
Further Tracking Results for Input-constrained Minimum-Phase 
Systems 

 
F. GIRI*, E. CHATER, F.Z. CHAOUI, J.B. GNING 

GREYC Lab, University of Caen Basse-Normandie, Caen, France 
* Corresponding author: giri@greyc.ensicaen.fr  

 
Abstract. Minimum phase systems are the only systems 

that allow (in disturbance-free unconstrained case) the 
achievement of perfect tracking in presence of arbitrary 
reference signals. The question is whether this still holds 
when the control input is subject to input saturation 
constraint. Surprisingly, most works on global output 
tracking in presence of input saturation focused on 
nonminimum phase systems. Then, perfect tracking is only 
achievable for constant references. In this paper, it is shown 
that more powerful tracking results are achievable for 
minimum phase systems. Specifically, perfect tracking is 
guaranteed for arbitrary type reference signals that satisfy a 
well defined strict compatibility condition. When, the 
reference signal is just compatible in the mean then the 
tracking quality depends on the reference variation rate. For 
periodic reference signals (not necessarily compatible with 
constraint), all the closed-loop system signals are shown to 
be periodic with the same period.  
 
Keywords: Minimum phase systems, input saturation 
constraint, output reference tracking, input-output 
stability, incremental stability. 

I.  INTRODUCTION 
In this paper, the focus is made on global output reference 
tracking for stable linear systems in presence of input 
constraint. It is well known that such an issue is closely 
related to the system phase nature. In the unconstrained 
case, global tracking of arbitrary type reference signals is 
achievable only for minimum phase systems. The 
question is whether this still holds in the case of input 
saturation constraint. Surprisingly, early relevant results 
concerned nonminimum phase systems, e.g. ([2], [3]). It 
was shown, using saturated versions of (adaptive) pole 
placement regulators, that perfect global tracking is only 
possible for constant reference signals that are strictly 
compatible with the input limitation. The problem of 
perfect global tracking of not necessarily constant 
references was dealt with in [8] considering minimum-
phase stable systems controlled by saturated (adaptive) 
model reference regulator. It was shown that the tracking 
error converges globally to zero whatever the nature of 
the reference signal provided this is strictly compatible 
with the constraint. While such result constitutes a 
theoretical progress, its practical applicability is limited. 
In practical applications, the following tracking issues are 
important: (i) Does the regulator still show a tracking 
capability when facing reference signals that are only 
compatible in the mean (but not strictly)?  (ii) How 
behaves the regulator in presence of reference signals 
with no compatibility feature? These issues are addressed 
in the present paper considering input-constrained 
minimum-phase systems controlled by saturated model 

reference regulators. In addition to perfect tracking of 
strictly compatible reference signals, it is shown that 
average tracking performances are ensured when the 
reference signal is just compatible in the mean. Then, the 
tracking error is proportional in the mean to the mean 
rate of the reference sequence. Furthermore, in the case of 
just periodic reference signals (not necessarily 
compatible), all closed loop signals are in steady-state 
periodic and oscillate with the same frequency as the 
reference. 
 
The paper is organized as follows: Section 2 is devoted to 
formulating the control problem and designing the 
regulator; key technical lemmas are presented in Section 3 
and used in Section 4 to establish the regulator tracking 
performances; a conclusion and reference list end the 
paper. 

II.  CONTROL PROBLEM FORMULATION AND 
REGULATOR DESIGN 

We are considering discrete-time SISO linear systems 1: 
  u(t) )B(qq    y(t) )A(q -1-d-1 =     ( INt∈ )        (1a) 

in presence of the input constraint: 
Mu  u(t) ≤  (1b) 

with: 
-na

 na
-1

 1
-1 qa  ..  qa  1  )A(q +++=  (2a) 

)0(qb  ..  qbb  )B(q 0
-nb

 nb
-1

 10
-1 ≠+++= b      (2b) 

where u(t)  and y(t)  are the system input and output 
(respectively); Mu  denotes the maximal allowed control 

value; -1q  is the backward-shift operator; ( )dnbna ,,  are 
integers and ( )i, i b a  are real numbers. The polynomials 

)A(zz -1na  and )B(zz -1nb  are Hurwitz i.e. the system is 
BIBO stable and minimum-phase. The stability 
assumption is required to make the system controllable in 
presence of the control limitation (1b). The minimum 
phase requirement is necessary because we seek perfect 
global tracking in presence of arbitrary reference signals 
{ })(* ty  that are compatible with the constraint (1b) (in a 
sense made precise later). 
 
Since )A(q-1  and -dq  are coprime, there exist unique 
polynomials of the form: 

1-d
1-d

 -2
2

 -1
1

-1 qr    ...  qr qr  1  )R(q  
+++++=  (3a) 

                                      
1 Throughout the paper, IN denotes the set of integer numbers 

and IR the set of real numbers. 
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1-n
1-n

 -2
2

 -1
10

-1 qs   ...  qs qs  s  )S(q    
+++++=  (3b) 

such that: 
)()()()()( 11111 −−−−−− + qqC=qSqqRqA d Λ  (4) 

where ),max( nbnan=  and  qC 1)( − is any Hurwitz 
polynomial of the form: 

n
n

 2
21

-1 qc    ...  qc qc  1  )C(q    
−−− ++++= 1  

1
1

1 +−−− λ++λ+λ+=Λ d
-d

 2
21

-1 q    ...  q q  1  )(q     

The saturated model-reference regulator we are 
proposing consists in generating an auxiliary control 
signal { })(tv  according to the following control law: 

)(
)(
)()(

)()(
)()(

)(
)()()( *

1

1

11

1

1

11
dty

qB
qCty

qBq
qStu

q
qRq = tv ++

Λ
−

Λ
−Λ

−

−

−−

−

−

−−

 
   (5) 
and letting the control action )(tu  be: 

( ) ( ) { })()()()( tv  ,umintv  sign  tv  sat tu M

def
==  (6) 

 
Remarks 2.1.  
 1) The saturated regulator (5a-b) coincides with the 

standard linear model-reference regulator: 
)()()()()()()()( *11111 dtyqqCtyqS  tuqRqB +Λ=+ −−−−−   

(7) (6) 
whenever the control signal stops saturating for a long 
time. Then, one gets 0)()()( 11 =+Λ −− dteqqC  with 

)()()( * tytyte
def

−=  is the tracking error. The error )(te  
then vanishes exponentially fast because the polynomial 

)()( 11 −− Λ qqC  is Hurwitz. The latter determines the 
regulation dynamics of the closed-loop system. 

2) The reference signal )(* ty  may be the output of a model 

reference system, e.g. )())(/1()( 1* tuqAty mm
−=  where 

)(tum  denotes the ideal output reference and )( 1−qAm  is a 
Hurwitz polynomial such that 1)1( =mA . The transfer 

function )(/1 1−qAm  is then referred to tracking dynamics 
of the closed-loop system. The point is that the regulation 
dynamics (defined by )()( 11 −− Λ qqC ) and the tracking 
dynamics are presently independently chosen. 

3) The above regulator design differs from the state-space 
design proposed in [8]. In the latter the tracking dynamics 
are identical to the regulation dynamics 
( )()()( 111 −−− Λ= qqCqAm ). 

III. TECHNICAL TOOLS AND PRELIMINARY RESULTS 
In this section, we recall a number of technical tools 
borrowed from the theory of input-output stability, e.g. 
(Vidyasagar, 2002). In particular, Lemma 3.1 will play a 
central role in the analysis of the next section. 

A. Preliminary notions  

Throughout, Ω  denotes the linear space of all causal real 
sequences (i.e. IRINs →: ). The pl  norm of Ω∈s  is 

denoted 
p

s  ( ∞<≤ p1 ). For any integer 0>T , Ts  

designates the truncated sequence  i.e. )()( tstsT =  for 
Tt0 ≤≤  and TtfortsT >= 0)( . 

 
Definition 3.1 (Sectoricity). A dynamic nonlinear map φ : 

IRIRIN →×  belongs to the sector [ ]ba,  (with ba < ) if: 
22 ),( bzztzaz ≤≤ φ ,     for all ( ) IRINzt ×∈,  (8) 

 The set of such functions is denoted [ ]baS ,    � 
 
Definition 3.2 (stability). Let Ω→Ω:H  be any dynamic 
nonlinear operator. 
1) H  is pl -stable (for some ∞≤≤ p1 ) if there exists a 

real γ  such that: 
pp

uHu γ≤ , for all plu∈ . The 

smallest γ  is called pl -gain of H  and denoted  
( )Hpγ . 

2) H  is pl -incrementally stable if it is pl -stable and 

there is a real γ~  such that 
pp

uuHuHu 2121
~ −≤− γ , 

whatever pluu ∈21, . The smallest γ~  is called 
incremental pl -gain and is denoted ( )Hpγ

~ � 
 
The next definitions make precise the sense of reference 
signal compatibility and sequence smallness in the mean. 
 
Definition 3.3 (Giri et al, 1988). Let α  be any real 

number and Ω∈s  any real sequence. s is said to be α-

small in the mean (briefly α-SM), if: 

α   s(t) 
k
1 

kh+

1h+=tk
≤∑

∞→
suplim    (for all  INh∈ ). For a given α, 

the set of all α-SM sequences is denoted )(αSM . The 

mean size of a bounded sequence s is the smallest real 

α  such that )(αSMs ∈ .     � 

 
Remark 3.1.  In the above definition and throughout, the 
notations )(s αSM∈  and { } )(s(t) αSM∈  are indifferently 
used. 
 
Definition 3.4. Consider the system (2.1a) and a bounded 

sequence Ω∈*y . Let Ω∈*u  be any signal obtained 

from *y  solving the following difference equation: 

 )()()()( *1*1 dtyqAtuqB += −− ,     INt ∈  (9) 

with any initial conditions [ ]MM uuiu ,)(* −∈− ,  

nb , ,i …= 1 . 
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1) *y  is said to be strictly compatible with the constraint 

if, there is a real 10 << δ , such that 

Mutu )1()(* δ−≤  (for all sufficiently large t). 

2) A not strictly-compatible sequence *y  is characterized 
by its MCD denoted µ/1  where µ  is the smallest real µ  

such that )()( ** µSMusatu ∈−  � 

Remark 3.2.  The signal *u generated by (9) is referred to 
control signal induced by the reference *y . If *y  is 

strictly-compatible, the resulting  *u  stops pressing on the 
allowed control boundaries Mu±  after a finite transient 

period. A not strictly-compatible reference *y  leads to an 
input reference that not only presses, infinitely often, on 
the allowed control boundaries but goes beyond them.  � 
 

B. Technical Lemmas 
 
Lemma 3.1 (Properties of the saturation function). 
 The function ( ).sat  has the following properties: 
1) )()( vsatvvsatv −=− ,    (for all v ) 

2) 0)( ≠− vsatv   ⇒  )()( vsignuvsat M= ,   ( for all v )  

3) For all real numbers 21,vv , there exists ]10[∈ξ   such 

that: 

( ) ( ) )( 2121 vvvsatvsat −=− ξ   
(10)  
Proof. See e.g. (Chaoui et al, 1998, 2001). 
 
Lemma 3.2.  Let Ω∈21 sss, , , { }2,1∈p  and 

2121 ,,,, kkµµµ  be any real numbers. 

1) If  )( 11 µSM s ∈  and  )( 22 µSM s ∈  then:   

)( 12112211
ppppp kpkpSM sksk µµ +∈+ . 

2) If H  is an pl -stable operator then, for all Ω∈s : 

  )(µS s p ∈     ⇒     ( )µγ p
p

p HSMHs ))((∈      � 
 
Proof. See e.g. (Chaoui et al, 1998). 
 
Lemma 3.3. Consider the feedback system of Fig.1 
involving a proper Hurwitz transfer function )(zG  in  
closed-loop with the nonlinear map IRIR →:ψ , 

( )zsatzz −→ . Then, one has the following properties: 
1) The feedback is ∞l -stable if 2<aγ  with: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

= ∞ 2/)(1
)(

zG
zG

a γγ     (11) 

Then one has: 

∞∞∞
−

+
+

−
≤ 212

2
1

2
1

2
1

uue
a

a

a

a

γ

γ

γ
γ        (12) 

2) The feedback is 2l -stable if: 

 ( ) 1)(Reinf
20

−>
<≤

ω

πω

jeG  (13) 

 Under condition (13), the dynamic nonlinear map 

2ew →  is 2l -incrementally stable, with 12 )( uzGuw
def

+=  
� 
 
Proof. See e.g. [9]  

 
Fig 1. Feedback system in Lemma 3.1 

IV. ANALYSIS OF THE SATURATED REGULATOR 
PERFORMANCES 

In this section, the tracking capability of the saturated 
regulator defined by (5a-b) is analyzed using the technical 
tools presented in Section 3. Quite interesting results are 
established for different classes of reference sequences. 
First, we investigate the properties of operator vy →* . 
  
Proposition 4.1. Consider the constrained system (1a-b) 
in closed-loop with the saturated regulator (5a-b). Then, 
the nonlinear dynamic map vy →*  has the feedback 
structure of Fig 1 with: 

01 =u , ve =2 , uvy −=2  (18a) 

)()()( *
2 ttutu ε+=      (18b) 

)z(C
)z(C)z()z(A)z(G 1

111

−

−−− −
=

Λ   (19a) 

IRIR →:ψ , ( )zsatzz −→  (19b) 

where )(* tu  is as in Definition 3.4 and )(tε  is an 
exponentially vanishing term  � 
Proof. See [9]. 
 
Proposition 4.2. Consider the constrained system (1a-b) 
in closed-loop with the saturated regulator (5a-b). Then, 
one has the following properties: 
1) If the reference sequence *y  is bounded, all signals of 

the closed-system are bounded.  
2) If the reference sequence *y  is periodic, all signals of 

the closed-loop system are periodic (in steady state) 
with the same period as *y � 

Proof. See [9]. 
 

u2 

+

+ 

+ 
    − 

y1 u1 

y2 e2 

e1 
)(zG  

ψ  
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Theorem 4.1 (Tracking strictly compatible reference 
signals). Consider the constrained system (1a-b) in 
closed-loop with the saturated regulator (5a-b). Let the 
reference sequence *y  be strictly compatible with the 

constraint (1b) and let )( 1−zC  be chosen so that the 
following two conditions are satisfied: 

1<bγ   (33a) 

δ
γ
γ

+<
−
+ 1

1
1

b

b  (33b) 

with 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+

−
= −−−

−−−

∞ )z(C)q()z(A
)z(C)q()z(A

111

111def

b
Λ
Λγγ   (34) 

where δ  is as in Definition 3.4 (Part 2). Then, there 
exists an integer INT ∈ , such that for all Tt ≥ : 
1)  Mutv <)(   and, consequently,  )()( tvtu =   

2) ( ) 0)(d)(t)( *1 =+−+− dtyyqC  and, consequently,      

( ) 0)(lim * =−
→∞

ty(t)y
t

         � 

Proof. Part 1: Using Proposition 4.1, the nonlinear 
dynamic map vy →*   is given the equivalent feedback 
structure of Fig 1. Then, applying Lemma 3.3 (Part 1), the 
feedback is ∞l -stable provided that 2<aγ  with: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

= −−−

−−−

∞∞ )z(C)q()z(A
)z(C)q()z(A2

2/)z(G1
)z(G

111

111

a
Λ
Λγγγ  (35) 

using (19a). But, from (34) one has ba γγ 2= . Therefore, 
(35) does hold because 1<bγ . Consequently, the system 
(23)-(24) (represented by the feedback of Fig 1) is 
actually ∞l -stable. Furthermore, Lemma 3.3 (Part 1) 
gives, due to inequality (12): 

∞∞
+

−
+

≤ )()(
1
1 * ttuv

b

b ε
γ
γ             (using (12) and (18a-b)) 

  ( ) ( )
∞

++−≤ )(11 2 tuM εδδ     (using (33b))  (36) 

Using the system causality and the fact that the time 
origin (i.e. 0=t ) is not physically fixed, one gets from 
(36) that, for all 0>τ : 

( ) ( ) )(max11)(max 2 tutv
t

M
t

εδδ
ττ ∞<≤∞<≤

++−≤  (37) 

As )(tε  is exponentially vanishing, there exists a 0>T  
such that: 

)1(2
)(max

2

δ
δε

+
<

∞<≤

M
tT

ut   

which, together with (37), implies: 

MMtT
uutv <⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−≤

∞<≤ 2
1)(max

2δ  

This proves Part 1 of Theorem 4.1. 
 
Part 2: From Part 1, the saturated control law (5a-b) 
reduces to the linear control law  (6) for Tt ≥ . In view of 
(1a), d)(t)( 1 +− yqA  can be substituted to (t))( 1 uqB −  in 
the left side of (6). Doing so, one gets for Tt ≥ : 

)()(C(t))(  )()()( *1111 dtyqyqSdtyqAqR +=++ −−−−  

which proves Part 2 using (4)   
 
Remark 4.2. 1) Note that conditions (34a-b) can be 

fulfilled choosing )( 1−zC  sufficiently close to )( 1−zA . 
Indeed, it is seen from (34) that 0lim

)()( 11
=

−− → zAzC
bγ   

2) In fact, the above conditions define a neighborhood of 
the controlled system poles (i.e. the zeros of )( 1−zA ) 
within which must be placed the regulation poles of the 
closed-loop system (i.e. the zeros of )( 1−zC ) . When 
this pole assignment is respected, the regulator stops 
saturating after a transient period and the control law 
(5a-b) coincides with the standard linear law (6). 
Furthermore, as )((t) * tyy −  vanishes asymptotically, it 

follows comparing (1a) and (9) that )((t) * tuu −  
vanishes in turn �  

 
The next theorem describes the tracking performances for 

non-strictly compatible references. Let *y  be any 

bounded reference and µ/1  its MCD. Due to Definition 

3.4, µ  is the smallest real satisfying: 

 ( ) )())(()(
2** µSMtusattu ∈
⎭⎬
⎫

⎩⎨
⎧ −  (38)

where *u  is the input reference defined by (3.2). For 

convenience, the following notations will be used 

throughout: 

))(()()(~ * tusattsts
def

−=  (39)
where )(ts  is any of the three sequences )(),( tutv and 

)(* tu . 

Proposition 4.3. Consider the constrained system (2.1a-b) 

in closed-loop with the regulator (2.6a-b). Suppose that 

)( 1−zC  satisfies the condition: 

1<cγ       with  ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
−

= −−

−−

)()(
)()(

11

11

1 zCzA
zCzAdef

c γγ  (41)

Then, )( *µKSMuv ∈−  and )( ** µKSMyy ∈−  for 

some constant 0* >K  (independent of µ )� 

Proof.  Combining (1a) and (5) in a way to eliminate 

)(ty  one gets: 

( ) )()()(
)(

)()()( *
1

11
ttuu(t)tv

qC
qCqAtv ε++−

−
−= −

−−

 

  Substracting )(* tu  from both sides yields: 

1216



( ) )()(~)(~)(~
)(

)()()(~ *
1

11
tdtututv

qC
qCqAtv ε+++−

−
−= −

−−
(42a) 

Let φ  denotes the nonlinear dynamic map: 

 IRIR →:φ ;    )(~)(~)(~ tutvtv −→  (42b) 

It is readily seen that the system (42a-b) fits the feedback 

scheme of Fig 2. Now, let us show that ]10[S∈φ . This 

amounts to prove that, for all t : 
2))(~())(~)(~()(~0 tvtutvtv ≤−≤  (44) 

First, it is readily seen that (44) holds if Mutv ≤)(  (as 

then 0)()()(~)(~ =−=− tutvtutv ). So, let us consider the 

case where Mutv >)( . Then, one has ))(()( tvsignutu M=  

which, together with the fact that Mutusat ≤))(( *  

implies, successively: 

( ) ( ))()())(()( * tutvsigntusattvsign −=−  (45) 

Mutvtutvtutv −=−=− )()()()()( ))(()( * tusattv −≤  

                                    ))(()( * tusattv −≤  (46) 

Noticing that )()()(~)(~ tutvtutv −=−  and 

))(()()(~ * tusattvtv −=  it follows from (45)-(46) that 

( ) ))(~()(~)(~ tvsigntutvsign =−   and  )(~)(~)(~ tvtutv ≤− . 

These clearly imply that (44) holds. Hence, the last 

statement holds in all cases and so we actually have that 

]10[S∈φ .  

Now, applying Lemma 3.3 (part 1), it follows that the 

feedback of Fig 2 is 1l -stable if: 

 2<aγ   (47) 

with ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=
2/)(1

)(
1 sG

sG
a γγ  and 

)(
)()()( 1

11

−

−− −
=

zC
zCzAzG . It 

is readily checked that 

( )))()(/())()((2 1111
1

−−−− +−= zCzAzCzAa γγ . Then, the 

condition 2<aγ  is nothing other than assumption (41). 

Therefore, the feedback of Fig 2 is actually 1l -stable. 

Applying Lemma 3.2 (Part 2), it follows from (4.13) that  

)(~~
1µKSMuvuv ∈−=− , where 01 >K  is the 1l -gain 

of the map uvtdtu ~~)()(~* −→++ ε . This establishes the 

first part of the proposition. 

To prove the second part, notice that the control law 

(2.6a) can be rewritten: 

 (t)yqStuqRqB )()()()( 111 −−− +  

( ) tvtuqBqdtyqCq )()()()()()()( 11*11 −++= −−−− ΛΛ

In view of (2.1a), (t)uqB )( 1−  can be substituted to 

d)(tyqA +− )( 1  in the left side of (4.21). Doing so, one 

gets for 1−+≥ dnbt : 

)()()()()( 111 tyqS  dtyqAqR −−− ++  

    ( ) tvtuqBqdtyqCq )()()()()()()( 11*11 −++= −−−− ΛΛ  

Using (4), this yields: 

)()()()()()( *1111 dtyqCq dtyqCq +=+ −−−− ΛΛ  

                                           ( ) tvtuqBq )()()()( 11 −+ −−Λ  

or, equivalently: 

( ) )()()(
)(
)()()( 1

1
* t tvtu

qC
qBdty dty ε+−=+−+ −

−

 (48) 

where )(tε  is exponentially vanishing. As 

)(/)( 11 −− qCqB  is 1l -stable (because )( 1−qC  is Hurwitz) 

and )( 1µKSMuv ∈−  it follows, applying Lemma 3.2 

(Part 2) to (4.22), that ( )µ21
* KKSMyy ∈−  with 2K  the 

1l -gain of the transfer function )(/)( 11 −− qCqB . 

Proposition 3 is proved with ),max( 211
* KKKK =    

 
 
Remark 4.3. 1) Condition (41) defines (just as did 

conditions (33a-b)) a neighborhood of the controlled 
system poles in which must be assigned the closed-loop 
system regulation poles.  

2) The average tracking result of Theorem 4.2 guarantees 

that the mean size of uv −  and *yy −  are inversely 

−

+ 
   + 

)()(~* tdtu ε++  
)(~)(~ tutv −  (t)v~  

)(
)()(

1

11

−

−− −
zC

zCzA

φ  

Fig 2. Feedback representation of the system (43a-b) 
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proportional to µ/1  (the MCD of the reference). The 

larger the MCD, the better the average tracking quality. 

The particular case where 0=µ  is interesting because 

then the average tracking error is null. Then )(tv  

violates the saturation limit infinitely often (Remark 3.3, 

part 2). Note that the MCD concept is an original 

feature of the present work. 

3) It is worthy noticing that 1hcb == γγ  with )(th  the 
impulse response of the transfer function 

))()(/()()(( 1111 −−−− +− zCzAzCzA  (e.g. [7]). Hence, 

condition (41) allows a much broader choice of )( 1−qC  
than (33a-b). This is not surprising as the average 
tracking performance in Theorem 4.2 is less strong than 
the perfect global tracking in Theorem 4.1. However, 
the former involves a much wider class of admissible 
reference signals. Typically, any bounded reference 

)(* ty  is admissible in Theorem 4.2.  

V. SIMULATIONS 
The simulation results are omitted for space limitations. 
They will be presented in the conference. 

VI. CONCLUSION 
We have considered the problem of controlling 
constrained discrete-time minimum-phase linear systems. 
The originality of the work is the design of the specific 
regulator (5a-b) that is shown to provide powerful 
tracking properties. Specifically, in presence of reference 
signals that are strictly compatible with the constraint 
(Definition 4.4), the regulator ensures perfect output 
reference tracking (Theorem 4.1). In presence of arbitrary 
bounded (but not necessarily strictly-compatible) RS, the 
average tracking quality depends on the reference MCD 
µ/1  (Definition 3.4). The larger the MCD is, the better 

the tracking quality (Theorem 4.2). Finally, in the case of 
periodic reference signals (not necessarily compatible 
with the constraint), it is shown that all signals of the 
closed-loop system are in turn periodic with the same 
period as the driving reference (Proposition 4.2). It is the 
first time that such a high level of tracking performances 
is achieved in present of input constraint. 
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