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Abstract—The objective of this paper is to extend and
refine the nonlinear canonical variate analysis (NLCVA)
methods developed in the previous work for system iden-
tification and monitoring of automotive engines. The use
of additional refinements in the nonlinear modeling are
developed including the use of more general bases of non-
linear functions. One such refinement in the NLCVA system
identification is the selection of basis functions using the
method of Leaps and Bounds with the Akaike information
criterion AIC. Delay estimation procedures are used to
considerably reduce the state order of the identified engine
models. This also considerably reduces the number of esti-
mated parameters that directly affects the identified model
accuracy. This increased accuracy also affects the ability to
monitor changes or faults in dynamic engine characteristics.
A further objective of this paper is the development and use
of nonlinear monitoring methods as extensions of several
previously used linear CVA monitoring procedures. For the
case of linear Gaussian systems, these monitoring methods
have optimal properties in detecting faults or system changes
in terms of the general maximum likelihood method. In the
nonlinear case, departures from optimality are investigated,
but the procedure is shown to still work quite effectively for
detecting and identifying system faults and changes.

Index Terms—Nonlinear subspace system identification,
automotive engine fault detection, feedback.

I. Approach to Engine Modeling and Monitoring

The identification and monitoring of automotive en-
gines has been a difficult problem. The engine dynamics
are nonlinear and depend on a host of variables that
may change considerably at different engine operating
conditions. While the identification and monitoring of
linear time-invariant systems has become routine using
advanced subspace methods that are automated, the
problem for nonlinear systems has been more difficult.
In this paper, a number of extensions (Larimore,

1999, 2003, 2005, 2006) of subspace modeling (Van
Overschee and DeMoor, 1994; Verhaegen, 1994) and
monitoring (Larimore, 1997a; Wang et al, 1997; Juricek
et al, 2004) are discussed and applied to automotive
engine data. Those methods are implemented in Mat-
lab c©based on the ADAPTx software (Larimore, 1992a)
to demonstrate the substantial improvements that can
be obtained:

1Financial support for this research was provided by General
Motors Corporation which is gratefully acknowledged.

• Efficient Computation. The CVA system identifi-
cation offers a computationally stable and efficient
way to identify a high-order multivariable system.
• Optimal Open-loop Baseline Model. CVA provides
optimal maximum likelihood (ML) parameter esti-
mation (Bauer, 2005; Deistler et al, 1994) of the
open-loop dynamics in the presence of feedback for
a broad class of systems (Larimore, 1996, 1997b,
2004, 2006) to provide an optimal baseline model
computed for no-fault conditions in large samples.
• Near Optimal Test for a Fault. The method of
scores computes an approximately optimal likeli-
hood ratio (LR) test of hypothesis for any specified
fault relative to the ML baseline model determined
by CVA. This approximation is exact in linear
gaussian processes or in large samples.
• No Optimization Required. Only the computation
of first and second derivatives of the log likelihood
function (LLF) relative to the fault parameter(s) is
required.
• Linear Growth following a Fault. Characteristic
linear growth in the score test statistic following
the occurrence of the fault.
• Handles Outliers and Mismodeling. Outlier detec-
tion methods may be useful even in the case of
intermittent mismodeling in isolated portions of the
state space.
• Near Optimal Fault Isolation for Simultaneous
Faults. Provides approximately optimal resolution
of which fault(s) have occurred and which have not
occurred for simultaneous faults. The approxima-
tion is exact for linear gaussian processes for large
samples
• Minimum Time/Samples for Detection. A fault
is detected in the minimum possible number of
samples.

Various aspects of the monitoring and fault detection
are discussed below using the data from a 5.3L V8
engine. The case of the one output, air-fuel ratio afr,
was considered. The output afr is known to involve
a lot more delay than the output, torque, often used
in engine modeling. Primarily the case of 9-inputs are
considered with particular variables shown in Table I.
The inputs Tcool and Texh were found early in the study
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Variable Name Number
Outputs

afr air-fuel ratio 1
torque output torque

Inputs
TPS throttle position sensor 1
V Ignition ignition voltage 2
fpw fuel pulse width 3
Tcool coolant temperature
Texh exhaust temperature
maf manifold air flow 4
map manifold absolute pressure 5
rpm engine speed 6
SA spark angle 7

TABLE I

Variables Used in Engine Models

to have little effect on afr and were removed from the
analysis.

II. State Space Model Structure

The ultimate model structure desired is a state space
form because it can have a more parsimonious structure.
This is achieved in a number of steps:
• A NARX (Nonlinear AutoRegressive with eXoge-
nous inputs) model is fitted to the data involving
nonlinear functions of the inputs (Larimore, 1990b,
2002; Rao, 1966).
• Only linear functions of the outputs are included in
the autoregressive (AR) terms of the NARX model
to insure stability of the model.
• Various nonlinear functions involving moving av-
erages in the inputs (MX terms) are added and
deleted from the NARX model using subset se-
lection (Furnival and Wilson, 1974) and the AIC
(Akaike, 1973) to find a good fit to the data.
• The delays between the various inputs and outputs
of the NARX model are determined by hypothesis
testing (Larimore, 2003).
• The inputs are advanced to removed these delays
to potentially reduce the state order of the state
space model.
• The final model includes the state space model
with delay blocks at the inputs.

The NARX model is of the form (Tong, 1990)

yt = g(yt−1, . . . , yt−j , ut−1, . . . , ut−k) + et = g(pt) + et
(1)

where yt is a vector of outputs, ut are a vector of
inputs, and et is a white noise vector with some specified
probability density function. The past pt is the vector
of past lagged outputs and inputs of finite dimension.
In much of this paper, the maximum likelihood (ML)
problem is considered where et is a zero mean gaussian
random variable with covariance matrix Σee.

The nonlinear function g(pt) of the past can be
approximated as a linear combination of basis functions

such as monomial functions

p
(ι)
t = y

(ι1)
t−1y

(ι2)
t−2 · · · y(ιj)t−ju

(ι1)
t−1u

(ι2)
t−2 · · ·u(ιk)

t−k (2)

where ι = (ι1, ι2, . . . , ιj+k) is a vector of nonnegative
integers composed of the indices ι�, for � = 1, . . . , j +
k, specifying the powers of the respective outputs and
inputs of the past vector pt. Here Bp = {pιt for ι ∈ I}
for some set I of indices. Then the approximating linear
combination is

g(pt) ∼=
∑

ι∈I
aιp

(ι)
t (3)

where I is an index set specifying the power product
terms in the sum and aι for ι ∈ I are the unknown
coefficients.
As discussed above, the selected model structure

retains linear variables in the autoregressive terms and
contains nonlinear variables only in the moving average
terms. This is due to nonlinear AR terms causing
unstable dynamics in nonlinear propagation of the
dynamics. On the other hand, for linear AR terms, if
the AR polynomial has stable roots, then the dynamics
are stable no matter what the MX terms are. This does
impose some limitations on the potential dynamics of
the NARX model, but it does insure a stable model if
the AR terms are stable.

III. CVA and Selection of State Order

For a given NARX model structure developed below,
the states of the system are first determined by the
Canonical Variate Analysis (CVA) (Hotelling, 1936)
method of system identification between the past and
corrected future (Larimore, 1983, 1999, 2004, 2006).
This is done to determine and order linear combinations
of nonlinear functions of the past in terms of their
predictability for the future. A plot of the Akaike in-
formation criteria (AIC) (Akaike, 1973, 1976; Larimore,
1983b, Larimore and Mehra, 1985; Hurvich et al, 1991)
versus the model state order gives a concise description
of how the choice of the state order affects prediction
of the future. Figure 1 shows a comparison of using
the various NARX models for developing a state space
model. The NARX models compared have the following
form:
• the NARX model with quadratic terms and no
delays removed (minimum at 16 states) – the top
curve,
• quadratic terms with delays removed (minimum
at 7 states) – the lowest curve at 6 states,
• quadratic and cubic terms with delays removed
(minimum at 10 states) – labeled “cubic, delay
modeled”, and
• cross product, quadratic and cubic terms with
delays removed (minimum at 15 states but 10 states
very close second) – the lowest curve at 3 states.
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Fig. 1. Comparison of AIC versus State Order

The quadratic model with no delays removed is
decidedly inferior to the other models. In the other
models, a 4-state model captures most of the prediction
for the future. The quadratic model with 6 states does
almost as well as any of the other models, and it is only
slightly surpassed by the cubic or the cubic plus cross
product models with 10 or more states. The baseline
model selected was the 7-state quadratic model with
delays removed with 14 inputs consisting of the 7 inputs
in Table I plus their squares.

IV. Score Statistic Approach to CVA

The approach to monitoring changes and faults in
the engine is based on the score statistic (Cox and
Hinkley, 1974; Cox, 2006), also called the local statistics
approach (Basseville and Nikiforov, 1993), involving a
particular form of the likelihood ratio test. For the
nonlinear state space structure above, the nonlinear
CVA procedure provides approximate ML estimates for
large sample. The one-step prediction errors νt are used
to evaluate the log likelihood function (LLF) as

logp(Y N
1 ; θ) = −1

2

N∑

t=1

[ln(2π|R|+ νTt R
−1νt (4)

where R is the covariance of νt, and Y N
1 usually

abbreviated as Y represents generically the input and
output data (see Larimore (2004)).
In the case where a parameter θ describing a fault is 1-

dimensional, the likelihood ratio statistic for comparison
of the null hypothesis θ0 versus a particular alternative
θ0 + δ is

log
p(Y ; θ0 + δ)

p(Y ; θ0)
= δ

∂logp(Y ; θ0)

∂θ0
+ o(δ) (5)

where o(δ) are higher order terms that go to zero in
large samples. The partial derivative ∂logp(Y ; θ0)/∂θ0
of the log likelihood function is called the efficient score
for the observations Y and denoted as U(θ0), and is
fundamental in the asymptotic theory of maximum
likelihood estimates.
In general situations, a baseline model of the process

may involve a large number of parameters θ. However,
for the purpose of monitoring, a much smaller set
of parameters γ may be of interest for addressing
issues of fault detection and isolation. In this case, γ
may specify a reparameterization θ(γ) of the original
parameters θ. The one requirement is that the null
hypothesis parameter vector γ0 be associated with the
baseline model θ0 = θ(γ0). This is necessary since all
computations of the score statistic in the method of
scores must be evaluated at the baseline model with
parameters θ0. In most discussions below the fault
detection and isolation will be expressed directly in
terms of the original parameters θ, but for additional
clarity the more explicit and general parameterization
θ(γ) will be used.
Consider the general case where the fault parameters

are d-dimensional with the score given by

U(θ) = ∇logp(Y ; θ) (6)

where ∇ = (∂/∂θ1, . . . , ∂/∂θd) denotes the gradient of
the LLF with respect to the parameters θ.

The following properties of the efficient score U(θ0)
are easily shown (Cox and Hinkley, 1974, pp. 107-109
and 311-330; Cox, 2006, pp. 96-105):
• the expected value is zero so E{U(θ0); θ0} = 0.
• The covariance matrix is

Cov{U(θ0); θ0} = E{U(θ0)U
T (θ0); θ0} = I(θ0)

(7)
where I(θ0) is the Fisher information matrix with
the parameter estimation error covariance matrix
E(θ̂ − θ0)(θ̂ − θ0)

T = I(θ0)
−1.

• The Fisher information matrix is also expressible
as the expected value of the second partial deriva-
tive matrix of the log likelihood function (LLF)

Cov{U(θ0); θ0} = I(θ0) = E{−∇∇T logp(Y ; θ0); θ0}
(8)

Now consider the likelihood ratio test, of the null
hypothesis H0 : θ = θ0 versus the alternative hypothesis
HA : θ ∈ ΘA where ΘA contains θ0, using the test
statistic

WL = 2log
supθ∈ΘA

p(Y ; θ)

p(Y ; θ0)
(9)

An asymptotically equivalent test is the ML test statis-
tic

WE = (θ̂ − θ0)
T I(θ0)(θ̂ − θ0) (10)

using the maximum likelihood estimate θ̂ under the
alternative hypothesis HA. Using the efficient score
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U(θ0), the score statistic

WU = UT (θ0)I
−1(θ0)U

T (θ0) (11)

can be shown to be asymptotically equivalent to both
WL and WE . The advantage of the score statistic WU is
that the maximum likelihood statistic θ̂ does not need
to be computed, but only partial derivatives of the log
likelihood function at θ0. This is particularly useful in a
monitoring problem where little data may be available
following a change.
A recent paper (Juricek, Seborg, and Larimore, 2004)

has used the score statistic for the monitoring of
processes identified using CVA that was particularly
sensitive in detecting a number of departures from the
null hypothesis.

V. Distribution of the Likelihood Ratio Test

Under suitable regularity conditions, the asymptotic
distribution of the LR statistic in the nested case is Chi-
square with the degrees of freedom equal to the number
of additional parameters in the alternative hypothesis
that are not contained in the null hypotheses. Under the
null hypothesis H0, the distribution of the test statis-
tic (11) is central Chi-squared. Under the alternative
hypothesis HA, the distribution of the test statistics is
noncentral with the noncentrality parameter given by

(θ∗ − θ0)
T I(θ0)(θ

∗ − θ0) = N(θ∗ − θ0)
T Is(θ0)(θ

∗ − θ0)
(12)

where Is(θ0) is the per sample Fisher information and
N is the sample size in computing the test statistic.

In the tests for faults discussed below, the fault
test statistic is the cumulative sum of the likelihood
ratio computed from the score test statistic (11), so
the distribution of the fault test statistic is that of
a cumulative noncentral chi-square variable. Thus, the
expected value of the fault test statistic grows linearly
with the sample size. The slope of the fault test
statistic when a fault is present is equal to the square
of the change θ∗ − θ0 in the parameters under the
alternative hypothesis HA normalized by the per sample
covariance matrix of the parameter estimation error (the
inverse Fisher information matrix). This completely
characterizes the asymptotic behavior of the fault test
statistic based on the maximum LR test and equivalent
test statistics.

VI. Air-Fuel Ratio Bias Fault

From the state space model form, an output bias bo
in the system is expressed as

yt = ŷt + bo + νt (13)

where ŷt is the one-step prediction of the Kalman filter
and νt is the innovation. To simulate an output bias
fault in the afr variable of magnitude 0.2, the value 0.2
was added to the afr output. The resulting data set will
be called the ‘Fault’ data whereas the original will be

Function Outputs and Inputs
afr fpw fpw2

bias function afr + b
∂/∂b 1
∂2/∂b2 0
gain function γ ∗ fpw (γ ∗ fpw)2

∂/∂γ fpw 2γ ∗ fpw2

∂2/∂γ2 0 2 ∗ fpw2

cross partial
∂2/∂b∂γ 0 0 0

TABLE II

Derivatives of Inputs and Outputs w.r.t. Fault Parameters

called the ‘NoFault’ data. As discussed above, because
of the maximum likelihood nature of the identification
method, the presence of feedback during the closed-
loop operation of the engine will not impact the engine
identification results.

The software for monitoring using the score statistic
requires the first and second partial derivatives of the
output and input data parameterized by the fault
parameter b of the afr bias and the fault parameter
γ of the fpw gain developed in Section VII. The
parameterized functions and their derivatives of the
outputs and inputs are given in Table II.

A plot of the score test statistic for detecting the
afr bias fault using the NoFault data is shown in
Figure 2 to have a maximum value or 23. Under the null
hypothesis of no fault, the test statistic is distributed
as a Chi-squared statistic on 1 degree of freedom. For
a linear gaussian process with efficient estimates of the
parameters, a Chi-squared statistic on 1 d.f. has mean 1
and variance 2. Clearly, there is significant mismodeling
exhibited by the test statistic.

Figure 3 shows the first 100 points. The first 29 points
are used for initialization of the state space model. As
derived in (12), starting with point 30 the test statistic
grows at a linear rate per sample as the ratio of the
square of the bias change of Δbo = 0.2 times the per
sample information Is(b0), so

(Δbo)
2Is(bo) = (0.2)2 ∗ 100 = 4 (14)

The score test statistic at 10 samples after the fault
exceeds twice the maximum value of 23 of the test statis-
tic due to mismodeling under the null hypothesis in
Figure 2. Inspection of the test statistic over the entire
Fail data showed that it grows persistently and linearly
as long as the fault is present. If the mismodeling can be
bounded, then a reasonable threshold can be determined
for reliable detection of the fault. In the present case,
a detection at times greater than 10 sample times after
the fault is plausible, although if there is no rush, a
larger detection time such as 50 sample times could
be used to prevent the possibility of the mismodeling
causing false alarms.
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Fig. 2. Score Test Statistic for afr (wraf1) Bias for the NoFail
data.

A key parameter in the test is the growth rate
(Δbo)

2I(bo). This quantity times the number of observa-
tions since the occurrence of the fault gives the essential
behavior of the test as derived in (12). If there is no
mismodeling, then this growth rate (14) characterizes
the test and specifies the detection probability as a
function of sample size.

VII. Monitoring Injector Clogging

One fault mode of particular interest in this study is
the fuel injector clogging. From the state space model
form, the injector clog parameter γ of the system
produces a change in the term G ∗ ut to the form
G ∗ g(γ) ∗ ut in the state equation

xt+1 = φxt +Gg(γ)ut +Kνt (15)

The diagonal matrix g(γ) of gain factors diag(g) =
(g1,t(γ), . . . , gdimu,t(γ)) has elements equal to 1 for the
case of no fault and less than 1 for a fault. Note that the
parameters gi,t(γ) of the fault can be associated with a
gain change in the gain matrix G or with a change in
the inputs ut. It will be convenient below to associate
the clogging with a scaling of the inputs ut associated
with fpw, i.e. input variables

g3(γ) ∗ u3,t = (γ ∗ fpwt) = γ ∗ u3,t (16)

g10(γ) ∗ u10,t = (γ ∗ fpwt)
2 = γ2 ∗ (u3,t)

2. (17)

where u3,t is the linear term and u10,t is the quadratic
term. The derivatives of the parameterized input func-
tions for inputs fpw and (fpw)2 are given in Table II.
To simulate an injector clog by a factor γ using the

engine data set, the input variable fpw is multiplied by
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Fig. 3. Magnified Score Test Statistic for afr (wraf1) Bias for
the Fail data with Δbo = 0.2.

the factor 1/γ. The resulting data set with the inputs
fpw/γ and (fpw/γ)2 will be called the ‘Fault’ data
whereas the original will be called the ‘NoFault’ data.
This produces the correct result since the the ‘Fault’
data input of fpw/γ is reduced by factor γ giving the
actual input data in the ‘NoFault’ case. As discussed
above, because of the maximum likelihood nature of the
CVA identification method, the feedback or interaction
of the engine with other variables does not effect any
other input or output variables. Thus in simulating the
injector clog fault it is only necessary to proportionately
increase the input.

A plot of the score test statistic is shown in Figure 4
for the NoFault data. Under the null hypothesis of no
fault, the test statistic is distributed as a Chi-squared
statistic on 1 degree of freedom. For a linear gaussian
process with exact estimates of the parameters, a Chi-
squared statistic has mean 1 and variance 2. Clearly,
there is significant mismodeling exhibited by the test
statistic.

A plot of the score statistic with the fpw gain fault of
γ = 0.7 is shown in Figure 5 for the data set consisting
of 117,230 points. Note the abrupt steps in the test
statistic near the sample times of 20,000 and 90,000.
These steps are the result of outliers in the gradient
of the LLF shown in Figure 6. It is possible to use
robust outlier detection methods to remove these outlier
effects.

Figure 7 shows the first 400 points. The first 29 points
are used for initialization of the state space model.
Starting with point 30, the test statistic grows at an
approximately linear rate per sample. The theoretical
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Fig. 4. Score Test Statistic using the NoFail data with fpw
(fuel_pw) gain parameter γ = 1.

rate is the ratio of the square of the change in the gain
parameter of Δγ = 0.3 times the per sample information
I(γ0) = 1.3, so

(Δγ)2I(γ0) = (0.3)2 ∗ 1.3 = 0.117 (18)

The actual per sample growth rate observed in Fig-
ure 5 is 0.25, about double the theoretical. This is due to
the nonquadratic behavior of the log likelihood function
resulting from the nonlinear function (γ ∗ fpw)2. The
growth rate (18) is based on the test statistic WE given
in terms of the parameter errors (10) whereas the actual
score test statisticWU is based on the partial derivatives
(11) of the LLF. These test statistics are identical
if the LLF is a quadratic function, i.e. gaussian, or
are approximately identical for large samples. However,
the quadratic input function (γ ∗ fpw)2 produces a
significant departure of the LLF from quadratic.
The score test statistic at 500 samples after the fault

exceeds three times the maximum value of 63 of the test
statistic due to mismodeling under the null hypothesis
in Figure 4. It is clear that the test statistic grows
persistently and approximately linearly as long as the
fault is present. If the mismodeling can be bounded,
then a reasonable threshold can be determined for
reliable detection of the fault. In the present case,
detection using greater than 500 samples is plausible,
although if there is no rush, a larger detection time
could be used to prevent the possibility of mismodeling
causing false alarms, such as 1000 or 2000 samples.

VIII. Detection and Isolation of Simultaneous Faults

The likelihood ratio tests for simultaneous faults is
easily computed. In the case of the simultaneous afr
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Fig. 5. Score Test Statistic using Fail data with with fpw
(fuel_pw) gain parameter γ = 0.7.

bias and fpw gain faults, since from Table II the second
cross partial derivative of the LLF is zero, the two tests
are independent. Thus there is no correlation between
these two tests for faults and they can be determined
as two independent Chi-squared tests from Eq (11).

IX. Time/Samples Required for Detection

The time or equivalently the number N of samples
required to detect a given size Δθ = θ − θ0 parameter
change with at least probability 1−β can be determined.
If the distribution of the test statistic satisfies the
theory, then the per sample noncentrality parameter
is determined using (12) as

δs = (θ∗ − θ0)
T Is(θ0)(θ

∗ − θ0) (19)

The least sample size N is then determined such that

χ2(ν,Nδs) ≥ 1− β (20)

where χ2(ν,Nδs) is the χ2 distribution function on ν
degrees of freedom with noncentrality parameter Nδs.

If the test statistic deviates significantly from the
theory, then fault detection is based on the typical linear
rate δs of growth per sample of the score statistic, such
as in Figure 5. A threshold is set for fault detection and
the numberN of samples needed to exceed the threshold
is calculated as the threshold divided by the per sample
noncentrality parameter δs. For example, in Figure 5 the
rate of growth of the test statistic is 0.25 per sample. If
the detection threshold is set at 500, then the number
of samples required is 500/0.25 = 2000 samples.
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X. Impact of Model Variation on Monitoring and
Fault Detection

In this study, the basic concept of monitoring and
fault detection has been to obtain a dynamic model
of the engine and to use the model to remove all
of the predictable variation induced by the dynamics
within the error of estimating the model from data. This
presumes that the model is time invariant or any time
variation is known. It also presumes that an experiment
can be done to obtain data resulting in a model that is
estimated substantially more accurately than the faults
to be determined.
If such a model is available, then the maximum

likelihood fault detection methods discussed in this
report can be applied to obtain near optimal detection
of any faults that may occur. There are, however, several
potential problems that can occur that prevent reliable
detection or isolation of a fault. If the model has regions
of the state space that produce outliers, then this may
cause anomalous computation in the monitoring and
fault detection algorithms. This was seen to be the case
for the fpw clog fault. Unlike the situation for linear
time-invariant systems where all regions of the state
space are identified with uniform accuracy, in nonlinear
systems the model identification may be poor in regions
of the state space containing a sparsity of trajectories
leading to a poor model in such regions.
The strategy taken in this study is to identify such

regions or outliers and to ignore faults in such regions
that are highly influenced by such outliers. In particular,
the score test statistic in the presence of a fault was seen
to have an approximately linear trend. Large outliers in
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Fig. 7. Magnified Score Test Statistic using Fail data with fpw
(fuel_pw) gain parameter γ = 0.7.

the efficient score computation were seen to be strongly
related to significant deviations in the linear growth of
the score test statistic and particularly to the gradient
of the LLF. Thus the monitoring of the efficient score
for outliers may provide a means of avoiding modeling
errors characteristic of various regions of the state space.
It was also noted in the study that there are much larger
errors in the prediction of afr at peaks with rapid rates
of increase. This may be a related problem.
Thus with the use of outlier detection methods, it

may be possible to do reliable detection even though
there are regions of the model or state space that have
relatively large errors. In this case, a larger number of
samples will be required for reliable detection since it
will be necessary at times to discard sections of the
data containing outliers or large modeling errors. The
extent to which this is a practical issue will depend
on the particular details of the modeling and detection
characteristics.

XI. Summary and Conclusions

A unique feature of the CVA method implemented
in the ADAPTx software is the maximum likelihood
estimation of the optimal state space model even in the
presence of unknown feedback. The above methods were
applied to a 5.3L V8 engine to determine appropriate
nonlinear basis functions, engine delays, and reduce the
model state order from 16 states to 7 states and more
than halve the number of estimated model parameters.
The monitoring involves a baseline nonlinear CVA

model of the engine and uses the computation of the
score statistic that has a number of very attractive
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features. In this approach, no optimization is required,
but only the first and second partial derivatives of the
log likelihood function (LLF) have to be computed.
When a fault occurs, the score statistic grows linearly
at a characteristic rate determined by the size of the
change in the fault parameter.
The method is near optimal in detecting simultaneous

faults, i.e. two or more faults occurring simultaneously.
A fault can be detected in minimum time. The score
test statistic is reasonably linear when observed over
many thousands of samples, but there are some large
departures from linearity in regions of the state space
where there are modeling errors. To isolate errors due
to mismodeling, it was found that the gradient of the
LLF, computed as part of the monitoring, could be used
to flag outliers. These points could be modified in the
computation and result in more reliable detection for
such faults as injector clogging.
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