
  

          

Abstract— We consider the conflict dynamics between two 
multi-agent swarms.  First, the complex nature of a single 
pursuer attempting to intercept a single evader (1P-1E) is 
investigated, and some rudimentary rules of engagement are 
established.  We elaborate on the stability repercussions of 
these rules.  Second, we extend the modeling and stability 
analysis to multi-agent swarms. The present document 
considers only swarms with equal membership strengths for 
simplicity. 

 Due to the strong nonlinearities in the dynamics, Lyapunov-
based stability analysis is used. Swarm interactions are taken in 
two phases: the approach phase during which the two swarms 
act like individuals in the 1P-1E interaction; and the individual 
pursuit phase where each pursuer is assigned to an evader. 

I. INTRODUCTION 

This study addresses the modeling analysis and control of 
multi-agent swarm dynamics of non-alike members. Most 
earlier investigations that focus on this general theme 
consider homogenous swarms, i.e., those composed of alike 
members [1-4].  

Gazi and Passino [2] contribute to the study of foraging 
social swarms, where the agents move into a profile of 
nutrients. Chu et al. [5, 6] address the stability analysis of 
anisotropic (asymmetric behavior) but non-hostile swarms. 
They propose some aggregation rules for swarms with 
reciprocal and non-reciprocal interactions between agents. 
In the present paper, we extend the application of 
asymmetric momenta to hostile swarm interactions, which 
are currently poorly understood. 

A number of other groups have also expanded the 
understanding of swarm aggregation. Chen et al. [7] 
consider cases in which the motion decision of each agent is 
based only on the information about its own neighbors or 
the leader.  In Yao et al. [8], the swarm in a formation is 
guided to track a target. The principal aim is to form a 
decentralized formation control taking into account the 
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sensory limitation. Kumar and coworkers [9,10] investigate 
the dynamic coordination of multiple robots to perform 
cooperative tasks. They use a hybrid systems framework to 
model the cooperative tasks and dynamic role assignment 
among multiple robots.  

We address an understudied aspect of swarm coordination 
by including two groups of antagonistic swarm members. In 
particular, we consider the pursuit of a swarm of “evaders” 
by a swarm of “pursuers,” an operation that includes 
heterogeneous agents and hostile interactions. Due to the 
asymmetric governing dynamics, as well as the 
pursuer/evader assignment policies, the control and stability 
become quite complex. For simplicity, within this study, we 
consider only cases with equal numbers of pursuers and 
evaders.  

 This paper addresses the governing dynamics of 
heterogeneous swarms, deploying models of interaction 
similar to those previously adopted for homogenous swarms 
[1]. The major novelty is the introduction of heterogeneity in 
the form of two hostile swarms, which is described in 
Section II. Pursuer control is partitioned into two phases: 
group approach and individual pursuit. A Lyapunov based 
control is introduced in Section III to expedite the capture of 
the evaders. An example is presented in Section IV to 
display the efficiency of the capture. Conclusions and 
discussions suggest the future steps in this research.  

II. SWARM INTERACTION STRATEGIES AND A LYAPUNOV 
BASED CONTROL  

A. Analysis of the 1 pursuer-1 evader (1P-1E) scenario 
Consider a single member pursuer-evader interaction 

based on the momentum profiles governed by the dynamics 
adapted from [1]:  
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where x and z denote the local vectors of pursuers and 
evaders (both taken as points), respectively. 
Vectors zxy −= , connect evaders and pursuers. Notation 

(.)peg  in (1) refers to the momentum received by the 

pursuer due to the evader. Likewise, (.)epg  is the 

momentum received by the evader due to the pursuer.  
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Notice that (.)peg  is an attraction momentum and 

(.)epg  is a repulsion momentum. Both peg  and epg  

diminish as 0→y  (surrender) and ∞→y  (unrecognized 
presence of other agents). The peak, 

( )2/1exp2max_ −= pepepe cbg , occurs at 

2max_ pepe cy = . We define a distance, peδ , as the range 

of influence of the moment profile. peδ  is the distance in 

which the momentum is higher than 2% of its maximum 
value. It can be shown that pepe c371.2≈δ . We define peδ  

as a reliable bound to have a finite time of capture. Similar 
analysis and definitions are valid for (.)epg  and epδ . 

The momenta profiles peg and epg  are depicted in Fig. 

1. The attraction moment on the pursuer is always greater 
than the repulsion on the evader; and the dynamics will 
come to a stable equilibrium at 0=d . Capture is defined 
when pecapturedy δ02.0=< . This case is achieved by the 

parameter selection of peep cc < . 

This observation can also be validated using the 
Lyapunov stability concept. The dynamics in (1) can be 
restated as  

)()( ygygy eppe −=&                   (1a) 

We consider a candidate Lyapunov function 
( ) 021 >= yyV T . If V has a negative semidefinite time 

derivative, this implies 0→y , and that capture will take 
place. That is,  

( ))()( ygygyyyV eppe
TT −== &&           (2) 

For the 1P-1E scenario, y  and )()( ygyg eppe −  vectors 

are collinear (i.e. on the same line); the only requirement for 
0<V& is that the vectors y  and )()( ygyg eppe −  be of 

opposite direction. Accordingly, for the momentum given in 
Fig. 1, the dynamics will come to a stable equilibrium at 

0=y , regardless of the starting configuration of pursuer 

and evader, sdty == )0( .  Thus, under certain conditions, 
the dynamics is Lyapunov stable and the evader is captured. 

B. Multi-agent Swarms Case 
The 1P-1E scenario above is now expanded to study 

multiple-agent pursuer and evader swarms with equal 
membership count (for simplicity).  We adopt a two-phase 
approach for these interactions.  Phase 1 treats the two 
swarms as single agents, making the ensemble act like a 1P-
1E, with agents lumped at their respective swarm centers). 
This phase brings the swarms to a configuration where the 
two centers coincide.  In phase 2 (the individual pursuit) the 
interaction logic enables the capture of each evader by a 
pursuer. The two phases of the operation are coambined 
under one continuous analysis as follows. 

The system dynamics in (1) is now restated considering 
the interactions between alike and non-alike agents and 
pursuer control: 
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where ik is the index indicating the evader assigned to  
pursuer ix . )(_ ikiiart zxD −  is the control momentum to 

be defined later. The number of pursuers, pN , and the 

number of evaders, eN , are equal. Notation (.)ppg  in (3a) 

refers to the momentum received by a pursuer due to the 
location of other pursuers. Likewise, (.)eeg  in (3b) refers to 
the momentum received by an evader due to the other 
evaders. These momentum descriptions, presented in (4a and 
4b), are taken from [1]. These momenta are characterized by 
long range linear attraction and short range bounded 
repulsion, but only for alike members. Using )( ji xxu −= , 

)( ji zzv −= we define 
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Notice again the vanishing characteristics of ppg  and 

eeg as 0, →vu . They also show a linear attraction features 
as ∞→vu, .  
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The necessary momenta for the pursuer and evader 
centers are given as 

)( zxgG PEP −= ; )( zxgG EPE −=  (5a,b) 

where px  and ez are the centers of the pursuers’ swarm 

and the evaders’ swarm, respectively, and PE  is the 
distance between them.  

∑=
=

pN

i
i

p
x

N
x

1

1  ; ∑=
=

eN

i
i

e
z

N
z

1

1 ; xzPE −=  (6a,b,c) 

PEg  and EPg  are the same as (1) except for different 
parameters.  
    We then decompose these momenta to each member of 
the respective swarm uniformly. PiG  and EiG  represent the 
decomposed components of PG  and EG , respectively.  

The transition number, ( )dTrans , is depicted in Fig. 2 and  
defined as 
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It represents the transition from phase 1, i.e., 0dPE >> , 

when ( ) 0≅PETrans , to phase 2, i.e., 0dPE << , when 

( ) 1≅PETrans ; 0d is the preferred distance for transition 
from phase 1 to 2 while the parameter δ  controls the 
smoothness of this transition function .  

The dynamics given in (3a,b) has three features: (i) it 
smoothly covers the transition between phases 1 and 2; (ii) 
each pursuer has an exclusive nearest evader (ENE) 
assignment; (iii) there is an additional dissipative control 
term )(_ kiiiart zxD −− , where iartD _  is a positive 

constant (selection of  which is described later). This term 
functions to adaptively discharge excessive energy by 
suppressing the over-excited behavior of the ith pursuer. 

The term )( kiipe zxg −  in (3a), in fact, represents the 

momentum on the ith pursuer by the kith evader, which is the 
“exclusive nearest evader”, ENE, for the ith pursuer. No 
other evader but the ENE affects this pursuer. By contrast, 
all pursuers influence all evaders as epg  terms are under the 

summation in (3b). 

1)  Phase 1:  for 0dzx ep >>− , ( ) 0≅PETrans  
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Following the earlier 1P-1E discussion, if the momenta 
profiles follow those of Fig. 1, the resulting dynamics will 
lead to the merging of the two swarms as in the 1P-1E case. 
Phase 1 has a number of characteristics:  
1. The merging of the two swarms (i.e., phase 1) occurs in 
a  finite time if the initial distance between the two swarms 
is lower than the maximum recognition distance or the 
range of action of the pursuers momentum PEg , defined 
previously as PEδ . Otherwise, the two swarms will 
converge independently following the homogeneous 
momenta interactions, (i.e., for alike members).  
2. In this phase, if the approach time is larger than each of 
the homogeneous swarm convergence times, the size of 
each swarm will be dictated only by the nature of the 
interaction forces ppg  and eeg  for predators and evaders, 

respectively. This size and bounded time are evaluated in 
[1], but only for the case of homogeneous swarms. 

a) Lyapunov Stability Analysis on Phase 1  
We define the Lyapunov candidate for the center of the 

swarms as: 

( )PEPEV T
E 2

1
=   with   xzPE −=    (9) 

By definition, this Lyapunov candidate is a positive definite 
function. To analyze the negativity of its time derivative 

( ) ( )
( ) 0dxzGGPE

xzPEdtdPEPEV
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T

TT
E
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−== &&&
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From (10) and earlier discussions in section II.A., when 
the parameter selections comply with the momenta profiles 
in Fig. 1, the Lyapunov candidate of (9) meets the negativity 
condition in its time derivative. These conditions ensure that 
the total repulsion momentum on evaders EG  is smaller 
than the total attraction momentum on pursuers PG . During 
the initial phase in the swarm aggregation, the predominant 
forces are those that drive VE to zero.  

b) General Lyapunov function selection in Phase 1-2 Transition 
The general Lyapunov candidate for the whole system in 

(3a,b) is selected as   
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VE accounts for the dynamics between the centers of the 
pursuers and evaders swarms and iGV  terms represent the 

individual pursuer-evader assignments. The VE term is the 
most prominent during phase 1 ( ( ) 0≅PETrans ) while the 

iGV  terms are significant during phase 2, to be considered 

later. The factor w is a user selected normalizing constant 
that should be close to pN1 . 

2) Phase 2 
Once the two swarm centers are closer than the distance 

d0, phase 2 or individual pursuit starts. During this second 
phase it is assumed that 0dPE << . This property is 
enforced because of the momenta PG  and EG . Any 

departure away from this region (i.e,. creating 0dPE > ) 

forces ( )PETrans  to diminish in (3) which, in turn, invites 

phase 1 dynamics (8) and brings 0dPE ≤ . 

Provided that 0dPExz <<=−  ,we can assume that  

1)(,0,0 ≈≈≈ PETransGG EiPi . Therefore (3) 
becomes 
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where kiz is again the exclusive nearest evader (ENE) to 
pursuer ix , selected globally to avoid more than one pursuer 
chasing the same evader in (12a); in phase 2, each pursuer 
prosecutes an assigned evader. On the other hand, the 
evaders still try to avoid all the pursuers in (12b). With this 
pursuer-evader assignment we study the stability of the 
dynamics next. 

III. LYAPUNOV BASED ENERGY DISSIPATION 
In phase 2 each evader avoids all the pursuers. Therefore, 

the simple necessary condition for Lyapunov stability in 
phase 1, peep cc <  will no longer suffice. The pursuer-ENE 

dynamics may be destabilized due to the influence of the 

other pursuers. To ensure stability, we inject an energy 
dissipating (i.e. damping) term in the control momenta on 
the pursuers, (12a), )(_ ikiiart zxD − . 

The artificial damping constant iartD _  is selectively 

imposed on the pursuers only. This constant is responsible 
for maintaining the negativity of GV& . The following 
computational scheme is used for selecting this constant.  

i. As we monitor VG numerically, we compute the two 
successive values for the current and the previous step, 

)(kVG  and )1( −kVG . 
ii. If )1()( −≤ kVkV GG , piart NiD :10_ =∀=  and no 

damping is applied to any pursuer.  
iii. If )1()( −> kVkV GG  then the control discharges 

enough energy in the following step to revert this 
increase. For this, our routine first identifies the pairs of 

)( iki zx −  which cause the increase in VG.  

   Considering the general dynamics, from (12a,b)   

( ) ( ) )(,)( _ ii kiiartiiki zxDzxfy
dt
dzx

dt
d

−−==−     (13) 

Lemma. Consider the dynamics given in (13) where 
( )zxf i ,  is slowly varying with respect to the control 

sampling speed. The dissipative term given by iartD _ , can 
be selected adaptively such that it enforces the reversal of 
increase of the Lyapunov function in one sampling step.  

Proof. Assume that ikii zxy −=  pNi :1=∀  

displays an increase from step k-1 to k and in turn 
)1()( −> kVkV GG  occurs. If one takes  ( ) constant, ≈zxf i , 

it enforces an increment of  iyΔ  per sampling step h. The 
term iiartkiiart yDzxD i __ )( =−  is expected to remove 

this iyΔ  in one step from k to k+1, while ( )zxf i ,  exerts 
another iyΔ  in the same interval. We propose the selection 
of iartD _  such that it enforces a iyΔ2  decrease to 

compensate for the act of ( )zxf i ,  over two steps. Notice 
that the damped portion of the dynamics is 

( ) iartiiiarti Dy
dt
doryDy __ ln −=−=&    (14) 

One step integration of (14) from t(k) to t(k+1), i.e., h 
seconds, results in   
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Because the desired outcome is to bring )1( +kVGi  to the 
level of )1( −kVGi  despite the continuing effect of ( )zxf i ,  
during k to k+1 controlled step, we impose  

)1(
)(

ln1
_ −

=
kV

kV
h

D
Gi

Gi
iart            (15) 

This dissipative control action is capable of assuring 
0<GiV&  end result. QED.  

Several further improvements are made on the damping 
selection: 

• Piecewise enforcement of the Lyapunov function. If 
)1()( −> kVkV GG  occurs following a new pursuer-ENE 

assignment, we simply ignore this increase and 
select piart NiD :10_ =∀= . We continue monitoring 

the VG variation during the following simulation steps 
and deploy iartD _  as suggested in (15) if needed; this 

monitoring is done every simulation step until a new 
ENE assignment occurs. The Lyapunov candidate 
exhibits negative time derivative (except at the instants of 
new ENE assignments). Such piecewise continuous 
Lyapunov function still guarantees the system stability, 

which means capture of the evader by the pairing 
pursuer. 

• If )1()( −> kVkV GG  and the component for the swarm 
centers dynamics VE is also increasing, a damping control 
is computed, following (15). The control is distributed on 
all the pursuers evenly as increments in all the iartD _  

terms. 
These steps assure the Lyapunov stability for both phase 1 
and 2.  

IV. SIMULATION RESULTS AND PERFORMANCE TESTS 
In this section we present a case study which represents 

some interesting properties of the proposed swarm control 
logic. It is a  6P-6E scenario with a randomly selected initial 
swarm setting, which  uses the same momenta profiles as 
prescribed in Table I.  

Fig. 3(A-D) presents the simulation results divided in four 
panels. Sets A and B are for the damped and undamped 
systems, respectively. The frames labeled A1 and B1 
illustrate the time history of the Lyapunov candidate 
function, black dots mark the times of new assignment of 
ENE. Middle frames, labeled A2 and B2, show the instants 
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Fig. 3.  Simulation Results. 3A: Using undamped control logic. 3B: Using damped control logic. 
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where Lyapunov violations occur (i.e., )1()( −> kVkV GG . 
Red marks at a value of “1” indicate violations before 
capture and the blue dots at a value of “1” indicate 
violations after capture. Blue dots at value of “0” indicate no 
violation, i.e., )1()( −≤ kVkV GG . Bottom frames, labeled 
A3 and B3, present the time history of the transition number, 

( )PETrans , signaling how fast the swarms merge in phase 
1. 

The vertical dotted line in panels A and B indicate the 
time of capture, defined as the instant in which all the 
distances between each pursuer and its assigned ENE are 
smaller than captured .  

TABLE  I 
PARAMETRIC PROPERTIES OF THE CASE STUDY 

 1.0=eea   1.=ppa   10=EPB   2.0=δ  

 30=eeb   
40=ppb  

 25=EPC   25.00 =d  

 20=eec   5=ppc   35=PEB   6/1=w  

 20=epb   25=peb   30=PEC    
 10=epc   30=pec      

 
Fig. 3A1 is the Lyapunov function without damping 

control. At t = 0.08 s., a change in assigned ENE (denoted 
by the black dots in Fig. 3A1) results in a jump in the 
Lyapunov function. Afterwards, the function continues to 
increase until t=0.34 s. Another increase is found at 

st 16.1= . This increase is due to the pursuers being far 
away from their ENEs as phase 2 takes over.  

Despite piecewise violations of the Lyapunov stability 
conditions (i.e., 0<GV&  violation) the process ultimately 
reaches capture (i.e., 0≅GV ) as shown in Fig. 3A1 at about 

st 6.1=   
 We then deploy the damping control to prevent 0<GV&  

violations, as shown in Figs. 3B(1-2-3). The Lyapunov 
function exhibits a continually decreasing trend. Although it 
does increase at some instants (between 0.05 s and 0.44 s.), 
the introduced damping control enforces the Lyapunov 
function to decrease in one sampling step. In short, 0<GV&  
is maintained throughout except appearing in one-time-step 
intermittent excursions as shown by the flags in Fig. 3B2. 

 Notice that for 1.1< t < 1.7 s., the violations of 0<GV&  
condition are caused by residual and ignorable oscillatory 
motion in pursuer and evaders which yield only ignorable 
increase in GV . Therefore, damping control is not deployed. 
We notice in the traces of Fig. 3C, the capture takes place 
around st 9.0=  as pursuers (marked by squares) and the 
evaders (red circles), coincide. Fig. 3D shows the total 

momenta on each of the pursuers. Chatter in the momenta 
only takes place in single-time-step pulses to negate the 
trend of  0>GV& . There is a need to smoothen the momenta; 
which is a goal for our ongoing research. 

V. DISCUSSION AND CONCLUSION 
We present a control strategy for a dynamics involving 

two equal-strength swarms which are in conflict. Lyapunov 
based control law imposes the ultimate capture of the 
evaders. The strategy has two phases: phase 1 is to bring the 
swarms closer and phase 2 is for the individual pursuit of a 
designated evader by each pursuer. 

The simulation of these strategies leads to the conclusion 
that the capture takes place. A condition to obtain successful 
capture is that the initial configuration of the swarms should 
have centers closer than the parameter PEδ , or range of 
action of the pursuer’s momentum profile. 

The proposed general Lyapunov candidate behaves as 
expected until the end of phase 1, which was demonstrated 
to have negative time derivative. After phase 1, an artificial 
damping control in the pursuers will guarantee that the 
function will always decrease except for excursions 
appearing due to the reassignment of ENE. This behavior 
does not disrupt the piecewise deployment of Lyapunov 
stability. 
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