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Abstract— The paper presents unified framework of feedback
motion control design with the Vector Field(s) Orientation
(VFO) method for the articulated tractor-semitrailer vehicle
in a context of trajectory tracking as well as set-point control
problems. The work is an extension of the VFO control method
for the nonholonomic systems with higher-dimensional state
vector. Obtained control algorithm has an intuitive geometrical
interpretation of particular control components yielding smooth
and natural vehicle motion quality together with the simple
controller parametric synthesis. Theoretical considerations are
confirmed by simulation results obtained for the tasks of
backward pushing a trailer and parallel parking maneuvers.

I. INTRODUCTION

The paper addresses the problem of motion control design
for the articulated mobile vehicle with one on-axle hitched
trailer depicted in Fig. 1, which was an object of investigation
for example in [5], [4]. The Vector Field(s) Orientation
(VFO) control approach presented in the sequel allows, in
contrast to other solutions, to treat in a unified manner
two basic control tasks like trajectory tracking and set-
point regulation, which can be realized either in a forward
or in a backward motion strategy. VFO control design
concept (applied for the first time to a unicycle mobile
robot and described in [2]) originates from simple geomet-
rical interpretations and model decomposition related to the
kinematics of the considered vehicle. VFO approach gives
a simple control solution characterized by smooth transient
behavior of a controlled vehicle and intuitive interpretation
of particular control components with very simple practical
tuning of design parameters. Proposed control concept relies
on treating the trailer body as the unicycle system with
fictitious inputs designed with the VFO methodology, which
are expected next to be realized by physical control inputs of
the differentially-driven tractor. Presented approach appears
to be an extension of the VFO method for the higher-
dimensional nonholonomic system.

A. Vehicle model

Let us consider the articulated vehicle presented in Fig. 1,
where the unicycle-like tractor is driven by two control
inputs: the angular velocity u1 and the longitudinal (positive
or negative) velocity u2. The passive trailer is hitched on
the tractor wheel-axle at the distance L from the guidance
point P . The characteristic point P = (x, y) of the trailer
will attract our special attention in relation to the considered
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Fig. 1. Articulated vehicle with on-axle hitched trailer

control tasks. If one defines, according to Fig. 1, the vehicle
configuration vector as q

∆
= [θ β x y]T the kinematic model

describing the vehicle can be formulated as follows:
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ẏ









=









1
0
0
0









u1 +









−(1/L) sin θ
(1/L) sin θ
cosβ cos θ
sinβ cos θ









u2 (1)

where x = xr −L cosβ, y = yr−L sinβ, L > 0 is a known
kinematic parameter and

q∗ ∆
= [β x y]T ∈ R × R

2, θ ∈ [−Θ, +Θ], Θ 6
π

2
.

(2)

II. CONTROL PROBLEM STATEMENT

Let us define two types of the reference trajectory qt:

T1. the admissible reference trajectory qt(τ)
∆
=

[θt(τ) βt(τ) xt(τ) yt(τ)]T ∈ Q, Q = [−Θ, Θ]×R×R
2,

which is sufficiently smooth: q̇t(τ), q̈t(τ) ∈ L∞ and
for all τ > 0 satisfies the vehicle kinematics (1) for
some reference inputs u1t(τ) ∈ R and u2t(τ) such
that:

∀τ>0 u2t(τ) 6= 0, (3)

T2. the constant (degenerated) reference trajectory qt(τ) ≡

qt
∆
= [θt βt xt yt]

T ∈ Q, with θt
∆
= 0.

Condition (3) describes the so-called persistency-of-
excitation condition strictly related to the VFO method,
which involves persistent longitudinal motion of the refer-
ence tractor during the whole control time-horizon.

Introducing now the posture error:

e(τ) =









eθ(τ)
eβ(τ)
ex(τ)
ey(τ)









∆
=









θt(τ) − θ(τ)
fs (βt(τ) − β(τ))

xt(τ) − x(τ)
yt(τ) − y(τ)









∈ [−π, π]2 × R
2,

(4)
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where fs(·) : R 7→ [−π, π], one can state the control
problem as follows.

Problem 1: For the reference trajectories T1 and T2 find a
bounded feedback control law u = u(qt, q, ·), which applied
to the kinematics (1) ensures boundedness and convergence
of the posture error e(τ) in the sense that:

lim
τ→∞

‖e(τ)‖ 6 ε, (5)

where ε > 0 defines an assumed arbitrary small ultimate
error envelope.

Taking ε = 0 gives asymptotic convergence but ε > 0
implies practical convergence (ultimate boundedness).

We would like to stress, that defining the vehicle model
(1) in relation to the guidance point P connected to the
trailer rather than to the tractor, the control tasks of tracking
and set-point regulation are related mainly to the trailer
body. The tractor body is considered only indirectly by the
relative hitching angle θ. However, since we formulated
the control problem for the whole state vector q of the
articulated vehicle, the feedback controllers proposed in the
next sections should ensure boundedness and convergence
for the hitching angle too.

The rest of the paper will be devoted to solution of Prob-
lem 1 by derivation in a common framework of two separate
VFO controllers for trajectories T1 and T2, respectively.

III. CONTROL DESIGN APPROACH

First, we will rewrite model (1) in a more suitable form in
relation to the VFO method. In order to do this we introduce
the auxiliary inputs:

w1 := u2(1/L) sin θ, (6)
w2 := u2 cos θ, (7)
w3 := u1 − u2(1/L) sin θ, (8)

which allow one to rewrite (1) in the new decomposed form
of two subsystems:

Σθ : θ̇ = w3, (9)

Σ :





β̇
ẋ
ẏ



 =





1
0
0



w1 +





0
cosβ
sin β



w2. (10)

Although subsystems Σθ and Σ are not independent (they
are related to each other by (6)-(8)), we can temporarily
treat them in this manner for control design purposes. Now
we are ready to explain the control design concept utilizing
the special structure of (9)-(10).

Subsystem Σθ is very simple and it formulates the first-
order dynamics of the hitching angle θ. This variable can be
treated as an additional variable since it does not contribute
to the trailer posture but only describes the relative angular
displacement between the tractor and the trailer. Further, the
subsystem Σ describes the trailer by the well known unicycle
model with new inputs w1 and w2 as denoted in Fig. 2. From
now on we assume that we can freely design these inputs.
In next two sections we will show that they can be designed

in a special unified manner according to the VFO control
methodology, which turns out to be very efficient for the
unicycle kinematics1 (see [2]). Next design step answers how
to realize physically previously designed inputs w1 and w2. It
can be done using definitions (6)-(8) as follows. According
to (6) and (7) – compare also Fig. 2 – one can find that
w1 and w2 result from orthogonal projections of u2 input
in relation to the hitching angle θ. Hence, to realize w1 and
w2 we have to compute the desired hitching angle θ and
appropriately define the longitudinal velocity u2. From (6)
and (7) we first define the auxiliary (desired) hitching angle
as follows:

θa
∆
= arctan

(

Lw1

w2

)

∈
[

−
π

2
,
π

2

]

, (11)

which generally can not be realized immediately due to the
integral relation in (9). Therefore we have to define properly
the input signal w3 from (8), which will make the auxiliary
hitching error

eθa
∆
= (θa − θ) ∈ [−π, π] (12)

converge to zero at least at the limit for τ → ∞. We propose
to take:

w3
∆
= kθeθa + θ̇a, kθ > 0, (13)

where θ̇a is a time derivative of the auxiliary hitching angle
θa, and kθ is a design parameter. We would like to emphasize
that (13) is not the only possibility. One can propose here
any other auxiliary controller formula which applied to (9)
ensures the asymptotic convergence of eθa to zero.

In the last design step we have to formulate the equations,
which allow to compute physically realizable control inputs
u2 and u1. Using (6)-(7) we propose to take:

u2
∆
= σ

w2

cos θ
+ (1 − σ)

Lw1

sin θ
(14)

with

σ
∆
=

{

1 for |θ| ∈ [0, π
4 )

0 for |θ| ∈ [π
4 , Θ]

. (15)

Note, that the switching strategy defined by (15) does
not cause any discontinuity in (14), since w2/ cos θ =
Lw1/ sin θ for |θ| = π

4 (compare Fig. 2). Now from (8)
one can directly obtain:

u1 = w3 + u2(1/L) sin θ, (16)

where w3 and u2 results from (13) and (14) ,respectively.
At this moment we have to return to the issue concerning

the design of auxiliary inputs w1 and w2 for subsystem (10).
Since (10) represents the unicycle model, we can directly
apply to it the VFO methodology described in [2]. Due
to space limitations we will not derive the VFO control
algorithm in details but only give all important formulas with
few explanatory comments.

1The unicycle is an archetypical nonholonomic system example in the
sense of the VFO method utilization.
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Fig. 2. Trailer treated as the unicycle with inputs w1, w2

A. VFO control strategy for the trailer model Σ

The VFO method originates from decomposition of the
subsystem (10) into two simpler systems:

Σβ : β̇ = w1, (17)

Σ∗ :

[

ẋ
ẏ

]

=

[

cosβ
sin β

]

w2 ⇒ q̇∗ = g∗
2(β)w2 (18)

with q∗ = [x y]T ∈ R
2 being the position sub-vector of

the state q = [β x y]T ∈ R × R
2. It can be seen from

(18) that direction of velocity q̇∗ is related to the direction
of g∗

2(β) (its orientation depends also on sgn(w2)), which
in turn can be freely controlled by the input w1 since it
drives the first state variable β (eq. (17)). Moreover, the
second input w2 drives (or in other words it pushes) the
sub-state q∗ along the current direction of g∗

2(β). According
to these simple geometrical interpretations we can imagine
the following control strategy. Let us assume that in every
state point q we can determine the vector h(q, qt, ·) =
[hβ h∗T ]T ∈ R

3 defining the convergence direction (and
orientation) to the reference trajectory qt = [βt xt yt]

T (the
set of such vectors for all q ∈ R × R

2 can be called as
the convergence vector field). Using previous interpretations
we can propose partitioning of the control process into the
orienting one and the pushing one. The first subprocess is
responsible for reorientation of g∗

2(β) (by input w1) to put its
direction on the direction defined by h∗, while the second
one should push the sub-state (with input w2) toward the
reference position trajectory q∗

t . Appropriate definition of
h, which takes into account the nonholonomic nature and
the differential flatness property (see [7]) of (10) should
imply, apart from smooth and non-oscillatory convergence
q∗ → q∗

t , also the ultimate asymptotic convergence for β
state variable, which temporarily is allowed to diverge from
βt due to its auxiliary (but crucial) role which it plays during
the orienting control subprocess. Let us thus introduce the
convergence vector field as follows:

h =





hβ

hx

hy



 =

[

hβ

h∗

]

∈ R
3, (19)

where, according to the VFO strategy, we propose to take:

hβ
∆
= kβeβa + β̇a = kβ(βa − β) + β̇a (20)

h∗ ∆
= kpe

∗ + v∗ = kp(q
∗
t − q∗) + v∗ (21)

with v∗ ∈ R
2 being the feed-forward velocity term described

in the sequel, q∗
t = [xt yt]

T , q∗ = [x y]T , kβ , kp > 0 being
two design parameters and respectively:

eβa
∆
= (βa − β) ∈ R, (22)

βa
∆
= Atan2c (sgn(f)hy, sgn(f)hx) ∈ R, (23)

β̇a =
ḣyhx − hyḣx

h2
x + h2

y

for h2
x + h2

y 6= 0, (24)

where f is a nonzero scalar function (designed later), and
Atan2c (·, ·) : R × R 7→ R is a continuous version of the
discontinuous function Atan2 (·, ·) : R×R 7→ [−π, π). Note,
that hβ component of h is designed in (20) with relation
to the auxiliary variable βa, not to the reference one βt.
Particular definitions for terms v∗ and f in (21) and (23)
related to the flatness property of Σ (see next sections) will
guarantee however that the following important relation is
met (at least in S

1): lime
∗→0 [βa(h∗(e∗, ·), ·) − βt] = 0. It

will preserve asymptotic convergence for the orientation error
eβ = (βt − β) to zero in the neighborhood of q∗

t . Utilizing
introduced formulas one can propose the VFO control law
for the unicycle kinematics (10) as follows:

w1
∆
= hβ ⇒ w1 = kβ(βa − β) + β̇a, (25)

w2
∆
= g∗T

2 (β)h∗ ⇒ w2 = hx cosβ + hy sin β, (26)

where (25) denotes the orienting control input and (26) the
pushing control input. It is evident that (25) applied into (17)
gives exponential convergence of β to βa during the orienting
subprocess. Definition (26) expresses the cautious pushing
heuristic concept, where the pushing intensity (understood as
|w2|) is proportional to orthogonal projection of h∗ onto the
current direction of vector g∗

2(β). More details concerning
the VFO control method for the unicycle kinematics can be
found in [2].

It is important to note, that VFO control law (25)-(26)
with formulas (20)-(24) are applicable without changes in a
unified framework to both control tasks: to trajectory tracking
as well as to set-point regulation. The only differences
come from particular definitions of two terms: the velocity
component v∗ in (21) and the function f in (23). In the
next sections we introduce both definitions and comment the
particular choices.

IV. VFO TRACKING CONTROL

Since in the trajectory tracking case q̇t = [β̇t ẋt ẏt]
T 6≡ 0

we propose to choose the term v∗ from (21) and function f
from (23) as follows:

v∗(τ)
∆
= q̇∗

t (τ), where q̇∗
t (τ) =

[

ẋt(τ)
ẏt(τ)

]

, (27)

f(τ)
∆
= w2t(τ)

(7)
=⇒ f(τ)

∆
= u2t(τ) cos θt(τ), (28)

where w2t(τ) is a reference pushing input for kinematics
(18) and u2t(τ) is a real reference input of the controlled
vehicle (1). Definition (27) has an interpretation of the feed-
forward component in the linear combination (21), which

921



together with (28) ensures that at the limit for e∗ → 0 holds
βa|e∗=0

= Atan2c (sgn(w2t)ẏt, sgn(w2t)ẋt), hence

βa|e∗=0
mod 2π = βt (29)

and
β̇a

∣

∣

∣

e
∗=0

= β̇t = w1t

(6)
= u2t(1/L) sin θt. (30)

Note, that sgn(w2t) ≡ sgn(u2t cos θt) is constant and equal
to +1 or −1 in the whole control time-horizon due to
assumptions (3) and (2). Moreover, using (28) in (23)
guarantees that the controlled vehicle (1) will move with
proper motion strategy (forward/backward) not only on
the reference trajectory but also during a transient stage.
Having determined all needed components we are ready to
formulate the first proposition.

Proposition 1: (VFO tracking controller) Let us define the
set in the position error space: E∗ ∆

= R
2 \ {e∗ : e∗ =

−k−1
p q̇∗

t }. Assuming that

∀τ>0e
∗(τ) ∈ E∗ (21,27)

=⇒ ∀τ>0 ‖h∗‖ 6= 0 (31)

the VFO feedback control law defined by (14) and (16) with
auxiliary inputs defined by (25), (26), and (13) together with
(20)-(24) and (27)-(28) applied to the articulated vehicle
(1) solves the Problem 1 with ε = 0 for a given reference
trajectory qt(τ) of T1 type.

Proof: (Sketch) The proof will consist of the five steps:
S1 to S5. In step S1 it can be seen that applying (16) with
(13) into (1) gives the exponential convergence of eθa(τ) to
zero as τ → ∞. Using (11) one can write the following
useful relation:

lim
θ→θa

[

tan θ −
Lw1

w2

]

= 0, (32)

which will be utilized next. In step S2 we show the con-
vergence of eβa(τ). To do this let us combine the second
equation of (1) with (14) to write, that for θ → θa (according
to S1) we have:

β̇
∣

∣

∣

θ=θa

=

{

(1/L) sin θa(w2/ cos θa) for |θa| ∈ [0, π
4 )

(1/L) sin θa(Lw1/ sin θa) for |θa| ∈ [π
4 , π

2 ]
,

which with (32) gives β̇ = w1
(25)
= kβeβa + β̇a for all |θa| ∈

[0, π
2 ]. As a consequence eβa(τ) → 0 for τ → ∞. Step S3

relates to behavior of position error e∗ = q∗
t − q∗. It can

be simply shown that substituting (14) into (1) implies for
θ → θa that ẋ = cosβw2 and ẏ = sinβw2 with w2 defined
in (26). Hence we can consider now the subsystem (18) with
the fictitious input w2 from (26). Since ė∗ = q̇∗

t − q̇∗ and
from (21) and (27) we have q̇∗

t = h∗ − kpe
∗, one can write

the auxiliary equation of perturbed position-error dynamics
as follows:

ė∗ = −kpe
∗ + r(e∗, eβa, ·), (33)

where (according to (18) and (26))

r(e∗, eβa, ·) = h∗(e∗, ·) − g∗
2(β) ‖h∗(e∗, ·)‖ cosα(eβa),

(34)

with: α(eβa) = eβa ± κπ (κ = 0 for w2t > 0 κ = 1 for
w2t < 0) and ‖r‖

2
= ‖h∗‖

2
(1−cos2 eβa). It is evident that

limeβa→0 ‖ r(eβa)‖ = 0 and due to corollary from step S2
we have: limτ→∞ ‖r(τ)‖ = 0. Using now the lemmas from
[3] related to the stability of perturbed systems (pages 350-
355) one can conclude about boundedness and asymptotic
convergence of e∗(τ) to zero for τ → ∞. In step S4 we
utilize (29) and corollary from step S2 to conclude that
limτ→∞ eβ(τ) = 0. The last step S5 relates to behavior
of the hitching angle error eθ(τ). Using (11) with w1 and
w2 from (25) and (26) expressed for eβa = 0 (due to S2),
e∗ = 0 (due to S3), βa mod 2π = βt and β̇a = β̇t (due to
(29) and (30)) we obtain:

θa = arctan

(

Lβ̇t

ẋtcβt + ẏtsβt

)

(1)
= arctan

(

L 1
L

sθtu2t

u2tcθt

)

=

= arctan (tan θt) = θt.

where we used the short notation cθ ≡ cos θ and sθ ≡ sin θ.
Above expression together with the convergence result from
step S1 allow to conclude that limτ→∞ eθ(τ) = 0.

Remark 1: Fictitious input (25) and, as a consequence,
real inputs (14) and (16) generally have discontinuous
nature. It results from (23), which is not determined for
h∗ = 0 (justification of assumption (31)). Equality h∗ = 0

relates to the case when e∗ = −k−1
p q̇∗

t . In geometrical
interpretation it requires from the trailer of motion exactly
along the same direction as the reference trailer but with the
opposite orientation. As a consequence, the controlled system
naturally converges to the reference one (such a conclusion
also results from (34) and (33): since h∗ = 0 we have r = 0

and by (33) it follows that exponential convergence of e∗

holds). Therefore determination of auxiliary variable βa and
its time-derivative for h∗ = 0 requires our attention. To
obtain a well-defined input (25) for all e∗ ∈ R

2 we propose
to introduce additional definitions valid in a small ε-vicinity
of point h∗ = 0:

βa
∆
= βa(τ−), β̇a

∆
= 0 for ‖h∗‖ 6 ε, (35)

where 0 < ε < infτ |u2t(τ) cos θt(τ)| and τ− denotes
the time instant when the system reaches ε-vicinity. Above
definitions allows the general form of the input (25) to remain
unchanged. Note that the considered case when h∗ = 0 may
occure only during a transient stage and is non-persistent
and unlikely in practice.

Remark 2: The time-derivative θ̇a involved in definition
(13) results from formal differentiation of (11) as follows:
θ̇a = L(ẇ1w2 − w1ẇ2)/(w2

2 + L2w2
1). However, due to the

second time-derivatives ẍ and ÿ appearing in the final form
of ẇ1, practical implementation of above formula seems to be
problematic. Instead, we propose to utilize the exact robust
differentiator described in [6], which guarantees finite-time
convergence of the estimate ˆ̇

θa to θ̇a using θa from (11) as
an input signal.
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V. VFO SET-POINT CONTROL

In the case of the set-point regulation we can not use (27)
since q̇∗

t ≡ 0. But if we note that q̇∗
t = g∗

2(βt)u2t cos θt

for u2t ≡ 0, one can utilize the nonzero vector field g∗
2(βt),

which defines the reference direction and orientation of the
trailer at the set-point q∗

t = [xt yt]
T . Let us utilize it and

introduce the so-called virtual reference velocity q̇∗
vt and by

analogy to (27) write:

v∗(τ)
∆
= q̇∗

vt(τ), where q̇∗
vt(τ)

∆
= δ(e∗(τ))g∗

2 (βt) (36)

with

δ(e∗(τ))
∆
= −η sgn(f) ‖e∗(τ)‖ , f

∆
= ex0 = ex(0), (37)

where 0 < η < kp is an additional design parameter.
Although, the virtual reference velocity vanishes for e∗ → 0

but it turns out to be very helpful during the transient
stage playing the role of directing the trailer near the
reference point q∗

t . Since the function f is now equal
to the initial value of ex(τ) component, the sign of f is
constant during the whole control time-horizon. Initial value
of ex determines the motion strategy (forward/backward),
in which the vehicle will reach the set point. It is worth
to note, that f can be treated here as a decision variable
which can be freely designed according to practical needs
of motion strategy selection. Now, we can formulate the
second proposition.

Proposition 2: Let us define the set in the positional error
space: E∗ ∆

= R
2 \ {0}. Assuming that

∀06τ<∞e∗(τ) ∈ E∗ (21,36,37)
=⇒ ∀06τ<∞ ‖h∗‖ 6= 0

(38)
the VFO feedback control law defined by (14) and (16) with
auxiliary inputs defined by (25), (26), and (13) together with
(20)-(24) and (36)-(37) applied to the articulated vehicle
(1) solves the Problem 1 with ε = 0 for a given reference
(degenerated) trajectory qt of T2 type.

Proof: (Sketch) The proof will be presented by analogy
to the proof of Proposition 1. First two steps S1-S2 are the
same with the same convergence conclusions for eθa and
eβa errors. In step S3 one can (similarly to considerations in
the former proof) derive the following auxiliary equation of
positional error dynamics:

ė∗ = −kpe
∗ + r(e∗, eβa, ·) − q̇∗

vt (39)

where disturbing term r is defined as in (34) and ‖r‖2 =
‖h∗‖

2
(1 − cos2 eβa). Now defining the positive definite

function V
∆
= (1/2)e∗T e∗ one can show that its time-

derivative along the solution of (39) satisfies:

V̇ 6 −[kp(1−γ)−η(1+γ)] ‖e∗‖2 = −ζ(γ) ‖e∗‖2 , (40)

where γ = γ(eβa) :=
√

1 − cos2 eβa and the function ζ(γ)
is positive definite if γ(eβa) < (kp −η)/(kp +η). Since 0 <
η < kp (from assumption), γ(eβa) ∈ [0, 1] and eβa(τ) → 0
(according to S2) the last inequality is met for all τ > τγ ,
where τγ is a some finite time instant, which always exists.

As a consequence, one can conclude about boundedness and
asymptotic convergence of e∗(τ) to zero for τ → ∞. In step
S4 one can find from (34) that for eβa → 0 (step S2) we
have q̇∗ → h∗. Hence, according to model (1) we can write:

tanβ =
ẏ

ẋ

∣

∣

∣

∣

eβa=0

=

−kpey

ηsgn(ex0)‖ e
∗‖ + sinβt

−kpex

ηsgn(ex0)‖ e
∗‖ + cosβt

. (41)

Above formula implies that for e∗ → 0 it holds: tan β →
tan βt. Since for sgn(ex0) = +1 the vehicle moves forward
and for sgn(ex0) = −1 it moves backward, it can be
recognized that for both strategies β(τ) → βt as τ → ∞.
Step S5 considers the hitching angle behavior. For eβa = 0
we have β = βa and one can rewrite (11) as follows:
θa = arctan

(

Lβ̇/ ± ‖h∗‖
)

. Since β(τ) → βt asymptot-

ically and β̇t ≡ 0, the time derivative β̇ → 0. Moreover,
convergence rate of β̇ is higher than convergence rate of
h∗ due to subsequent behavior of errors eβa and e∗ as
it has been stated in steps S2 to S3. As a consequence,
the nominator of arctan

(

Lβ̇/ ± ‖h∗‖
)

goes to zero faster
than the denominator and we obtain that θa(τ) → 0 for
τ → ∞. Finally, the corollary from step S1 allows to
conclude: limτ→∞ θ(τ) = 0.

Proposition 2 excludes the stabilized point from the do-
main of proper determination of the VFO controller due
to definitions (23), (24), and (11), which are not defined
for e∗ = 0. Since this point is reachable only in infinity,
the proposed controller belongs to the so-called almost
stabilizers, [1]. In practice however, we need a well defined
solution also at this point. Therefore we have to determine
the ε-vicinity of e = [eβ e∗T ]T = 0 and introduce auxiliary
definitions of the following signals:

βa
∆
= βa(τ−), β̇a

∆
= 0, θa

∆
= θt, θ̇a

∆
= 0, u2

∆
= 0,

which can be activated inside the ε-vicinity. In this case the
VFO stabilizer solves the Problem 1 for the assumed non-
zero ε-envelope.

VI. SIMULATION RESULTS

Two kinds of simulation test have been performed: A)
tracking of the persistently exciting trajectory of type T1
in a backward motion strategy assuming a non-zero initial
tracking errors, B) set-point regulation as the parallel parking
maneuver in a forward motion strategy. Kinematic parameter
of the articulated vehicle have been assumed to be L = 0.2
m. Values of initial conditions, reference signals and VFO
controller parameters are described below:
A) q(0) = [−π

4 − π
4 0.2 0.2]T , qt(0) = 0 and u1t(τ) =

−0.025+0.2 sin2τ , u2t = −0.04, kθ = 10, kβ = 5, kp = 1,
B) q(0) = [0 0 0 −1]T , qt = 0 and kθ = 10, kβ = 5, kp = 1,
η = 0.7.
Both tests have been conducted with utilization of the
second-order exact robust differentiator (see [6]) for compu-
tations of θ̇a signal involved in (13). During implementation
of the differentiator we chosen the Lipschitz constant CL =
100 and we used the Euler-method integration procedure
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Fig. 3. Time-plots of signals for the trajectory tracking task A

Fig. 4. Time-plots of signals for the set-point regulation task B

with the fixed sampling time Tp = 0.005 s. Obtained results
are illustrated in Figs. 3 to 5. It is worth to note fast
errors convergence together with smooth and non-oscillatory
trailer motion during transient stages. It can be seen also
the sequential behavior of particular error components (in
relation to considerations included in the proofs). High
effectiveness of the orienting process, characteristic for VFO
control strategy, has been presented by the time-plots of
cosα = cos(eβa ± κπ), where α = ∠(g∗

2(β), h∗). Natural
motion character of the vehicle (understood as comparable
with human-driven vehicle) obtained in both tests with the
VFO strategy is presented in Fig. 5, where the tractor is
represented by a triangle and the trailer by a rectangle.

VII. CONCLUSIONS AND FUTURE WORKS

The novel motion control algorithm utilizing the VFO
control strategy for an articulated vehicle has been presented
and numerically tested. Proposed method relies on vehicle
model decomposition and treating the trailer body as a
unicycle system with fictitious inputs. These inputs are freely

Fig. 5. Robot paths and stroboscopic view of vehicle motion on a plane
{xg , yg} for tracking task A (top) and set-point regulation B (bottom)

designed according to the VFO method – particularly effi-
cient for the unicycle kinematics. Next, the real control inputs
of an articulated vehicle are designed to realize previously
defined trailer body fictitious controls. Simple geometrical
interpretations of the VFO strategy allow to design kinematic
controllers for tracking as well as for set-point regulation in
a unified manner. Future extensions of the proposed method
will be related to the case of an articulated vehicle equipped
with an off-axle trailer, and also to the case of multi-trailer
nonholonomic systems.
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