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Abstract— A new adaptive control modification is presented
that can achieve robust adaptation with a large adaptive
gain without incurring high-frequency oscillations as with the
standard model-reference adaptive control. The modification is
based on an optimal control formulation that minimizes the L2

norm of the tracking error. The optimality condition is used to
derive the modification using the gradient method. The adaptive
optimal control modification results in a stable adaptation and
allows a large adaptive gain to be used for better tracking
performance with improved stability robustness. Simulations
demonstrate the effectiveness of the proposed modification.

I. INTRODUCTION

In recent years, adaptive control has been receiving a

significant amount of attention. Adaptive control provides the

ability to accommodate system uncertainties and to improve

fault tolerance of a control system. Various model-reference

adaptive control (MRAC) methods have been investigated

[1], [2], [4], [3], [5], [6], [7], [8], [9], [10]. In the conventional

MRAC framework, the upper bound on the steady state

tracking error is generally inversely proportional to the

magnitude of the adaptive gain. Thus, in the presence of large

uncertainties, fast adaptation using a large adaptive gain can

be used to reduce the tracking error rapidly. However, a large

adaptive gain can lead to high-frequency oscillations which

can adversely affect robustness of an MRAC law.

Various modifications were developed to increase robust-

ness of MRAC by adding damping to the adaptive law.

Two well-known modifications in adaptive control are the

σ -modification [11] and ε1- modification [12]. These mod-

ifications have been used extensively in adaptive control.

This paper introduces a new modification based on an

optimal control formulation that minimizes the L2-norm

of the tracking error. The optimality condition results in

a damping term proportional to the persistent excitation.

The analysis shows that this modification can allow fast

adaptation with a large adaptive gain without causing high-

frequency oscillations and can provide improved stability

robustness while preserving the tracking performance.

II. OPTIMAL CONTROL MODIFICATION

A direct MRAC problem is posed as follows:
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Given a nonlinear plant as

ẋ = Ax+B [u+ f (x)] (1)

where x(t) : [0,∞) → R
n is a state vector, u(t) : [0,∞) → R

p

is a control vector, A ∈ R
n×n and B ∈ R

n×p are known such

that the pair (A,B) is controllable, and f (x) : R
n → R

p is a

bounded unstructured uncertainty.

Assumption 1: The uncertainty f (x) can be approximated

using a feedforward neural network in the form

f (x) =
n

∑
i=1

θiφi (x)+ ε (x) = Θ⊤Φ(x)+ ε (x) (2)

where Θ ∈ R
m×p is an unknown constant weight matrix

that represents a parametric uncertainty, Φ(x) : R
n → R

m is

a vector of known bounded basis functions with Lipschitz

nonlinearity, and ε (x) : R
n → R

p is an approximation error.

Since Φ(x) is Lipschitz, then

‖Φ(x)−Φ(x0)‖ ≤C‖x− x0‖ (3)

for some constant C > 0, which implies a bounded partial

derivative
∥

∥

∥

∥

∂Φ(x)

∂x

∥

∥

∥

∥

≤ L (4)

for some constant L > 0.

The set of basis functions Φ(x) is chosen such that the ap-

proximation error ε (x) becomes small on a compact domain

x ∈ R
n. The universal approximation theorem for sigmoidal

neural networks by Cybenko can be used for selecting a

good set of basis functions Φ(x) [13]. Alternatively, the

Micchelli’s theorem provides theoretical basis for a neural

net design of Θ⊤Φ(x) using radial basis functions to keep

the approximation error ε (x) small [14].

Assumption 2: The set of basis functions Φ(x) satisfies

the persistent excitation condition for some α0,α1,T0 ≥ 0

α1I ≥
1

T0

ˆ t+T0

t

Φ(x(τ))Φ⊤ (x(τ))dτ ≥ α0I, ∀t > 0 (5)

where I is an identity matrix.

The objective is to design a controller that enables the

plant to follow a reference model

ẋm = Amxm +Bmr (6)

where Am ∈ R
n×n is Hurwitz and known, Bm ∈ R

n×p is also

known, and r (t) : [0,∞) → R
p ∈ L∞ is a command vector

with ṙ ∈ L∞.
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Defining the tracking error as e = xm − x, then the con-

troller u(t) is specified by

u = Kxx+Krr−uad (7)

where Kx ∈ R
p×n and Kr ∈ R

p×p are known nominal gain

matrices, and uad ∈ R
p is a direct adaptive signal.

Then, the tracking error equation becomes

ė = ẋm − ẋ = Ame+(Am −A−BKx)x+(Bm −BKr)r

+B
[

uad −Θ⊤Φ(x)− ε (x)
]

(8)

The gain matrices Kx and Kr are chosen to satisfy the

model matching conditions A + BKx = Am and BKr = Bm.

The adaptive signal uad is an estimator of the parametric

uncertainty in the plant such that

uad = Θ̂⊤Φ(x) (9)

where Θ̂ ∈ R
m×p is an estimate of Θ.

Let Θ̃ = Θ̂−Θ be an estimation error. Then the tracking

error equation can be expressed as

ė = Ame+B
(

Θ̃⊤Φ− ε
)

(10)

Proposition 1: The following adaptive law provides an

update law that minimizes ‖e‖
L2

˙̂
Θ = −ΓΦ

(

e⊤P−νΦ⊤Θ̂B⊤PA−1
m

)

B (11)

where Γ = Γ⊤ > 0 ∈ R
m×m is an adaptive gain matrix, ν >

0 ∈R is a weighting constant, and P = P⊤ > 0 ∈R
n×n solves

PAm +A⊤
mP = −Q (12)

where Q = Q⊤ > 0 ∈ R
n×n.

Proof: The adaptive law seeks to minimize the cost

function

J =
1

2

ˆ t f

0

(e−∆)⊤ Q(e−∆)dt (13)

subject to Eq. (10) where ∆ is the tracking error at t = t f .

This optimal control problem can be formulated by the

Pontryagin’s Minimum Principle. Defining a Hamiltonian

H
(

e,Θ̃
)

=
1

2
(e−∆)⊤ Q(e−∆)+ p⊤

(

Ame+BΘ̃⊤Φ−Bε
)

(14)

where p(t) : [0,∞) → R
n is an adjoint variable, then the

necessary condition gives

ṗ = −∇H⊤
e = −Q(e−∆)−A⊤

m p (15)

with the transversality condition p
(

t f

)

= 0 since e(0) is

known. The optimality condition is obtained by

∇HΘ̃⊤ = Φ∇HΘ̃⊤Φ = Φp⊤B (16)

The adaptive law is formulated by the gradient method as

˙̃Θ = −Γ∇HΘ̃⊤ = −ΓΦp⊤B (17)

The solution of p can be obtained using a “sweeping”

method [15] by letting p = Pe+SΘ̂⊤Φ. Then

Ṗe+P
(

Ame+BΘ̂⊤Φ−BΘ⊤Φ−Bε
)

+ ṠΘ̂⊤Φ

+S
d
(

Θ̂⊤Φ
)

dt
= −Q(e−∆)−A⊤

m

(

Pe+SΘ̂⊤Φ

)

(18)

which yields the following equations

Ṗ+PAm +A⊤
mP+Q = 0 (19)

Ṡ +PB+A⊤
mS = 0 (20)

Q∆−S
d
(

Θ̂⊤Φ
)

dt
+PB

(

Θ⊤Φ+ ε
)

= 0 (21)

subject to the transversality conditions P
(

t f

)

= 0 and

S
(

t f

)

= 0.

The existence and uniqueness of the solution of the

Lyapunov differential equation (19) is well-established. It

follows that Eq. (20) also has a stable, unique solution in

time-to-go τ = t f − t.

Since ṙ ∈ L∞, Φ is bounded and Lipschitz, and p
(

t f

)

=
0 from the transversality condition, then as t f → ∞,

limt f →∞

∣

∣d
(

Θ̂⊤Φ
)

/dt
∣

∣ exists, where

lim
t f →∞

∣

∣

∣

∣

∣

d
(

Θ̂⊤Φ
)

dt

∣

∣

∣

∣

∣

=

lim
t f →∞

∣

∣

∣

∣

−B⊤p
(

t f

)

Φ⊤ΓΦ+ Θ̂⊤ ∂Φ

∂x

[

ẋm −B
(

Θ̃⊤Φ− ε
)]

∣

∣

∣

∣

≤ lim
t f →∞

∣

∣

∣
Θ̂⊤LI

[

−A−1
m Bmṙ−B

(

Θ̃⊤Φ− ε
)]∣

∣

∣
= σt (22)

for some constant vector σt > 0 ∈ R
n, and I ∈ R

m×n is a

matrix whose elements are all equal to one.

Consider an infinite time-horizon problem as t f →∞. Then

P(t)→ P(0) and S (t)→ S (0) are determined by their steady

state solutions from Eqs. (19) and (20) as

PAm +A⊤
mP = −Q (23)

S = −A−⊤
m PB (24)

The adjoint p is then obtained as

p = Pe−νA−⊤
m PBΘ̂⊤Φ (25)

where ν is introduced as a weighting constant to allow for

adjustments of the second term in the adaptive law. Since Θ

is constant, then the adaptive law (11) is obtained from Eqs.

(17) and (25).

Defining δε = supt |ε| and ϕ = supt

∣

∣Θ⊤Φ
∣

∣, then for ν = 1

the unknown tracking error ∆ at t = t f → ∞ is bounded by

‖∆‖ ≤
λmax (P)‖B‖

λmin (Q)

[

‖ϕ‖+‖δε‖+
‖σt‖

σmin (Am)

]

(26)

where λ and σ denote the eigenvalue and singular value,

respectively.
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Theorem 1: The adaptive law (11) results in stable and

uniformly bounded tracking error outside a compact set

C =

{

e,Θ̃⊤Φ ∈ R
n : λmin (Q)

[

(‖e‖−∆1)
2 −∆2

1

]

+νλmin

(

B⊤A−⊤
m QA−1

m B
)

[

(∥

∥

∥
Θ̃⊤Φ

∥

∥

∥
−∆2

)2

−∆2
2

]

≤ 0

}

(27)

where

∆1 =
λmax (P)‖B‖‖δε‖

λmin (Q)
(28)

∆2 =
σmax

(

B⊤PA−1
m B

)

‖ϕ‖

λmin

(

B⊤A−⊤
m QA−1

m B
) (29)

Proof: Choose a Lyapunov candidate function

V = e⊤Pe+ trace
(

Θ̃⊤Γ−1Θ̃

)

(30)

Evaluating V̇ yields

V̇ = −e⊤Qe+2e⊤PB
(

Θ̃⊤Φ− ε
)

−2e⊤PBΘ̃⊤Φ

+2νΦ⊤Θ̂B⊤PA−1
m BΘ̃⊤Φ (31)

PA−1
m can be decomposed into a symmetric part M =

1
2

(

PA−1
m +A−⊤

m P
)

= − 1
2
A−⊤

m QA−1
m and an anti-symmetric

part N = 1
2

(

PA−1
m −A−⊤

m P
)

. Since M < 0, then PA−1
m < 0

. Using the property y⊤Ny = 0, V̇ becomes

V̇ = −e⊤Qe−2e⊤PBε −νΦ⊤Θ̃B⊤A−⊤
m QA−1

m BΘ̃⊤Φ

+2νΦ⊤ΘB⊤PA−1
m BΘ̃⊤Φ (32)

By completing the squares, an upper bound of V̇ is

V̇ ≤−λmin (Q)
[

(‖e‖−∆1)
2 −∆2

1

]

−νλmin

(

B⊤A−⊤
m QA−1

m B
)

[

(∥

∥

∥
Θ̃⊤Φ

∥

∥

∥
−∆2

)2

−∆2
2

]

(33)

If C is a compact set defined in Eq. (27), then for bounded

tracking error, V̇ ≤ 0 outside the compact set C , but V (t)
increases inside the compact set C , which contains e = 0 and

Θ̃=0, whose trajectories will all stay inside C . It follows by

LaSalle’s Invariance Principle that e and Θ̃ are uniformly

bounded.

The effect of the optimal control modification is to add a

damping term to the weight update law, which depends on

the persistent excitation.

Theorem 2: In the presence of fast adaptation, i.e.,

λmin (Γ) ≫ 1, the adaptive law (11) is robustly stable for

ν = 1 with all closed-loop poles having negative real values.

Proof: The adaptive law (11) can be written as

Φ⊤ ˙̂
Θ

Φ⊤ΓΦ
= −

(

e⊤P−νΦ⊤Θ̂B⊤PA−1
m

)

B (34)

If Γ ≫ 1 is large and the input is PE, then in the limit as

Φ⊤ΓΦ → ∞

BΘ̂⊤Φ →
1

ν
P−1A⊤

mPe (35)

Hence, the closed-loop tracking error equation becomes

ė = −P−1

[(

1+ν

2ν

)

Q−

(

1−ν

2ν

)

S

]

e−B
(

Θ⊤Φ+ ε
)

(36)

where S = A⊤
mP−PAm.

For ν = 1, the closed-loop poles are all real, negative

values with Re [s] = −λ
(

P−1Q
)

. The system transfer func-

tion matrix H (s) =
(

sI +P−1Q
)−1

is strictly positive real

(SPR) since H ( jω)+H⊤ (− jω) > 0, and thus the system is

minimum phase and dissipative [16]. The Nyquist plot of a

strictly stable transfer function for a SISO system is strictly

in the right half plane with a phase shift less than or equal to
π
2

[16], corresponding to a phase margin of at least π
2

. For a

MIMO system, the diagonal elements of the system transfer

function matrix exhibit a similar behavior.

Lemma 1: The equilibrium state y = 0 of the differential

equation

ẏ = −Φ⊤ (t)ΓΦ(t)y (37)

where y(t) : [0,∞) → R, Φ(t) ∈ L2 : [0,∞) → R
n is a piece-

wise continuous and bounded function, and Γ > 0 ∈ R
n×n,

is uniformly asymptotically stable, if there exists a constant

γ > 0 such that

1

T0

ˆ t+T0

t

Φ⊤ (τ)ΓΦ(τ)dτ ≥ γ (38)

which implies that y is locally bounded by the solution of a

linear differential equation

ż = −γz (39)

for t ∈ [ti, ti +T0], where ti = ti−1 +T0 and i = 1,2, . . . ,n → ∞.

Proof: Choose a Lyapunov candidate function and evalu-

ate its time derivative

V =
1

2
y2 (40)

V̇ = −Φ⊤ (t)ΓΦ(t)y2 = −2Φ⊤ (t)ΓΦ(t)V (41)

Then, there exists γ > 0 for which V is uniformly asymp-

totically stable since

V (t +To) = V (t)exp

(

−2

ˆ t+T0

t

Φ⊤ (τ)ΓΦ(τ)dτ

)

≤V (t)e−2γT0 (42)

This implies that

exp

(

−2

ˆ t+T0

t

Φ⊤ (τ)ΓΦ(τ)dτ

)

≤ e−2γT0 (43)

Thus, the equilibrium y = 0 is uniformly asymptotically

stable if
1

T0

ˆ t+T0

t

Φ⊤ (τ)ΓΦ(τ)dτ ≥ γ (44)
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provided Φ(t) ∈ L2 is bounded.

Then y(t) ∈ L2 ∩L∞ since

2γ

ˆ ∞

0

y2 (t)dt ≤V (0)−V (t → ∞) = V (0)
(

1− lim
t→∞

e−2γt
)

(45)

It follows that

V̇ ≤−2γV ⇒ yẏ ≤−γy2 (46)

which implies that the solution of Eq. (37) is bounded from

above if y ≥ 0 and from below if y ≤ 0 by the local solution

of

ż = −γz (47)

for t ∈ [ti, ti +T0], where t0 = 0, ti = ti−1 + T0, and i =
1,2, . . . ,n → ∞.

Equation (47) also applies for Φ = Φ(y) since the con-

dition Φ(y(t)) ∈ L2 is identically satisfied given that y ∈
L2 ∩L∞. This is shown by evaluating V̇ as

V̇ = ẏ
dV

dy
=−Φ⊤ (y)ΓΦ(y)y

dV

dy
=−2Φ⊤ (y)ΓΦ(y)V (48)

Thus
dV

V
= 2

dy

y
(49)

Suppose there exists γ such that

dy

y
≤−γdt (50)

Then multiplying both sides of Eq. (50) by y2 and dividing

by dt result in the same equation as Eq. (46). Thus, V is

uniformly asymptotically stable and y is bounded by Eq. (47).

Therefore, γ given by Eq. (38) satisfies Eq. (50).

Lemma 1 is a version of the well-known Comparison

Lemma [17]. A different version of the proof is also provided

by Nadrenda and Annaswamy [18].

Lemma 2: The solution of a linear differential equation

ẏ = Ay+g(t) (51)

where y(t) : [0,∞)→ R
n, A ∈ R

n×n is a Hurwitz matrix, and

g(t) : [0,∞) → R
n ∈ L∞ is a piecewise continuous, bounded

function, is asymptotically stable and semi-globally bounded

from above by the solution of a differential equation

ż = A
(

z−α
∣

∣A−1c
∣

∣

)

(52)

where α ≥ 1 ∈ R and c = supt |g(t)|.

Proof: For matching initial conditions y(0) = z(0), the

solutions of y and z are

y = eAty(0)+

ˆ t

0

eA(t−τ)g(τ)dτ (53)

z = eAty(0)−

ˆ t

0

eA(t−τ)αA
∣

∣A−1c
∣

∣dτ (54)

If A−1c > 0, then

y = z+

ˆ t

0

eA(t−τ)αcdτ +

ˆ t

0

eA(t−τ)g(τ)dτ = z

+

ˆ t

0

eA(t−τ)A
[

αA−1c+A−1g(τ)
]

dτ (55)

α ≥ 1 can be made large enough for αA−1c+A−1g(τ) >
0 because A−1c > 0 and g is bounded, and since
´ t

0
eA(t−τ)Adτ ≤ 0, then

ˆ t

0

eA(t−τ)A
[

αA−1c+A−1g(τ)
]

dτ ≤ 0 (56)

Therefore, y ≤ z.

If A−1c < 0, then

y = z−

ˆ t

0

eA(t−τ)αcdτ +

ˆ t

0

eA(t−τ)g(τ)dτ = z

−

ˆ t

0

eA(t−τ)A
[

αA−1c−A−1g(τ)
]

dτ (57)

α can be made large enough for αA−1c−A−1g(τ) < 0

because A−1c < 0 and g is bounded, therefore y ≤ z. Thus,

y ≤ z for all t ∈ [0,∞) and some α ≥ 1.

Theorem 3: The steady state tracking error is bounded by

lim
t→∞

sup
t
‖e‖ =

λmax (P)‖B‖

σmin (A⊤
mP+νPAm)

[

ν ‖ϕ‖

+ν ‖Am‖
∥

∥A−1
m

∥

∥‖δε‖+
1

γ

∥

∥

∥

∥

(

B⊤A−⊤
m PB

)−1
∥

∥

∥

∥

‖β‖
]

(58)

if there exists a constant γ > 0 such that γ =

inft

(

1
T0

´ t+T0

t
Φ⊤ΓΦdτ

)

> 0 ∈ R and a constant vector β >

0 ∈ R
n where β = supt

∣

∣Θ̃⊤Φ̇
∣

∣.

Proof: Since Θ̃ is bounded by the adaptive law

(11) and limt f →∞

∣

∣d
(

Θ̂⊤Φ
)

/dt
∣

∣ < σt exists which implies

d
(

Θ̂⊤Φ
)

/dt is bounded, then β = supt

∣

∣Θ̃⊤Φ̇
∣

∣ ∈ L∞ is

bounded.

Since e ∈ L2, x ∈ L2, and so Φ(x) ∈ L2, then using

Lemma 1, the adaptive law (11) can be written as

d

dt

(

Θ̃⊤Φ

)

= ˙̃Θ⊤Φ+ Θ̃⊤Φ̇ ≤−γB⊤Pe

+ γνB⊤A−⊤
m PB

(

Θ̃⊤Φ−ϕ −

∣

∣

∣

∣

(

γνB⊤A−⊤
m PB

)−1

β

∣

∣

∣

∣

)

(59)

for t ∈ [ti, ti +T0], where ti = ti−1 +T0 and i = 1,2, . . . ,n → ∞.

Using Lemma 2 with α = 1 for simplicity, we write

ė ≤ Am

(

e−
∣

∣A−1
m Bδε

∣

∣

)

+BΘ̃⊤Φ (60)

Differentiating Eq. (60) and upon substitution yields

ë−
(

Am + γνBB⊤A−⊤
m P

)

ė+
(

γBB⊤P+ γνBB⊤A−⊤
m PAm

)

e

≤−γνBB⊤A−⊤
m PB

[

ϕ +

∣

∣

∣

∣

(

γνB⊤A−⊤
m PB

)−1

β

∣

∣

∣

∣

]

+ γνBB⊤A−⊤
m PAm

∣

∣A−1
m Bδε

∣

∣ (61)
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The steady state upper bound on the norm of Θ̃⊤Φ is also

obtained as

lim
t→∞

sup
t

∥

∥

∥
Θ̃⊤Φ

∥

∥

∥
=

λmax (P)‖Am‖

σmin (A⊤
mP+νPAm)

[

ν
∥

∥

∥
Θ⊤Φ

∥

∥

∥

+‖Am‖
∥

∥A−1
m

∥

∥‖δε‖+
1

γ

∥

∥

∥

∥

(

B⊤A−⊤
m PB

)−1
∥

∥

∥

∥

‖β‖
]

(62)

The steady state upper bound on ‖e‖ is solved from Eq.

(61) which leads to Eq. (58). Thus for γ → ∞, the last

term on the RHS of Eq. (58) goes to zero, and ‖e‖ is

only dependent on ν . If, in addition, ν → 0, then ‖e‖ → 0,

but if ν → ∞, e ∈ L∞ is finite and does not tend to zero.

Thus, ν has to be selected small enough to provide a desired

tracking performance, but large enough to provide sufficient

robustness against time delay or unmodeled dynamics. A

practical bound for ν is 0 < ν < 1 since any increase

in ν beyond its optimal value ν = 1 will actually reduce

robustness as well as tracking performance. Both Theorems

2 and 3 provide a guidance in a trade-off design process

for selecting a suitable value of ν to meet performance and

robustness requirements.

III. FLIGHT CONTROL EXAMPLE

Fig. 1 - Direct Neural Network Adaptive Flight Control

Consider the following inner loop adaptive flight control

architecture as shown in Fig. 1. The plant model is

ẋ = A11x+A12z+B1u+ f1 (x,z) (63)

ż = A21x+A22z+B2u+ f2 (x,z) (64)

where x =
[

p q r
]⊤

is a vector of roll, pitch, and yaw

rates; z =
[

φ α β
]⊤

is a vector of bank angle, angle of

attack, and sideslip angle; u =
[

δa δe δr

]⊤
is a vector of

aileron, elevator, and rudder deflections; and fi (x,z), i = 1,2
is an uncertainty

fi (x,z) = Ci1x+Ci2z+ ε = Θ⊤
i Φ+ ε (65)

The angular rates are designed to follow a second-order

reference angular rate model specified as
(

s+2ζiωi +
ω2

i

s

)

xmi
= giδi (66)

where xmi
, i = 1,2,3 corresponds to p, q, r, respectively; δi is

the corresponding lateral stick input, longitudinal stick input,

and rudder pedal input; ζi > 0 is the corresponding damping

ratio; and ωi > 0 is the corresponding frequency.

Assuming the pair (A11,B1) is controllable and z is stabi-

lizable, the angular rate feedback control is given by

u = B−1
1

[

−

(

Kp +
Ki

s

)

x+Gr−A11x−A12z− Θ̂⊤
1 Φ

]

(67)

where Kp = diag(2ζ1ω1,2ζ2ω2,2ζ3ω3), Ki =
diag

(

ω2
1 ,ω2

2 ,ω2
3

)

, G = diag(g1,g2,g3), and r =
[

δ1 δ2 δ3

]⊤
.

Let e =
[
´ t

0
(xm − x)dτ xm − x

]⊤
be the tracking error,

then the tracking error equation is given by Eq. (8) with

Am =

[

0 I

−Ki −Kp

]

B =

[

0

I

]

(68)

Let Q = 2I, then it can shown that B⊤PA−1
m B =−K−2

i < 0,

so the adaptive law (11) becomes

˙̂
Θ1 = −ΓΦ

(

e⊤PB+νΦ⊤Θ̂iK
−2
i

)

(69)

The uncertainty is modeled as an airframe structural

damage to the left wing of a generic transport aircraft as

shown Fig. 2. The objective is to track a pitch rate doublet

while regulating the rate responses in the roll and yaw axes.

Fig. 2 - Damaged Generic Transport Aircraft
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Fig. 3 - Aircraft Rate Responses with Standard MRAC

Figure 3 is a plot of the aircraft angular rates due to

the standard direct MRAC (ν = 0) using an adaptive gain

Γ = 104. The tracking performance drastically improves in
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all axes. However, high-frequency oscillations can clearly be

seen in the yaw rate response.

Figure 4 is the aircraft rate response with the optimal

control modification with ν = 0.033, which results in no

observable high-frequency oscillation in spite of the fact that

the adaptive gain is two orders of magnitude greater than that

for the standard direct MRAC.
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Fig. 4 - Aircraft Rate Responses with Optimal Control

Modification
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Fig. 5 - Pitch Rate Responses with Time Delay

Figure 5 illustrates the time delay effect on the adaptive

optimal control. A time delay is introduced between the

aircraft plant input and output to simulate destabilizing un-

certainties. For the same adaptive gain Γ = 104, the standard

MRAC can tolerate up to 0.004 s time delay before the adap-

tive law goes unstable. With the optimal control modification,

the time delay margin increases to 0.010 s and 0.114 s for

ν = 0.033 and ν = 0.33, respectively. This is consistent with

the analysis that increasing ν results in improved robustness

against time delay or unmodeled dynamics.

IV. CONCLUSIONS

This study presents a new adaptive optimal control modifi-

cation that adds a damping term to the standard MRAC that is

proportional to the persistent excitation. The optimal control

modification can be tuned using a parameter ν to provide a

trade-off between tracking performance and stability robust-

ness. Increasing ν improves stability margins but reduces

tracking performance. When ν approaches unity, the system

is robustly stable with all closed-loop poles having negative

real values. Simulations demonstrate that the optimal control

modification achieves better tracking performance at a much

larger adaptive gain than the standard MRAC, and can also

tolerate a much greater time delay.
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