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Abstract— In this paper, a methodology for Lyapunov-based
adaptive PID control for different nonlinearly-parameterized
series and parallel PID realizations is presented using simple
first and second order dominant plants. The corresponding
designs are based on using only the tracking error, its derivative,
its integral, and the current value of the adaptive gains in
order to update the PID gains. The conventional independent
parallel realization, which most existing adaptive designs have
used, yields a linearly parameterized adaptive control problem.
Whereas, other parallel as well as series realizations yield non-
linearly parameterized adaptive systems allowing for coupled

adaptation of the PID gains and further design flexibility. These
coupled architectures promise to yield better adaptation and
learning as they reflect the inherently coupled nature of PID
tuning. Case study simulations are provided to demonstrate the
capabilities of the developed algorithms.

Index Terms— direct adaptive control; PID control.

I. INTRODUCTION

Proportional-Integral-Derivative (PID) controllers remain

the dominant algorithm in control engineering practice due to

their simplicity and fundamental capability. A long standing

problem with significant interest from industry is to improve

the robustness of PID controllers and reduce their sensitivity

to gain tuning for system uncertainty and time-variations.

Adaptive control, e g., [6], [2], [4], [8] is a mature

field with many results. However, most adaptive controllers

require either a detailed process model or an approximation

of that model such as neural nets in order to estimate system

parameters. The problem with this approach is that for many

systems the complexity of a stable adaptive controller is

very high, which, limits practical usability. Furthermore,

strong theoretical arbitrary stability guarantees of model-

based adaptive controllers are typically violated in practice

due to digital effects, saturation, and unmodeled dynamics.

As a result, stable adaptive designs depend in practice on

careful tuning of learning rate gains and fixed feedback gains

as well as robust adaptive modifications used. Therefore,

there’s a great need for simpler universal controllers cap-

turing the essence of adaptive control while retaining ease

of tuning for practically stable adaptive control even if they

do not possess the same degree of a priori guarantees on

stability for as large class of systems in theory.

Adaptive PID control is one approach to improve the

robustness and autonomy of PID controllers as well as

capture the essence of adaptive control theory within a simple
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architecture. Numerous publications in the control commu-

nity have considered this problem but with very different

approaches. One approach is to use a fixed PID controller

and combine it with some function approximation, e.g. neural

nets, based adaptive controller. However, the complexity and

usability of such controllers is no better then model-based

algorithms. Other approaches use some type of heuristics

to adjust the PID gains such as genetic algorithms or

fuzzy logic. Whereas, fundamental adaptive PID algorithms

analogous to classical direct adaptive control for full state

feedback [2] without using any function approximation or

heuristic methods are less common. Adaptive non-heuristic

PID controllers, without use of model-based compensation or

their functional approximation, are developed in [5], [1], [7],

[3] with applicability to different 1st and 2nd order systems

using different designs approaches such MRAC, MIT rule,

and high gain adaptive stabilization. Such results though are

only developed for the standard parallel PID realization with

independent linearly parameterized adaptation. In this paper,

a methodology, which generalizes these results, is developed

for adaptive PID with different parallel and series realizations

allowing for coupled adaptation with nonlinear parametriza-

tion. This is achieved by utilizing only the feedback tracking

error, its derivative, and its integral as driving signals as well

as the current gain values to adjust the adaptive gains.

The contribution of the paper is that it develops novel

designs for Lyapunov-based adaptive PID control in order

to update the PID gains in a generally coupled manner for

different parallel and series architectures. These architectures

promise to yield better adaptation then existing decoupled

designs as they reflect the inherently coupled nature of PID

tuning.

The paper is organized as follows. Section II develops

the basic design methodology for nonlinearly-parameterized

adaptive PID control. The methodology is used to develop

adaptive PID controllers with different parallel and series

realizations in Section III . Extensions of the basic controllers

via augmentation with simple model-based adaptive terms

is briefly discussed in Section IV. Case Study simulations

are presented in Section V. Conclusions and future work are

given in Section VI.

II. METHODOLOGY

The basic problem is to design PID controllers with

adaptive gains based on Lyapunov stability without use of

detailed model-based compensation and parameter estima-

tion. In particular, the designs are based on updating the

PID gains directly using only the error, its derivative, its
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integral, and the current value of the adaptive gains. This

motivated by the fact that fixed PID controllers are non-

model based and in principal only require basic knowledge

about the controlled plant but are very sensitive to tuning.

However, as the problem of tuning fixed PID controllers is

coupled, then a similar approach to adaptive PID is taken,

which yields a nonlinearly parameterized adaptive control

problem. In order to verify Lyapunov stability, minimal plant

models for first and second order dominant systems are used

in order to obtain the adaptive PID designs as a starting

step. The range of applicability of the developed algorithms

in terms of provably stabilizable classes of systems is not

the focus of this paper.

Consider the following class of plants consisting of a chain

of integrators:

a y(n) = u (1)

Where y(n) is the nth derivative of the targeted output

y, where n is the chosen dominant order of the system.

Whereas, unknown constant parameter a is the high fre-

quency gain. The main assumptions for the designs are given

by:

Assumption 2.1: The dominant order n ≤ 2 is a known

constant.

Assumption 2.2: The signals y, y(1) are available.

Assumption 2.3: The sign of the scalar a is known and

constant, without loss of generality a > 0 is assumed.

Assumption 2.4: The reference trajectory r and its first n
derivatives r(1), . . . , r(n) are known, bounded and, piecewise

continuous.

The procedure starts with creating a filtered version of the

actual tracking error to create a first order equivalent error

system as in sliding mode and the robust part of adaptive

controllers in [6]. Define the following error variables:

z = −(d/dt + Kpp)
n−1e

zI =

∫

z dt

Where Kpp > 0 is a chosen scalar, e = r− y is the tracking

error for a desired reference r. Let ż = y(n) − wff and

denote the feedforward gain regressor wff where wff =
f(y, ẏ, r, r(1), . . . , r(n)) only, which are all available signals.

Note that for n = 1, we have wff = ṙ, whereas wff =
r̈ + Kppė for n = 2. Consider the following control law:

u = −Kpv z − KivzI + (Kff + K̂ff)wff + ua (2)

Where Kpv > 0 is a fixed proportional gain, Kiv > 0
is a fixed integral gain. Whereas, Kff and K̂ff are fixed

and adaptive feedforward gains respectively. The adaptive

PID control term is ua(K̂, e, ė,
∫

e) with K̂ ∈ R
3 being a

vector of adaptive PID gains. Substituting Equation (2) into

Equation (1) yields:

a ż = −Kpvz − KivzI + K̃ff wff + ua

Where K̃ff = K̂ff − a + Kff is the feedforward gain

estimation error.

Consider the following Lyapunov function:

V = az2 + Kivz2
I + γ−1

ff K̃2
ff + K̂

′

Γ−1K̂ (3)

Where γff > 0 is the adaptation gain for the feedforward

gain K̂ff and Γ = Γ
′

> 0 is a symmetric positive definite

adaptation gain matrix for the update of the adaptive PID

gains K̂ , which will be enforced to be diagonal for simplicity.

The above Lyapunov function is in the typical form found

in adaptive control with the exception that the adaptive PID

gains K̂ rather then some gain or parameter estimation error

is used.

Computing V̇ yields:

V̇ = −Kpvz
2 + z ua + K̃ff(z wff + γ−1

ff

˙̂
Kff )

+K̂
′

Γ−1 ˙̂
K

This yields the typical choice for the feedforward adaptation,

see for instance [6]:

˙̂
Kff = − γff wff z (4)

Therefore, we are left with:

V̇ = −2Kpvz
2 + 2z ua + 2K̂

′

Γ−1 ˙̂
K

Recall that for a C3, i.e., three times continuously differen-

tiable function, using the mean value theorem suggests that

∃α ∈ [0, 1] :

f(y + x, t) = f(x, t) + y
′

∇f(x, t) +
1

2
y

′

∇2f(x, t)y

+
1

6
y′∇3f(x + αy, t)y y

Using the above exact 3rd order expansion for ua yields:

ua(K̂, t) = ua(0, t) + K̂
′

∇ua(0, t) +
1

2
K̂

′

∇2ua(0, t)K̂

+
1

6
K̂

′

∇3ua(αK̂)K̂ K̂

Where ua(K̂, e, ė,
∫

e) is denoted by ua(K̂, t). Where

∇ua(0, t) is the gradient of the adaptive PID control term

ua with respect to K̂ and evaluated at K̂ = 0. Whereas,

∇2ua(0, t) is the hessian of ua with respect to K̂ and

evaluated at K̂ = 0. Whereas, ∇3ua(αK̂, t) is the third

derivative tensor of order 3 with argument αK̂ . Note that

∇3ua generally requires dealing with tensor algebra but the

associated term reduces to a very simple quantity for this

particular problem.

Enforcing the condition ua(0, t) = 0 on the adaptive PID

to be designed, which simply suggests that the adaptive

control vanishes when all adaptive gains are zero, and

comparing the obtained expression for ua with V̇ suggests

the following update law for the PID gains:

˙̂
K = −Γ

(

∇ua(0, t) +
1

2
∇2ua(0, t)K̂

)

z

−Γ

(

1

6
∇3ua(αK̂, t)K̂K̂

)

z (5)
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Substituting Equation (5) into the expression for V̇ yields:

V̇ = −2Kpvz
2 ≤ 0

Which proves Lyapunov stability of the system. This yields

the following closed loop error dynamics, in addition to

Equation (5):

a ż = −Kpvz − KivzI + K̃ff wff + ua(K̂, t)

˙̃Kff = − γff wff z (6)

A formal statement is made next:

Theorem 1: Under assumptions (2.1-2.4) for plant given

by Equation (1) and controller given by Equations (2), (5),

and (4) ∀ γff > 0, Γ = Γ
′

> 0 and Kpv, Kiv > 0 and

an adaptive PID feedback ua(K̂, e, ė,
∫

e) the closed loop

system given by Equations (6) and (5) is Globally Lyapunov

Stable and e → 0 asymptotically.

Proof:

Using the Lyapunov function V given by Equation (3) and

system equations (6) and (5) then global Lyapunov stability is

shown by computing V̇ = −2Kpvz
2 ≤ 0, see above analysis.

Furthermore, by applying typical Barbalat Lemma arguments

concludes uniform continuity of V̇ since V ≥ 0 and V̈ is

bounded, therefore z → 0 asymptotically and thus e → 0
asymptotically.

Note that adaptation may be turned off and stability of the

system is clearly maintained. The above statement does not

specify the adaptive PID control law ua(K̂, e, ė,
∫

e). Next,

adaptive PID controllers will be designed based on Equations

(2)-(5) for different PID realizations.

A. Remarks

• The role played by the fixed PID is different here

from that in model-based adaptive control, where the

fixed part is assumed to be designed for the ideal

response and model based adaptive terms need to cancel

the apparent dynamics in order to realize this ideal

closed loop response. Note, however, that this is why a

conservative or too aggressive choice for the fixed part

does significantly affect the performance of adaptive

controllers in practice. In here, these feedback gains are

not assumed to be well designed and are expected to be

better tuned by the adaptive PID.

• Note that the assumption that both y and ẏ are available

is a prerequisite to PID control, even if only y is

measured as ẏ is usually obtained through some type

of filtered differentiation in practice.

• Note that the constant α that appears in the update law

given by Equation (5) from the application of the mean

value theorem is unknown. However, since the control

law ua is a polynomial of at most order three in the

three PID gains, then ∇3ua is independent of K̂ and

thus, α will not be needed.

• Note that the coupled adaptation laws, as will be seen

in next sections, are easily implementable as they are

simply a set of coupled differential equations as opposed

to a set of decoupled differential equations as commonly

found in adaptive control.

• Note that the adaptation law of Equation (5) can be used

with not only linear PID controllers but also nonlinear

PID controllers, with absolute values, polynomials and

exponential functions of the error, its derivative, or its

integral.

• The developed control can be combined with MRAC for

full state feedback control and almost strictly positive

real plants, by observing the similarity in the underlying

problem structure in these cases, this will not be shown

here for space limitations.

III. PARALLEL AND SERIES PID DESIGNS

PID controllers can be represented in different parallel and

series realizations. Due to space limitations, the design for

only 3 realizations will shown and contrasted next.

A. Design for Standard Parallel PID

The standard parallel realization yields a traditional lin-

early parameterized adaptive control problem where each

gain is multiplied by it’s ”regressor” which are the error, its

derivative, and its integral. Most, if not all, existing adaptive

PID designs fall under this form such as [1], [7], [5], [3]

with applicability to different 1st and 2nd order systems

using different designs approaches such MRAC, MIT rule,

and high gain adaptive stabilization. The design presented in

this section may be viewed as a generalization of the ones

in [1], [7], [5], [3] though derived differently.

The basic adaptive controller using the conventional par-

allel PID design is given by:

ua = K̂P e + K̂D ė + K̂I

∫

e dt (7)

Where K̂P is the adaptive proportional gain, K̂D, is the

adaptive derivative gain, K̂I is the adaptive integral gain.

Using Equations (7) and (5) the adaptive gains are updated

using the following adaptation laws:

˙̂
KP = −γP e z (8)

˙̂
KD = −γD ė z (9)

˙̂
KI = −γI

∫

e dt z (10)

Where γP , γD, γI > 0 are the adaptation gains for

proportional, derivative, and integral gains, respectively such

that Γ = diag(γP , γD, γI). Therefore, the overall design is

given by Equations (2), (4), (7) and, (8)-(10).

B. Design for Parallel PID with Overall Integral Gain

The adaptive controller using the parallel design with

overall integral gain is given by:

ua = K̂I

(
∫

e dt + K̂Pi e + K̂Di ė

)

(11)

Where K̂I is the adaptive integral gain, K̂Di, is the adaptive

derivative gain scaled by the integral gain, K̂Pi is the

adaptive proportional gain scaled by the integral gain.
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Using Equations (11) and (5) the adaptive gains are

updated using the following adaptation laws:

˙̂
KPi = −γPi

K̂I

2
e z (12)

˙̂
KDi = −γDi

K̂I

2
ė z (13)

˙̂
KI = −γI

(

∫

e dt +
K̂Pi

2
e +

K̂Di

2
ė

)

z (14)

Where γPi, γDi, γI > 0 are the adaptation gains for

scaled proportional, scaled derivative, and integral gains,

respectively such that Γ = diag(γPi, γDi, γI). Therefore,

the overall design is given by Equations (2), (4), (11) and,

(12)-(14).

C. Design for Standard Series PID

The adaptive controller using the conventional series de-

sign is given by:

ua = K̂iv

(
∫

ė dt + K̂pp

∫

e dt

)

+K̂pv

(

ė + K̂ppe
)

(15)

Where K̂pp is the adaptive outer proportional loop gain,

K̂pv is the adaptive inner proportional loop gain, K̂iv is the

adaptive integral loop gain.

Using Equations (15) and (5) the adaptive gains are

updated using the following adaptation laws:

˙̂
Kpp = −γpp

(

K̂pv

2
e +

K̂iv

2

∫

e dt

)

z (16)

˙̂
Kpv = −γpv

(

ė +
K̂pp

2
e

)

z (17)

˙̂
Kiv = −γiv

(

∫

ė dt +
K̂pp

2

∫

e dt

)

z (18)

Where γpp, γpv, γiv > 0 are the adaptation gains for

outer proportional, inner proportional, and integral gains,

respectively such that Γ = diag(γpp, γpv, γiv). Therefore,

the overall design is given by Equations (2), (4), (15) and,

(16)-(18).

Other possible realizations include parallel PID with over-

all proportional or derivative gains as well as series PID with

overall derivative or integral gains.

IV. AUGMENTATION WITH MODEL-BASED DESIGNS

The above design may be simply augmented with well

known model-based designs, which could be useful if some

important non-linear terms are structurally known and need

to be canceled. Consider systems in the SISO companion

form given below:

a y(n) = −W (y, y(n−1))
′

θ + β(y, y(n−1))u (19)

The systems given by Equation (19) are a generalization

of those in Equation (1) where a and y are as defined in

Section II, which are simply first and second order nonlinear

systems . Whereas, vector θ = [θ1, θ2, . . . , θm]
′

is a vector

of plant parameters. An additional assumption is made for

these systems:

Assumption 4.1: W (y, y(n−1)) = [w1, w2, . . . , wm] with

wi(y, y(n−1)) ∀i = 1 . . . n and β(y, y(n−1)) are known

smooth functions in R and β(y, y(n−1)) 6= 0 ∀y, y(n−1).

Using standard model based design procedures based on that

in [6] the control in Equation (2) is updated to:

u =
ud

β(x)
(20)

ud = −Kpv z − KivzI + (Kff + K̂ff)wff + ua

+W
′

θ̂
˙̂
θ = −ΓθW (y, ẏ)

′

z

Where the matrix Γθ = Γ
′

θ > 0 is the adaptation gain matrix

for parameter vector θ. The above result simply states that we

can add model based adaptive terms W (y, ẏ)
′

θ̂ to the non-

model based control law of Equation (2) with ua and the

PID adaptation is given by any of the designs in Section III

or IV. This yields the following error dynamics, in addition

to Equation (5):

a ż = −Kpvz − KivzI + K̃ff wff + ua(K̂, t)

+W
′

θ̃
˙̃Kff = −γff wff z

˙̃θ = −ΓθW (y, ẏ)
′

z (21)

Where θ̃ = θ̂ − θ. The Lyapunov function , Equation (3)

of Section II is updated by using the following Lyapunov

function:

Vc = az2 + Kivz2
I + γ−1

ff K̃2
ff + K̂

′

Γ−1K̂ + θ̃
′

Γ−1
θ θ̃ (22)

For completeness, the formal result is stated below.

Theorem 2: Under assumptions (2.1-2.4) and assumption

5.1 for plant given by Equation (19) and controller given

by Equations (20), (5), and (4) ∀ γff > 0, Γ = Γ
′

> 0,

Γθ = Γ
′

θ > 0 and Kpv, Kiv > 0 and an adaptive PID

feedback ua(K̂, e, ė,
∫

e) the closed loop system given by

Equations (21), and (5) is Globally Lyapunov Stable and

e → 0 asymptotically .

Proof:

Using the Lyapunov function Vc given by Equation (22)

and system equations (21), and (5), then global Lyapunov

stability is shown by computing V̇c = −2Kpvz
2 ≤ 0.

Furthermore, by applying typical Barbalat Lemma arguments

concludes uniform continuity of V̇c since Vc ≥ 0 and V̈c is

bounded, therefore z → 0 asymptotically and thus e → 0
asymptotically.

Similarly, the result may be extended to more general

classes of systems as long as the model-based control terms

do not significantly increase the complexity and practicality

of the controller.

V. SIMULATIONS

In this section a case study simulation will be used

to demonstrate the developed methodology. Consider the
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following plant transfer function:

y(s)

u(s)
=

8e − 5
(

( s
2π60 )2 + 0.12s

2π60 + 1
)

s2
(

( s
2π100 )2 + 0.2s

2π100 + 1
) (

s
2π8000 + 1

)

The plant used for simulations is of order 5 and relative

degree 3. However, the system is a 2nd order dominant

system and thus the designs of Section II with n = 2 will be

used with the plant treated as a double integrator. The chosen

designs of Section III are compared . In these simulations, the

fixed part of the adaptive PID controller of Equation (2) uses

nonoptimally tuned gain values Kff = 3e − 5, Kpp = 25,

Kpv = 0.004, and Kiv = 0.4 in order to evaluate the

ability of the adaptive algorithms to automatically optimize

the PID controller’s tuning. Therefore, it is expected that

the performance will be improved over the nonadaptive

controller but the main focus is on the behavior of different

adaptive PID realizations.
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Cascade adaptive PID

Parallel adaptive PID

Parallel adaptive PID with overall integral gain

Fig. 1. Tracking error for three different adaptive PID realizations ; overall
response.

Figure 1 shows the tracking error with the system com-

manded to follow three filtered step commands with 0.5 sec-

onds between them. The three adaptive controllers demon-

strate different transient behavior. In the simulations shown

the same equivalent relative adaptation gains are used for all

adaptive controllers given by Equations (8)- (10), Equations

(12)-(14), and Equations (16)-(18). This means γI and γff

are the same, γPi = γP /γI , and γDi = γD/γI , which

reflects the difference between the two realizations with

the integral gain being an overall gain in the nonlinearly

parameterized design of Equations (12)-(14). Similarly, the

same linear-equivalent adaptation gains are used for the

cascade adaptive controller. Figure 2 shows that, for the

chosen adaptation gains, the cascade design displays much

better settling and transient response then the other methods.

For reference, the response of this adaptive controller is

compared to that of the fixed PID used, i.e., the same fixed

part of the adaptive controllers with adaptation gain matrix

Γ = 0. The performance improvement is evident. Note that
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Cascade adaptive PID

Parallel adaptive PID

Parallel adaptive PID with overall integral gain

Fig. 2. Tracking error for three different adaptive PID realizations ; end
of simulation.

the fixed part is intentionally detuned to compare the learning

capability of the adaptive PID controllers.
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Fig. 3. Tracking error for an adaptive cascade PID and the nonadaptive
PID part.

The behavior of the control signal and adaptive gains for

the three adaptive methods is shown in Figure 4, 5, and

6. It is noteworthy that the control signal is larger with

the overall integral gain method, during the first command.

Note that if all gains are converted to the same equivalent

representation, e.g. parallel KD, KI , KP the values they

converge too are different with different methods, which

explains the difference in tracking response shape in Figure

1. For example, comparing the parallel and cascade adaptive

PID controllers at the end of the simulation shown, we get

final proportional gain of 4 versus 8.8, and derivative gains

of 0.075 versus 0.08, and integral gain of −12 versus 85.
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Fig. 4. Adaptive Standard Parallel PID : (a) Control signal, (b) Adaptive
gains.
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Fig. 5. Adaptive Parallel PID with overall Integral gain: (a) Control signal,
(b) Adaptive gains.

VI. CONCLUSIONS

A methodology for Lyapunov-based adaptive PID control

for different nonlinearly-parameterized series and parallel

PID realizations has been presented. Lyapunov stability and

asymptotic tracking are proven using the exact third order

expansion of the control law using the mean value theorem.

The corresponding developed designs are based on using

only the tracking error, its derivative, its integral, and the

current value of the adaptive gains in order to update the

PID gains. The developed nonlinearly parameterized adaptive

PID controllers allow for coupled adaptation of the PID
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Fig. 6. Adaptive cascade PID: (a) Control signal, (b) Adaptive gains.

gains and further design flexibility as verified by case study

simulations. Future work will focus on further analysis of

when advantages of different realizations as well as extend-

ing the algorithms’ capabilities including utilizing robust

adaptive modifications and formal robustness analysis for

more general classes of plants.
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