, Θ̂i33 = −ρ̄iI − Ŝi,

ρ̄i = Np
i
ρ, Ŝi =

N
∑

j=1

p
i
Sj ,

hold, then there exists a state feedback controller such that

system (7) is regular, causal and stochastically stable, and

the cost value satisfies (26) for all uncertainties satisfying

(4) and (5), and the transition probabilities satisfying (6),

the state feedback controller is given by uk = K̄(i)R−1
i xk.

Proof. From (39) and (6), it follows that

ρI + S̄i =
N
∑

j=1

pij(ρI + Sj) ≥
N
∑

j=1

p
i
(ρI + Sj)

= ρ̄iI + Ŝi > 0.

(40)

Since Xi > 0, together with (6), (31)-(33) and (40), it is

obtained that

Π̂i ≤ AT
K(k, i)X̂iAK(k, i) + AT

K(k, i)ΦT LT
1i

+L1iΦAK(k, i) + L1i(ρ̄iI + Ŝi)
−1LT

1i

+ρAT
K(k, i)ΦT ΦAK(k, i)

+ET LT
2i + L2iE + L2iX

−1
i LT

2i

+
[

In KT (i)
]

(Q̄(i) + δQ̄(i))
[

In KT (i)
]T

,

where X̂i =
N
∑

j=1

p̄iXj . Applying Schur complement, similar

to the proof of Theorem 1, the conclusion is obtained. The

proof is completed.

Remark 5. In Theorem 1, (20), (23) are independence of

(24). (24) depends on (20), (23) since Q̄(i) is in (24). So

in Theorem 1, we can solve (20), (23) first, if (20), (23) are

solvable, then solve (24). The method to solve Theorem 2 is

similar to Theorem 1.

Remark 6. The method in this paper only gives the

sufficient condition such that the quadratic cost function has

a zero lower bound and finite upper one. The minimal value

of J cannot be obtained by the method given in this paper.

IV. EXAMPLE

Consider the following data for the control problem we

are addressing in this paper:

E =





5 5 0
0 0 0
0 0 2



 ,

A(1) =





4 −3 1
2 1 2
0 1 1



 , B(1) =





−2
−2

5



 ,

D(1) =
[

0.002 0.001 0.002
]T

,

Fa(1) =
[

0.005 0.003 0.001
]

, Fb(1) = 0.002,

A(2) =





1 2 1
−2 1 0

0 1 2



 , B(2) =





0
1
2



 ,

D(2) =
[

0.001 0.002 0.003
]T

,

Fa(2) =
[

0.005 0.005 0.002
]

, Fb(2) = 0.001,

A(3) =





0 2 1
2 1 3
1 −1 0



 , B(3) =





2
4
3



 ,

D(3) =
[

0.003 0.002 0.001
]T

,

Fa(3) =
[

0.002 0.004 0.002
]

, Fb(3) = 0.002,

Q(1) =









1 −2 −4 4
−2 4 −2 2
−4 −2 −1 4

4 2 4 −1









,

Q(2) =









0 2 0 2
2 3 0 −1
0 0 5 0
2 −1 0 1









,

Q(3) =









2 −2 −6 −8
−2 4 −3 −4
−6 −3 −4 −12
−8 −4 −12 −12









.

The transition probabilities are assomed to satisfy

0.1 ≤ p1j ≤ 0.5, 0.2 ≤ p2j ≤ 0.6, 0.2 ≤ p3j ≤ 0.5.

Notice that Q(1), Q(2) and Q(3) are indefinite. Let Φ =
diag{0, 5, 0}, λ1 = λ2 = λ3 = 1, ǫ1 = ǫ2 = 1, ρ = 1.

Solving the LMIs (20), (23), (38), (39), they are feasible

and the results are given by

Y1 =





5.4773 0.0119 −1.5136
0.0119 0.0197 0.0012

−1.5136 0.0012 0.4301



 ,

4048



Y2 =





5.5408 −0.0030 −0.9621
−0.0030 0.0352 −0.0039
−0.9621 −0.0039 0.4320



 ,

Y3 =





5.6191 0.0106 −0.9925
0.0106 0.0374 0.0022

−0.9925 0.0022 0.1911



 ,

the gain matrices of a state feedback controller can be

obtained as

K(1) =
[

−0.1316 −0.0118 −0.1807
]

,

K(2) =
[

−0.3150 −0.6976 −1.2108
]

,

K(3) =
[

−0.2872 0.2970 0.0928
]

,

and the cost value satisfies that 0 ≤ J ≤ x0E
T Y −1

r0
ET x0,

x0 is the initial value.

Figure 1 and Figure 2 give the simulation results for state

trajectories of the open-loop system and the closed-loop

system with the mode shown in Figure 3 and initial state

Ex0 = [1 0 −1]T , respectively. The cost function satisfies

0 ≤ J ≤ 48.7584.

0 10 20 30 40 50
−1

−0.5

0

0.5

1
x 10

5

time k

x1

x2

x3

Figure 1. The state trajectories of the open-loop system

0 10 20 30 40 50
−1.5

−1

−0.5

0

0.5

1

1.5

time k

x1

x2

x3

Figure 2. The state trajectories of the closed-loop system

0 10 20 30 40 50

1

3

time k

Figure 3. The mode rk

V. CONCLUSIONS

In this paper, the quadratic cost control problem for

discrete-time singular Markov jump singular systems with

parameter uncertainties is discussed. The weighting matrix

in quadratic cost function is indefinite. For full and partial

knowledge of transition probabilities cases, state feedback

controllers are designed using LMIs setting, which guarantee

the closed-loop discrete-time singular Markov jump systems

to be regular, causal and stochastically stable, and the cost

value has a zero lower bound and a finite upper one.
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