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Abstract— Control of a satellite system with an electro-
dynamic tether as actuator is a time-periodic and underactuated
control problem. This paper considers the tethered satellite in
a Hamiltonian framework and determines a port-controlled
Hamiltonian formulation that adequately describes the non-
linear dynamical system. Based on this model, a nonlinear
controller is designed that will make the system asymptotically
stable around its open-loop equilibrium. The control scheme
handles the time-varying nature of the system in a suitable
manner resulting in a large operational region. The perfor-
mance of the closed loop system is treated using Floquet theory,
investigating the closed loop properties for their dependency of
the controller gain and orbit inclination.

I. INTRODUCTION

The principle of electrodynamic space tethers has been

studied over the last couple of decades for its potential

of providing cheap propulsion for spacecrafts (see [1] for

the fundamentals and [2] for a survey of the literature).

A tethered satellite system (TSS) consists of two or more

spacecrafts tethered with cables, also known as space tethers.

The current study will consider two satellites tethered with

an electrodynamic tether. An electrodynamic tether is able

to collect and release free electrons from/to the ionosphere,

which makes a current flow along the tether. The current will

interact with the magnetic field of the Earth and give rise to

a Lorentz force acting along the tether. This force can be

utilized to perform orbit maneuvers.

In this work a rigid tether model has been adopted and it is

assumed that the current through the tether can be controlled

without limitation. In general the model is time-varying, due

to the periodic changes in the magnetic field along the orbit.

This time-periodic nature gives rise to a family of unstable

periodic solutions, which have been investigated in [3]. The

special case of an equatorial orbit, which has the advantage

of being time invariant, was investigated in [4].

In this paper, the focus will be on the case of an inclined

orbit, which has been investigated by several others. One

proposed control strategy is to stabilize the unstable periodic

solution of the tether motion. In [5] two control schemes

were proposed for such stabilization using two additional

actuators. The first scheme used linear feedback of the

difference between a reference trajectory and the current

trajectory, the other used time-delayed autosynchronization.

In [6], the unstable periodic solutions were stabilized using

a current through the tether as actuator. The feedback law

was designed using the energy variation along the orbit to
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synchronize the motion with a reference trajectory. In [7], a

feedback linearisation control law was designed, using the

current through the tether and the tether length as control

inputs, to stabilize the open-loop equilibrium. This feedback

law introduced two singularities along the orbit due to the

unactuated out-of-plane dynamics, which was handled by

switching to an additional control law.

The main contribution of this paper is to formulate the

systems as a port-controlled Hamiltonian system to establish

a passive connection between input and an output from which

an asymptotically stable control law is designed to stabilize

the open-loop equilibrium. From the port-controlled Hamil-

tonian formulation the controller is interpreted as damping

injection for the conservative open-loop system. Traditionally

the zeros of the input function can give rise to problems

in connection with the control law (see [7]). However the

paper shows that these are easily handled together with the

time-varying nature of the actuator due to the passive system

formulation. The idea of using an energy based control

method for the tether system is shown to be a natural choice

since the dominating force on the system is the conservative

gravity force and the perturbation force can be determined

by the control input.

II. MODEL

In this section the tether model is deduced. The physical

setup is first introduced. In the following sections the La-

grangian and the Hamiltonian of the system are stated and

the generalized force arising from the Lorentz force will be

derived. In the last section the system will be formulated as

a port-controlled Hamiltonian system.

A. Definitions and assumptions

The TSS under consideration consist of two satellites,

the main-satellite and the sub-satellite, tethered with a rigid

electrodynamic tether of length l and mass mt. The satellites

are modelled as point masses with mass mB and mA,

respectively. The mass of the main-satellite is assumed the

dominating mass of the system, mB ≫ mA + mt, from

which it can be assumed that the center of mass of the TSS

coincides with the center of mass of the main-satellite. It is

assumed that the satellites are only subject to microgravity,

while the tether in addition is affected by the Lorentz

force. Since no perturbation forces are affecting the main-

satellite, it will follow a unperturbed Keplerian orbit, which

furthermore is assumed circular with semi-major axis Ro.

The model is derived with the purpose of investigating the

stability of the tether w.r.t. the orbital motion, thus it will
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Fig. 1. Orbit description. The orbit frame (xo, yo, zo) occurs from an
Ω → i → ν rotation of the inertial frame (X, Y , Z).

only consider the influence of the Lorentz force on the

attitude motion. The effect of the on the orbital motion was

the subject of [8]. The motion of the tether is described in

the orbit frame, defined with the xo-axis along the position

vector from the Earth to the main-satellite, yo along the

velocity vector of the system and zo normal to the orbit

plane (see Fig. 1). Since the orbit is assumed circular the

right ascension of the ascending node Ω, the orbit inclination

i and the true anomaly ν will be adequate to describe the

orbit frame w.r.t. to the inertia frame as seen in Fig. 1. The

points along the tether are described using a unit vector r

from the main- to the sub-satellite, from which the points

along the tether can be written as sr with s ∈ [0 l].
The tether is assumed of constant length, hence the tether

motion is restricted to a sphere and the system has n = 2
degrees of freedom. Spherical coordinates are introduced as

the generalized coordinates q = [θ ϕ]T , from which r can

be expressed in the orbit frame as,

r =
[

− cos θ cos ϕ − sin θ cos ϕ − sin ϕ
]T

, (1)

where θ is the in-plane angle and ϕ the out-of-plane angle as

seen in Fig. 2. The position of the main-satellite in the orbit

is described by the true anomaly ν. The orbit is assumed

circular thus ν is linearly increasing and it is evident to

introduce ν as the non-dimensional time ν = ωot, which

is subsequently used in the model. The current I through

the tether is seen as the control input and it is assumed to be

controlled without limitations. When the tether is the only

actuator the system is underactuated i.e. the number of inputs

m is smaller than the degrees of freedom n.

B. Lagrangian

The Lagrangian of the system can be written as the

difference between kinetic and potential energy,

L = K − V. (2)

From the Lagrangian the equation of motion can be found

from Lagrange’s equation. Defining the Jacobian of a scalar

xo

yo

zo

θ

ϕ

Orbit trajectory

Fig. 2. In- and out-of-plane angles described w.r.t. the orbit frame
(xo, yo, zo).

function as a column vector this can be written as,

d

dt

(

∂L

∂q̇

)

− ∂L

∂q
= τ , (3)

where τ = [τθ τϕ]T represents the generalized force acting

on the system. Since the motion relative to the orbit frame is

of interest, the velocities are described relative to this frame,

which introduces the centrifugal and the Coriolis potential.

Since the system is orbiting the Earth the main effect of the

gravitational field vanishes and V includes only the Tidal

force. The Lagrangian L can be written (see e.g. [3]),

L(q, q̇) =
1

2
Λ

(

ϕ̇2 + cos2 ϕ
(

(1 + θ̇)2 + 3 cos2 θ
))

, (4)

where (˙) denotes differentiation w.r.t. ν and Λ =
1

3
ω2

ol2(3mA + mt). The term 2θ̇ cos2 ϕ represents the Cori-

olis potential and cos2 ϕ the centrifugal potential. From (3)

it is seen that τ can be scaled by Λ−1, which leaves a

parameterless Lagrangian.

C. Hamiltonian

The generalized momenta can be found as p = ∂L
∂q̇

=

[pθ pϕ]T from which,

pθ =
(

1 + θ̇
)

cos2 ϕ (5a)

pϕ = ϕ̇. (5b)

The Hamiltonian H is given as,

H(q,p) = pT q̇ − L (q, q̇ (p, q))

=
1

2

(

p2

ϕ +
p2

θ

cos2 ϕ
− 2pθ − 3 cos2 θ cos2 ϕ

)

+ 2. (6)

The constant 2 is added, without loss of generality, to get a

positive semi definite Hamiltonian. The singularities at ϕ =
±π

2
are coursed by the use of spherical coordinates. Using

H the equation of motion can be written using Hamilton’s

equation,

q̇ =
∂H

∂p
, (7a)

ṗ = −∂H

∂q
+ Q, (7b)
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where Q = Λ−1τ . The equations result in the following four

coupled first order differential equations,

θ̇ =
pθ

cos2 ϕ
− 1, (8a)

ϕ̇ = pϕ, (8b)

ṗθ = −3

2
cos2 ϕ sin 2θ + τθ, (8c)

ṗϕ = − p2

θ

cos2 ϕ
tan ϕ − 3

2
cos2 θ sin 2ϕ + τϕ. (8d)

From Hamilton’s equation (8) it is obvious that the equilibria

of the unforced system (Q = 0) is placed at the extrema

of H . The open-loop equilibrium between the Earth and the

main-satellite is described as p∗θ = 1 and p∗ϕ = θ∗ = ϕ∗ = 0.

D. Generalized forces

The Lorentz force on a tether section of unit length is,

F̄e = Ir × B, (9)

where B is the magnetic field of the Earth. To find the

generalized force τ associated with the generalized coor-

dinates, the Lorentz force per unit length is projected onto

the generalized coordinates and integrated along the tether,

τi =

∫ l

0

F̄e ·
∂ (sr)

∂qi

ds, for i = 1, 2. (10)

A dipole model is a simple and widely used approximation

of the magnetic field of the Earth. To avoid unnecessary

complexity, the dipole moment is aligned with the rotational

axis of the Earth. This results in a model independent of the

rotation of the Earth. The B-field can be written in the orbit

frame as,

B =
µm

R3
o





−2 sin ν sin i

cos ν sin i

cos i



 , (11)

where µm is the strength of the B-field. Using (11) the

generalized force is,

Q = b(q, ν)u, (12)

where u is a dimensionless quantity proportional to the input

current, which in turn can be written as,

u =
3

2

1

3mA + mt

µm

µ
I. (13)

Here µ is the standard gravitational parameter of the Earth.

The vector b(q, ν) = [bθ(q, ν) bϕ(q, ν)]T will be denoted as

the input function and is of great importance for the control

design. It is essential for the controllability of the system

and it will appear to be an important part of establishing a

passive input-output connection for the system.

The input function can be written as,

bθ(q, ν) = cos2 ϕ tan ϕ sin i (cos ν sin θ − 2 sin ν cos θ)

− cos2 ϕ cos i, (14a)

bϕ(q, ν) = sin i (cos θ cos ν + 2 sin θ sin ν) . (14b)

b(q, ν) is in general quite complicated reflecting the fact that

the magnetic field varies along the orbit (from which the

time dependency occurs) and that the Lorentz force depends

upon the tether orientation relative to the B-field. In the

special case of an equatorial orbit (i = 0◦) the input function

becomes time invariant, but at the same time bϕ vanish and

the out-of-plane motion will become unactuated. This case

was treated in [4].

In the case of an inclined orbit bϕ(q, ν) will have two

zeros along the orbit, determined by 2 tan θ = − cot ν. For

the open-loop equilibrium these are placed at ν = ±π
2

.

The zeros of bθ(q, ν) occurs in a more complicated scheme.

It can be seen from (14a) that for non-polar orbits (i 6=
90◦) zeros cannot occur for small out-of-plane angels (more

specifically for 2 |tan ϕ| < |cot i|), hence no zeros occur for

the open-loop equilibrium or any other equilibrium in the

orbit plane. For a polar orbit, bθ vanish if sin 2ϕ = 0 or

cot ν = 2 cos θ, i.e. the in-plane motion is unactuated at the

open-loop equilibrium.

A critical situation where the system is uncontrollable can

occur if bθ = bϕ = 0 for a period of time. This situation

will occur if the tether and the magnetic field are parallel,

and no Lorentz force can be generated along the tether. We

will not treat this situation in this work.

E. Port-controlled Hamiltonian system description

Introducing a state vector x =
[

qT pT
]T

the system is

rewritten as,

ẋ = J
∂H

∂x
+ g(x, ν)u (15a)

y = gT (x, ν)
∂H

∂x
, (15b)

where

J =

[

0 I

−I 0

]

and g =

[

0

b(q, ν)

]

. (16)

This is a standard formulation of a mechanical system where

only the momentum states are actuated. The output function

(15b) is chosen to establish a passive input output connection.

This formulation is called a port-controlled Hamiltonian

description (see [9, p. 73]) and can, for single input systems,

in general be written as,

ẋ = (J(x, ν) − R(x, ν))
∂H

∂x
+ g(x, ν)u (17a)

y = gT (x, ν)
∂H

∂x
, (17b)

where J ∈ R
2n×2n is the interconnection matrix and

R ∈ R
2n×2n is the damping matrix. It is assumed that the

interconnection matrix is skew-symmetric J = −JT and

that the damping matrix is symmetric and positive semi-

definite, R = RT ≥ 0. Both the interconnection and the

damping matrices can be state and time dependent. In the

current case R = 0 for the open-loop system since no

damping forces are modelled.
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III. CONTROL DESIGN

A controller based on the passivity property of the port-

controlled Hamiltonian system will be designed in this sec-

tion. Afterwards, the closed loop system will be investigated,

using linear Floquet analysis, to find a controller gain k,

which provides optimal stability properties.

A. Passivity based control design

A general stabilization of the system is a difficult task

due to its time-varying and underactuated nature. In the

port controlled Hamiltonian framework, this would require a

feedback law, which reshapes the Hamiltonian of the closed

loop system. An easier task would be to stabilize the open-

loop equilibrium x∗. The latter will be considered here.

Since the Hamiltonian (which acts as storage function for

the system) is positive definite, this task can be simply

achieved by the feedback law u = −ky, where k > 0
(see [9, Corollary 3.3.1 p. 44]). An important condition for

the control design is then that the system need be zero-

state detectable, i.e. if u = y = 0 for t > t0 the states

should converge towards the equilibrium. The zero-state

detectability of the system is closely related to the zeros of

the input function.

The output can be written as,

y = gT (x, ν)
∂H

∂x
= bT (q, ν)

∂H

∂p

= bθ(q, ν)θ̇ + bϕ(q, ν)ϕ̇, (18)

where it has been used that q̇ = ∂H
∂p

. The zeros of the input

function originating from time-periodicity have no influence

on the zero-state detectability since they will be countable.

The generalized coordinates can induce zeros in the input

function as mentioned earlier, but in the case, where the

generalized velocities are different from zero, they will only

occur for countable instances of time. The case where the

velocity is also zero, the state will have reached the equilib-

rium of interest, since this is the only open-loop equilibrium.

The last variable to cause zeros in the input function is the

orbit inclination i. In the case of a equatorial orbit (i = 0◦)

the second term of the output will be zero. If the in-plane

dynamics at the same time has reached its equilibrium, the

out-of-plane dynamics will by unobservable from the output

and the system is therefore not zero-state detectable in this

case. For a polar orbit (i = 90◦) the situation is similar.

The in-plane dynamics will be unobservable from the output

in the case where the out-of-plane dynamics have reached

its equilibrium position, hence the system is not zero-state

detectable in the case of a polar orbit neither.

The stability of the closed loop system can by investigated

using H as Lyapunov function candidate. The time derivative

of H is,

Ḣ =

(

∂H

∂x

)T

J
∂H

∂x
+

(

∂H

∂x

)T

g(x, ν)u

= −k

(

∂H

∂p

)T

b(q, ν)bT (q, ν)
∂H

∂p
. (19)

Due to the zero-state detectability, the derivative of this Lya-

punov candidate is negative semi-definite, however LaSalle’s

theorem ensures asymptotically stability of x∗.

The closed loop system can be written as a port-controlled

Hamiltonian system as,

ẋ = (J − R)
∂H

∂x
, (20)

where

R = ggT =

[

0 0

0 R2

]

. (21)

It is seen that the controller has added the damping matrix

R2 = bbT , hence the controller strategy is called damping

injection. R2 will have one eigenvalue equal to zero, while

the other will be positive except when bθ = bϕ = 0 in

which case it will be zero. The lack of full rank of R2 is a

consequence of the fact that the system is underactuated.

B. Closed loop analysis

This section investigates the stability properties of the

closed loop system, for different values of k, using Floquet

analysis. A linearised version of the closed loop system can

be written as,

ẋ = A(ν)x, (22)

where A(ν) is the T = 2π-periodic system matrix,

A(ν) =









0 0 1 0
0 0 0 1
−3 0 0 0
0 −4 0 0









− 1

2
k









0 0 0 0
0 0 0 0
0 0 2 cos2 i − sin (2i) cos ν

0 0 − sin (2i) cos ν 2 sin2 i cos2 ν









. (23)

The independent solutions of (22) can be written in a

fundamental matrix Φ(ν) for which,

Φ̇(ν) = A(ν)Φ(ν). (24)

It is seen that Φ(ν +T ) is also a fundamental matrix, hence

the connection between Φ(ν) and Φ(ν + T ) can be written,

Φ(ν + T ) = Φ(ν)M , (25)

where M is the nonsingular monodromy matrix and the

characteristic multipliers ρi can be found as the eigenvalues

of M . The stability of the system is determined from ρi

(see [10]) and can be summarized as,

• If one characteristic multiplier is numerically lager than

one |ρi| > 1, the system is unstable.

• If all characteristic multipliers are numerically less than

one |ρi| < 1, the system is asymptotically stable.

• If the multipliers of unit length (|ρi| = 1) have equal al-

gebraic and geometrical multiplicity and the remaining

multipliers have |ρi| < 1 a periodic solution exist.
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Fig. 3. The characteristic multipliers shown in the complex plane. k = 0
is marked with ◦ and k = 100 is marked with ×.

The general complex solution of (22) can, in the case

where an eigenvalue of multiplicity m has m independent

eigenvectors, be written as,

x(ν) =

2n
∑

i=1

ciρ
ν

T

i pi(ν), (26)

where pi is a T -periodic function and ci is a constant.

From (26) it is clear the numerically largest multiplier

will dominate the response as well as decide the stability

(in agreement of the above scheme). This multiplier will

determine the convergence of the solution. We will denote

the numerically largest characteristic multiplier the stability

deciding multiplier. In this work the characteristic multipli-

ers are found numerically by solving (24) with the initial

condition Φ(0) = I . The monodromy matrix can then by

found from (25) as M = Φ(T ).
Fig. 3 shows the evolution of the characteristic multi-

pliers in the complex plane for increasing controller gain.

The absolute values are shown in Fig. 4. The inclination

is i = 45◦ in this case. For k = 0 the figures show

that two periodic solutions exist with different frequencies

corresponding to the natural frequencies of the in- and out-of-

plane motions1. The in-plane motion has a natural frequency

of
√

3ωo corresponding to ρ1 and ρ2 while the out-of-plane

natural frequency equals 2ωo corresponding to ρ3 and ρ4.

ρ3 = ρ4 = 1 since the out-of-plane natural frequency

is a multiple of the orbit rate, which corresponds to the

frequency of the time variation of A (ν). For increasing k

the multipliers are moving towards the origin, reaching a

minimum of the absolute value at k ≈ 3. Afterwards three

multipliers converge to one, while the last one converges to

zero, resulting in an increasing stability deciding multiplier. It

is seen that the system is asymptotically stable for all k 6= 0,

which is in agreement with the stability proof of the previous

1In the case k = 0 the eigenvalues can be found analytically and it can
be checked the that geometric multiplicity of ρ3 and ρ4 equals two.
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Fig. 4. The absolute value of the characteristic multipliers as function of
the controller gain k.

section. Fig. 5 shows three simulations of the closed loop

system for different controller gains. The gains are chosen

to illustrate the influence of the deciding multiplier on the

system response.

Due to the zeros of the input function the controller

will only be stable in a certain range of orbit inclinations.

Fig. 6 shows the stability deciding characteristic multiplier

as function of the controller gain for different inclinations. In

case of either an equatorial or a polar orbit, the characteristic

multiplier is one for all k, and periodic solutions will occur.

This is in agreement with the analysis of the zero-state de-

tectability from the previous section. As already mentioned,

the out-of-plane motion is unactuated in the equatorial case
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Fig. 5. Simulation of nonlinear closed loop system for different gains k.
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Fig. 7. Simulation of nonlinear closed loop system for different orbit
inclination i. The controller gain is chosen as k = 3.

since bϕ = 0, hence in the linear approach, the out-of-plane

motion will oscillate with its natural frequency. For polar

orbits bθ vanished in the linear approach, hence the motion

is unactuated and similar to the equatorial orbit, the in-plane

motion will oscillate with its natural frequency.

Fig 7 shows simulation of the closed loop system for

different inclinations. The figure shows that for the equatorial

orbit the out-of-plane motion is poorly damped, while the in-

plane motion is poorly damped for the polar orbit.

IV. DISCUSSION

The controller designed in this paper has distinct advan-

tages to other approaches. With this approach, the zeros

of the input functions are not leading to singularities in

the control law, which in turn gives to a large operational

region. The approach is balancing the trade-off between

performance and robustness in favour of the robustness of

the control. This is a known property of a passivity based

control design (see [11]). Robustness is quite important in a

practical context, since the uncertainty in the magnetic field

is quite large. The performance is limited by the minimum of

the stability deciding multiplier, which lead to slow control

action compared to other approaches.

Earlier papers have emphasized that the current which can

be induced along the tether is limited (see e.g. [6]. This can

prevent the choice of an optimal control gain, which will

lead to a longer settling time for the controller However, it

will not have any influence on the stability of the controller.

V. CONCLUSION

A controller that provides asymptotically stability for the

open-loop equilibrium of a tethered satellite system was

designed in this paper, using an electrodynamic tether as

actuator. The design was based on a port-controlled Hamilto-

nian formulation of the system and stability was shown using

the Hamiltonian as a Lyapunov function. The performance

of the closed loop system was investigated using Floquet

theory and a controller gain was found that minimize the

settling time. The performance was investigated, primarily

as a function of orbit inclination. As a salient feature, it was

shown that damping was injected for all values of inclination,

except when pure equatorial or polar orbits were considered.

These orbits lead to nonactuated out-of-plane and in-plane

dynamics, respectively, as should be expected.
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