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Abstract— This paper deals with the design of a feedback
controller that solves an output regulation problem for the
nonlinear benchmark system known as TORA. The controller
uses only measurements of the of the rotational position and is
obtained through a certainty-equivalence approach.

I. INTRODUCTION

The problem of controlling a nonlinear benchmark system

called TORA (Translational Oscillator with a Rotational

Actuator) and also known as RTAC (Rotational-Translational

ACtuator) was introduced in [1]. The latter control problem

has received a considerable amount of attention from several

researchers. Most of them focused on global stabilization

(see [1]–[5] and references therein). Some authors presented

results concerning more general control problems such as

output tracking and disturbance rejection (see e.g. [6] and

[7]). Controlling the system so as to achieve asymptotic

disturbance rejection has been investigated in [8], [9] and

[10]. In those works results on nonlinear output regulation

theory (see [11] and [12]) have been employed. In [8]

and [10], using standard tecniques (see [11]), the authors

design full-information regulators, i.e. regulators that use

measurements of both the states of the plant and of the

exosystem. On the other hand, the compensators presented

in [9] use only position measurements, and one of them is

robust with respect to sufficiently small uncertainties of the

plant parameters.

In this work a regulator that uses only measurements of

the rotational position is presented; in such scenario the

translational displacement, which represents the regulated

output, is not available for feedback. As a consequence, the

resulting output regulation problem departs from the standard

formulation and fits into the framework described in [13,

Chapter 5] and [14]. However, the author is not able to apply

the design technique in [13, Section 5.4.2] to the problem

at hand since the conditions on quadratic stabilazibility and

detectability are not easy to verify. On the other hand, it will

be shown in the sequel that a solution can be found applying

the certainty-equivalence design proposed in [14] .

The rest of the paper is organized as follows. In Section II

the nonlinear output regulation problem under investigation

is formulated. In Section III the general framework for

certainty-equivalence design in nonlinear output regulation

is recalled. In Section IV a full-information regulator is
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obtained; in Section V it is shown that the system under

consideration satisfies an appropriate observability property;

in Section VI a measurement feedback regulator based

on certainty-equivalence is derived. Simulation results are

presented in Section VII.

Notation. For x ∈ R
n, |x| denotes the Eucledian norm of x.

For A ⊆ R
n, ω(A) denotes the ω-limit set of A (see [15, pp.

7-8] for a definition of ω-limit set of a set). Lfh(x) denotes

the (Lie) derivative at x of h along f (see [16, p. 8]).

II. PROBLEM FORMULATION

The equations of motion of the TORA system after ap-

propriate normalization and time scaling (see [1]) are given

by

ẍd + xd = ǫ(θ̇2 sin θ − θ̈ cos θ) + w1

θ̈ = u − ǫẍd cos θ .
(1)

In (1) xd is the translational displacement, θ is the rotational

position, u is the control input, w1 is an harmonic disturbance

input of known angular frequency ω, and ǫ is a known plant

parameter with 0 < ǫ < 1 . Setting x , (xd ẋd θ θ̇)T ,

equations (1) can be put in the following state-space form

ẋ = f(x) + g(x)u + p(x)w1 (2)

where

f(x) ,















x2

−x1 + ǫx2
4 sinx3

1 − ǫ2 cos2 x3

x4

ǫ cos x3(x1 − ǫx2
4 sinx3)

1 − ǫ2 cos2 x3















g(x) ,
1

1 − ǫ2 cos2 x3









0
−ǫ cos x3

0
1









p(x) ,
1

1 − ǫ2 cos2 x3









0
1
0

−ǫ cos x3









.

(3)

Disturbance w1 can be seen as generated by the following

exosystem

ẇ = Sw (4)
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with w , (w1 w2)
T and

S ,

(

0 ω

−ω 0

)

. (5)

The goal of this work is designing a feedback controller

that achieves asymptotic disturbance rejection to zero of the

translational displacement; thus, in terms of output regula-

tion, the regulated error e is given by

e = x1 . (6)

Here it is assumed that the only magnitude available for feed-

back is given by the rotational position; then, the measurable

output y is given by

y = x3 . (7)

The precise formulation of the output regulation problem

here considered will be given in the forthcoming section.

Note that we are dealing with a nonlinear output regulation

problem in which the regulated error e is not measurable.

This makes the problem depart from standard framework

of output regulation (see [11] and [12]). In [14] a general

certainty-equivalence result for solving output regulation

problems of this type was given; in the next section the latter

result is recalled, and in the following sections it will be

applied to the problem at hand.

III. GENERAL FRAMEWORK FOR CERTAINTY

EQUIVALENCE DESIGN

In this section the certainty-equivalence design proposed

in [14] is recalled; the latter design can be useful for finding

a solution to nonlinear output regulation problems with the

peculiar feature that the regulated error is unmeasurable. The

design procedure presented here is slightly modified with

respect to [14] so that it will be easier to apply it to the

problem formulated in Section II.

Consider an output regulation problem for a sufficiently

smooth system

ẋ = f̄(x, u, w)
e = h(x,w)
y = k(x,w)

(8)

in which x ∈ R
n is the state, u ∈ R is the control input,

w ∈ R
d is the exogenus input, e ∈ R is the regulated error,

and y ∈ R is the measured output. The initial state of (8)

x(0) is unknown but ranges in a known compact set X ⊆
R

n. The exogenus input w is supposed to be generated by a

sufficiently smooth exosystem

ẇ = s(w) (9)

whose initial state w(0) is unknown but ranges in a known

compact and invariant set W ⊆ R
d.

The objective is finding a regulator modeled by equations

of the form
χ̇ = ϕ(χ, y)
u = ρ(χ, y)

(10)

with ϕ and ρ locally Lipschitz, and a set ∆ of initial states

of (10), such that the interconnection of systems (8), (9),

and (10) possesses the following property; all the trajectories

that start from X × W × ∆ are bounded and are such that

limt→∞ e(t) = 0.

A solution to the output regulation problem formulated

above may be determined through the certainty-equivalence

approach described in the sequel.

Assume that a memoryless full-information regulator

u = u∗(x,w) is available; more precisely, make the

following assumption.

Assumption 1: There exists a sufficiently smooth function

u∗(x,w) such that system

ẋ = f̄(x, u∗(x,w), w)
ẇ = s(w)

(11)

restricted to the locally invariant cylinder R
n × W satisfies

the following

• all the trajectories that start from X ×W are bounded;

• let A = ω(X × W ); then, A ⊆ {(x,w) : h(x,w) = 0}
and A is locally asymptotically stable.

In additon, assume that the plant augmented with the

exosystem and observed through the measured output can be

trasformed into a system in Gauthier-Kupka’s observability

canonical form (see [17, p. 22]); the importance of such

assumption lies on the fact that for such systems it is known

how to design an asymptotic state observer (see [17, pp.

95-101]). More in detail, assume what follows.

Assumption 2: There exists a sufficiently smooth global

diffeomorphism

z = φ(x,w) z ∈ R
ñ (12)

where ñ = n + d that carries system

ẋ = f̄(x, u, w)
ẇ = s(w)
y = k(x,w)

(13)

into the following Gauthier-Kupka’s observability canonical

form

ż =















ż1

ż2

...

żñ−1

żñ















=















F1(z1, z2, u)
F2(z1, z2, z3, u)
...

Fñ−1(z1, z2, . . . , zñ, u)
Fñ(z1, z2, . . . , zñ, u)















= F (z, u)

y = K(z1) ,
(14)

with Fi’s such that

∂Fi

∂zi+1

(z1, z2, . . . , zi+1, u) 6= 0

∀(z1, z2, . . . , zi+1, u) ∈ R
i+2 i = 1, . . . , ñ − 1 , (15)
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and with K such that

∂K

∂z1

(z1) 6= 0 ∀z1 ∈ R . (16)

If both Assumption 1 and Assumption 2 are fulfilled, a

certainty equivalence regulator can be obtained as follows.

Let zmax > 0 and l > 0 be design parameters, and define

Θ , {z ∈ R
ñ | |z| ≤ zmax} (17)

and

U , {u ∈ R : |u| ≤ l} . (18)

Find a sufficiently smooth function F gl : R
ñ × R → R

ñ

of the form

F gl(z, u) =

















F
gl
1 (z1, z2, u)

F
gl
2 (z1, z2, z3, u)

...

F
gl
ñ−1

(z1, z2, . . . , zñ, u)

F
gl
ñ (z1, z2, . . . , zñ, u)

















, (19)

and a sufficiently smooth function Kgl : R → R such that

the following properties hold

P1: F gl(z, u) = F (z, u) and Kgl(z1) =
K(z1) ∀(z, u) ∈ Θ × U ;

P2: denote by z′i the vector (z′1, . . . , z
′

i) ∈ R
i and by z′′i

the vector (z′′1 , . . . , z′′i ) ∈ R
i, i = 1, . . . , ñ; then, ∃L > 0

such that

|F gl
i (z′i, z

′

i+1, u) − F
gl
i (z′′i , z′′i+1, u)| ≤ L|z′i − z′′i |

∀(z′i, z
′

i+1, z
′′

i , z′′i+1, u) ∈ R
2i+3 i = 1, . . . , ñ − 1 (20)

and

|F gl
ñ (z′ñ, u) − F

gl
ñ (z′′ñ, u)| ≤ L|z′ñ − z′′ñ|

∀(z′ñ, z′′ñ, u) ∈ R
2ñ+1 ; (21)

P3: ∃ α, β ∈ R with 0 < α < β such that

α ≤

∣

∣

∣

∣

∣

∂F
gl
i

∂zi+1

(z1, z2, . . . , zi+1, u)

∣

∣

∣

∣

∣

≤ β

∀(z1, z2, . . . , zi+1, u) ∈ R
i+2 i = 1, . . . , ñ − 1, (22)

and

α ≤

∣

∣

∣

∣

∂Kgl

∂z1

(z1)

∣

∣

∣

∣

≤ β ∀z1 ∈ R . (23)

Regarding on how to find F gl see e.g. [17, p. 96].

Let

ai(z, u) =
∂F

gl
i

∂zi+1

(z1, z2, . . . , zi+1, u) i = 1, . . . , ñ − 1

and define

A(z, u) ,















0 a1(z, u) 0 · · · 0
0 0 a2(z, u) · · · 0
...

...
...

. . .
...

0 0 0 0 añ−1(z, u)
0 0 0 0 0















.

(24)

In addition, define C(z1) ∈ R
1×ñ as

C(z1) ,

(

∂Kgl

∂z1
(z1) 0 · · · 0

)

. (25)

Determine N ∈ R
ñ such that the following property holds.

P4: There exist λ > 0 and S ∈ R
ñ×ñ, with S symmetric

and positive definite that satisfy the following inequality

(A(z, u) − NC(z1))
T S + S(A(z, u) − NC(z1)) ≤ −λI

∀(z, u) ∈ R
ñ × R .

To determine N it can be useful to see [17, p. 96].

Given s > 0, let σs be a saturation function defined by

σs(r) =

{

r if |r| ≤ s

sgn(r)s if |r| > s .

Denote by

(x,w) = φ−1(z)

the inverse map of (12). Then, the measurement feedback

regulator is described by the following equations

˙̂z = F gl(ẑ, u) + G(y − Kgl(ẑ1))
u = σl(u

∗(φ−1(ẑ))
(26)

where G = DgN , Dg = diag(g, g2, . . . , gñ), and g ∈ R is

a design parameter.

The initial state of (26) ẑ(0) is assumed to range on a

fixed (but arbitrary) compact set Ẑ ⊂ R
ñ.

The effectiveness of the above regulator is shown by the

following result (see [14, Proposition 1]).

Proposition 1: If first zmax > 0 is picked sufficiently

large, then l > 0 is chosen large enough, and finally the

same is done with g > 0, then (26) solves the given output

regulation problem.

Remark 2: Regulator (26) embeds an asymptotic state

observer of system (14) which is given by its ˙̂z dynamics

(see [17, pp. 95-101] ). Then, φ−1(ẑ) provides an estimate

of (x w), and clearly the proposed regulator is based on

certainty-equivalence.

Remark 3: From the proof of [14, Proposition 1] it can

be seen that the design parameter zmax should be picked

sufficiently large so that the following holds. Consider

any solution (z(t) ẑ(t)) of (14) controlled by (26) with

(z(0) ẑ(0)) ∈ Z × Ẑ; then, it must be |z(t)| ≤ zmax∀t ≥ 0.
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A method to determine zmax follows from the proof of

[14, Proposition 1] and is described here. Let Z be the image

through φ of X × W , and consider the system

ż = F (z, φ−1(z)) . (27)

In [14] it is shown that there exists a Lyapunov level set

Ωb that contains all solutions of (27) that originate in Z;

moreover, it is shown that if the design parameters l and

g are large enough, then Ωb+1 contains the z component

of all trajectories of (14)-(26) that that originate in Z × Ẑ;

consequently, it would suffice to pick the design parameter

zmax so that Θ ⊇ Ωb+1 where Θ was defined in (17);

however, if it is too difficult to compute Ωb+1, as it will

be the case of the forthcoming application, we can try to

find an appropriate value of zmax by trial and error using

simulations. In this regard, it can be useful to determine a

value z∗max with the following property: all solutions z(t)
of (27) that originate in Z satisfies the inequality |z(t)| ≤
z∗max ∀t ≥ 0; in fact, a good guess would be picking

zmax ≥ z∗max.

The proof of [14, Proposition 1] provides also some

thoretical lower bounds for l and g; however, if it is too

complicated to compute those bounds, as it will be the

case of the forthcoming application, again we can try to

find appropriate values of l and g by trial and error using

simulations.

In the next sections the general design method here pre-

sented is applied to the output regulation problem formulated

in Section II.

IV. FULL-INFORMATION REGULATOR

The goal of this section is designing a memoryless full-

information regulator u = u∗(x,w) for system (2) driven

by exosystem (4) that makes Assumption 1 of Section III

fulfilled.

Similarly to [1], apply the feedback

u = (1 − ǫ2 cos2 x3)v − (ǫx1 cos x3

−ǫ2x2
4 cos x3 sinx3) + ǫ cos(x3)w1 ,

(28)

where v is a resudual input, and make the following change

of coordinates

ξ1 , x1 + ǫ sinx3

ξ2 , x2 + ǫx4 cos x3

ξ3 , x3

ξ4 , x4 .

(29)

Then, (2) and (6) read as

ξ̇1 = ξ2

ξ̇2 = −ξ1 + ǫ sin ξ3 + w1

ξ̇3 = ξ4

ξ̇4 = v

e = ξ1 − ǫ sin ξ3 .

(30)

A solution to the regulator equations (see [11, Equation

(2.10)]) associated to (30) and (4) is given by (see [8, Section

V])

π1(w) = −
w1

ω2

π2(w) = −
w2

ω

π3(w) = − arcsin
( w1

ǫω2

)

π4(w) = −
ωw2

(ǫ2ω4 − w2
1)

1

2

c(w) =
ω2w1(ǫ

2ω4 − w2
1 − w2

2)

(ǫ2ω4 − w2
1)

3

2

.

(31)

Note that π and c are defined for |w1| < ǫω2; consequently,

from now on we will consider only exogenus inputs w(t)
such that |w1(t)| < ǫω2 ∀t ≥ 0. This is obtained enforcing

that the initial state of (4) belongs to the following compact

and invariant set

W = {w ∈ R
2 | |w| ≤ wmax}

with

0 < wmax < ǫω2 . (32)

Next, make the additional coordinate transformation

ξ̃i , ξi − πi(w) i = 1, . . . , 4 (33)

and apply the feedback

v = c(w) + ṽ (34)

where ṽ is an additional residual input. Then, (30) reads as

˙̃
ξ1 = ξ̃2

˙̃
ξ2 = −ξ̃1 + ǫ sin

(

ξ̃3 − arcsin
( w1

ǫω2

))

+
w1

ω2

˙̃
ξ3 = ξ̃4

˙̃
ξ4 = ṽ

e = ξ̃1 −
w1

ω2
− ǫ sin

(

ξ̃3 − arcsin
( w1

ǫω2

))

.

(35)

Note that if we are able to design a feedback law that makes

ξ̃ converge to zero, then e converges to zero, too. We will

achieve this objective using a backstepping design which is

obtained through an adaptation of the design proposed in [6]

and that can be summarized as follows. Consider the new

coordinates

ζ1 , ξ̃1

ζ2 , ξ̃2 + a1ζ1

ζ3 , ǫ sin
(

ξ̃3 − arcsin
(

w1

ǫω2

)

)

+ w1

ω2

−(a2
1ζ1 − (a1 + a2)ζ2)

ζ4 , ǫ cos
(

ξ̃3 − arcsin
( w1

ǫω2

))

(

ξ̃4 −
ωw2

(ǫ2ω4 − w2
1)

1

2

)

+
w2

ω
− [a1(1 − a2

1) + a2]ζ1

−[a1(a2 + a1) + a2
2 − 1]ζ2

+(a1 + a2 + a3)ζ3

(36)
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where ai > 0 i = 1, 2, 3 are design parameters. Then,

consider the Lyapunov function V = 1

2
(ζ2

1 + ζ2
2 + ζ2

3 + ζ2
4 )

and enforce that V̇ = −a1ζ
2
1 − a2ζ

2
2 − a3ζ

2
3 − a4ζ

2
3 where

a4 > 0 is a design parameter; it follows that

ṽ =
β(ξ̃, w, ǫ, a1, a2, a3, a4)

ǫ cos
(

ξ̃3 − arcsin
( w1

ǫω2

)) , (37)

where β is an appropiate smooth function. Thus, a memo-

ryless full-information feedback u = u∗(x,w) is obtained.

However, the latter control law is well defined only if in the

resulting closed-loop system it occurs that

cos

(

ξ̃3(t) − arcsin

(

w1(t)

ǫω2

))

6= 0 ∀t ≥ 0 . (38)

Using standard arguments, it can be shown that this occurs

if (x(0), w(0)) belongs to an appropriate set X × W ⊂ R
6

which is contained in the the region of convergence of the

full-information regulator.

Remark 4: A shorter procedure for designing a full-

information regulator for the TORA system that fulfills

Assumption 1 is adopted in [8, Section V] and in [10];

however, as it will be discussed in Section VI, with the

design carried out here it is easier to determine the parameter

z∗max introduced in Remark 3; in addition, the approach here

followed allows us to determine an estimate X × W of the

region of convergence of the full-information regulator more

simply than employing the method in [8].

V. GAUTHIER-KUPKA’S OBSERVABILITY

CANONICAL FORM

In the present section it will be shown that plant (2) aug-

mented with exosystem (4) and observed through the mea-

sured output (7) can be transormed into Gauthier-Kupka’s

observability canonical form.

Rewrite systems (2) and (4) with output (7) as

˙̃x = f̃(x̃, u)

y = h̃(x̃)
(39)

where

x̃ = (x w)T

f̃(x̃, u) = (f(x) + g(x)u + p(x)w1 Sw)T

h̃(x̃) = x3 .

(40)

Define

f̃0(x̃) = f̃(x̃, 0) (41)

and, as in [16, p. 463], trasform the x̃ coordinates of (39)

into

zi = φi(x̃) = Li−1

f̃0

h̃(x̃) i = 1, . . . , 6 . (42)

It can be verified that (42) defines a global diffeomorphism

that transforms system (39) into a system of the form

ż = F (z, u)
y = z1 ,

(44)

with

∂Fi

∂zi+1

(z1, z2, . . . , zi+1, u) = 1

∀(z1, z2, . . . , zi+1, u) ∈ R
i+2 i = 1, . . . , 5 .

Then, it can be concluded that (39) is transformed through

the diffeomorphism (42) into Gauthier-Kupka’s observability

canonical form; consequently, Assumption 2 of Section III

is fulfilled.

VI. MEASUREMENT FEEDBACK REGULATOR

Since Assumption 1 and Assumption 2 are satisfied, we

can proceed with the design of a measurement feedback

regulator as indicated in Section III. As discussed in Remark

3 it is useful to determine a positive scalar denoted by z∗max

which has the following property. Given system (2) and

(4) controlled by the full-information regulator derived in

Section IV, consider its trajectories that originate in X×W ,

with X and W determined in the same section; express those

trajectories in the z coordinates defined by (42); then, z∗max

must be such that |z(t)| ≤ z∗max ∀t ≥ 0. It is easy to see

that z∗max can be determined through standard calculations

using the expressions (36) of the coordinate transformations

previously introduced.

Next, for designing the regulator as in Section III, given

system (44), it is useful to determine functions F gl and Kgl

that satisfy properties P1, P2, and P3 of Section III. To

reach this objective, it is helpful to note through appropriate

computations that for system (44) the following holds

∂2Fi

∂zi+1∂zj

(z1, z2, . . . , zi+1, u) = 0

∀(z1, z2, . . . , zi+1, u) ∈ R
i+2

i = 1, . . . , 5 j = 1, . . . , i . (45)

Then, by (45) and [18, Lemma 2] it is easy to prove that the

functions defined by

F
gl
i (z, u) = Fi(σzmax

(z1), . . . , σzmax
(zi), zi+1, σl(u))

i = 1, . . . , 5

F
gl
6 (z, u) = F6(σzmax

(z1), . . . , σzmax
(z6), σl(u))

Kgl(z1) = z1

do satisfy properties P1, P2, and P3 of Section III. The

corresponding matricies A and C defined in (24) and (25)

are given by

A =















0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 0 1
0 0 0 0 0















C =
(

1 0 · · · 0
)

.

(46)

Then, a vector N ∈ R
6 that satisfies property P4 can be

determined picking any N such that A − NC is Hurwitz.
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Fig. 1. Time behaviors

Finally, the measurement feedback regulator is given by

(26) with initial state constrained to range on an arbitrarily

fixed compact set Ẑ ⊂ R
6, and with the parameters zmax,

l, and g chosen as in Proposition 1. The latter controller

guarantees output regulation if (x(0) w(0) ẑ(0)) ∈ X ×
W × Ẑ.

VII. SIMULATION

For simulation it has been set ǫ = 0.2, ω = 3, and ai =
0.05 i = 1, . . . , 4. The sets X and W have been determined

as said in Section IV. The value z∗max = 1.08 · 108 has

been determined following the method sketched in Section

VI, and it has been set zmax = z∗max. Vector N has been

fixed imposing that the characteristic polynomial of A−NC,

with A and C given in (46), is equal to the 6th order

Butterworth polynomial. The remaining design parameters

have been selected as l = g = 1.

Set initial states as follows x1(0) = 0.06, x2(0) = 0.03,

x2(0) = 0.009, x4(0) = 0.002, w1(0) = 0.01, w2(0) = 0,

and ẑ(0) = 0; the corresponding time behaviors of the states

of the plant, of the states of the exosystem, and of (x̂, ŵ) =
φ−1(ẑ) are plotted in Fig. 1. Note that the regulated variable

x1 is steered to zero as desired, and that the observation error

(x − x̂ w − ŵ) converges to zero.

VIII. CONCLUSIONS

In the present work a feedback controller that solves

an output regulation problem for the nonlinear benchmark

system known as TORA is designed. The novelty of the

controller with respect to previous works is that output regu-

lation is achieved using only measurements of the rotational

position. The design is carried out following a certainty-

equivalence approach.

The compensator presented here leave open the question

of robustness with respect to uncertainties in the plant and

in the exosystem.
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