
 
 

 

  

Abstract—This paper concerns the problem of robust stability 
analysis for a polytopic system with interval time- varying delay 
via parameter-dependent Lyapunov functions. By a relaxation 
approach with slack matrices and a descriptor model 
transformation of the system, the product between Lyapunov 
variables and the system matrices is eliminated. With this 
feature, a delay-dependent robust stability criterion is expressed 
as a set of linear matrix inequalities (LMIs). Compared with the 
results based on parameter -independent Lyapunov functions, 
this is promising for less conservatism. Two numerical examples 
are included to illustrate the effectiveness of the proposed 
method.  

I. INTRODUCTION 
HE phenomena of time-delay are often encountered in 
many practical systems, such as aircraft systems, neural 

network, nuclear reactor, chemical engineering systems, 
population dynamic models, inferred grinding model, and 
manual control [1], [2]. In many systems, the models of 
systems are described by functional differential equations of 
polytopic type, where system matrices belong to a convex 
combination of the polytope vertices. Physical examples for 
polytopic systems have VTOL helicopter systems, satellite 
systems, missile systems, etc [3]-[5]. On the other hand, 
time-delay is a source of performance degradation and 
instability in many cases. Hence, the stability problem of 
time-delay systems is of theoretical and practical importance. 
Several results on robust control of time-delay systems subject 
to polytopic uncertainties have been reported in [6]-[8]. 
However, the model considered in these papers requires that 
the range of time-varying delay is from zero to an upper bound. 
So if the practical systems do not satisfy this assumption, the 
results without taking into account the information of the 
lower bound of delay are conservative. In practice, time delay 
in many systems usually varies in a range for which the lower 
bound is not restricted to be zero. Consequently, stability of 
systems with interval time-varying delays has been an 
attractive topic in theory analysis and practical application 
[9]-[11]. One typical example of such systems is the 
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networked control system (NCS) which uses a data network in 
a control loop. In [9], the delay-dependent BRL and the 
stabilization criterion for H∞ control of uncertain systems with 
time-varying delay in a range are formulated in the linear 
matrix inequality (LMI) form. In [10], the problem of 
delay-dependent robust stability for a class of uncertain linear 
systems with interval time-varying delay is investigated based 
on the Lyapunov–Krasovskii functional approach. In [11], an 
appropriate type of Lyapunov functional is constructed to 
study the problem of stability analysis for systems with 
interval time-varying delay.  

Depending on whether the criterion itself contains the sizes 
of time delays, the criteria for time-delay systems can be 
classified into two categories, namely delay-independent 
criteria and delay-dependent criteria. Generally speaking, the 
latter ones are less conservative than the former ones. To the 
best of authors’ knowledge, for the case where the lower 
bound of delay is greater than zero, there has been no result 
available for robust delay-dependent stability of polytopic 
systems with interval time-varying delay. Undoubtedly, the 
Lyapunov theory is one of the main approaches to deal with 
polytopic systems. However, the quadratic stability, which 
uses a single or parameter-independent Lyapunov function for 
testing the stability over the whole uncertain domain, may lead 
to conservative results in the case where the uncertain 
parameters are time-invariant. Motivated by this fact, 
Lyapunov functions depending on the uncertain parameters 
have been proposed to reduce quadratic stability conservatism 
[12]-[14].  

Recently, a descriptor system approach is proposed for 
time-delayed systems. It reduces significantly the over-design 
compared to the traditional methods due to the facts of being 
based on a transformed model, equivalent to the original 
system, and fewer terms needed to be bounded in the 
derivation [15].  

So, in this paper, the problem of robust stability for 
polytopic systems with time-varying delay in a range is 
investigated by means of parameter-dependent Lyapunov 
functions. With the introduction of slack variables, a 
descriptor system approach is adopted to obtain a 
delay-dependent stability criterion in terms of LMIs, which 
reduces the conservatism occurring in the stability problem 
with a fixed Lyapunov function. It is also shown that this 
criterion includes the delay-dependent/rate-independent 
criterion and the delay-independent/rate-dependent criterion 
as special cases. In the derivative of the Lyapunov functional, 
with the introduction of the augmented vector 
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TT T( ) ( ) ( )t x t x tξ ⎡ ⎤⎣ ⎦ , the term T 2 2
m 3 4( )( ( ) ( )) ( )x t P P x tτ λ τ λΔ+ is 

formulated as T 2 2
m 3 4( )diag{0, ( ) ( )} ( )t P P tξ τ λ τ λ ξΔ+ , which 

avoids replacing ( )x t in T 2 2
m 3 4( )( ( ) ( )) ( )x t P P x tτ λ τ λΔ+ with the 

state equation. In consequence, the Lyapunov 
matrices 3 ( )P λ and 4 ( )P λ which handle time delay are not 
involved in any product terms with the system 
matrices A and dA , which allows Lyapunov matrices to be 
different for different vertices of the polytope. Finally, the 
applicability and less conservatism of our result are 
demonstrated through simulation studies.  

II. PROBLEM STATEMENT  AND MAIN RESULTS  
Consider the following polytopic system with interval 

time-varying delay 

d( ) ( ) ( ) ( ) ( ( ))
( ) ( ), [ ,0]

x t A x t A x t t
x t t t h

λ λ τ
φ

= + −
= ∈ −

,                (1) 

where ( ) nx t R∈ is the state vector and the initial vectorφ is a 

continuously differentiable function from [ ,0]h− to nR . We 
assume that ( )tτ is a differentiable function satisfying  

0 ( ) , ( ) , 0m Mt t d tτ τ τ τ≤ ≤ ≤ ≤ ≥ .                 (2) 
The unknown system matrices ( )A λ and ( )dA λ are assumed to 
be uncertain but belonging to a known convex compact set of 
polytope type, i.e.,  

1 1

( ( ), ( )) {( ( ), ( )) | ( ( ), ( ))

( , ), 0, 1},                                       (3)

d d d
N N

i i di i i
i i

A A S A A A A

A A

λ λ λ λ λ λ

λ λ λ
= =

∈

= ≥ =∑ ∑
 

where ( , )i diA A is vertices of the above convex polytope and 
T

1[ , , ] N
N Rλ λ λ ∈  denotes a vector of uncertain and 

time-invariant real parameters.  
 The following lemma will be used to prove our results. 
Lemma 1. For any constant matrix 0P > and differentiable 
vector function ( )x t  with appropriate dimensions, we have 

T T[ ( )ds] [ ( )ds] ( ) ( )ds,     (4)
m m m

t t t

mt t t
x s P x s x s P x s

τ τ τ
τ

− − −
≤ ⋅∫ ∫ ∫  

T

( ) ( )

T T

( )

[ ( )ds] [ ( )ds] ( ( ) )

( ) ( )ds ( ) ( ) ( )ds,      (5)

m m

m m

M

t t

mt t t t

t t

M mt t t

x s P x s t

x s P x s x s P x s

τ τ

τ τ

τ τ

τ τ

τ τ

τ τ

− −

− −

− −

− −

≤ −

× ≤ − ⋅

∫ ∫

∫ ∫
 

where 0 ( ) , 0m Mt tτ τ τ≤ ≤ ≤ ≥ .  
Proof: For any scalar ρ ,vector ϕ and 0P > , we have 

T[ ( ) ] [ ( ) ]ds 0
m

t

t
x s P x s

τ
ρϕ ρϕ

−
− − ≥∫ .               (6) 

From (6), it follows that 
2 T T T2 ( )ds ( ) ( )ds 0

m m

t t

m t t
P x s P x s P x s

τ τ
ρ τ ϕ ϕ ρ ϕ

− −
− + ≥∫ ∫ . (7) 

Since (7) is satisfied for any scalar ρ , the inequality 
2

T T T2 ( )ds 4 ( ) ( )ds 0
m m

t t

mt t
x s P P x s P x s

τ τ
ϕ τ ϕ ϕ

− −
⎡ ⎤ − ⋅ ≤⎢ ⎥⎣ ⎦∫ ∫   (8) 

is derived. Setting ( )ds
m

t

t
x s

τ
ϕ

−
= ∫ , we obtain 

2T T T ( ) ( )ds 0
m

t

m t
P P x s P x s

τ
ϕ ϕ τ ϕ ϕ

−
⎡ ⎤ − ⋅ ≤⎣ ⎦ ∫ .         (9) 

Since scalar T 0Pϕ ϕ > , (9) is equivalent to 
T T ( ) ( )ds 0

m

t

m t
P x s P x s

τ
ϕ ϕ τ

−
− ⋅ ≤∫ ,              (10) 

which indicates that (4) is satisfied. By replacing ( )ds
m

t

t
x s

τ−∫  

with
( )

( )dsmt

t t
x s

τ

τ

−

−∫ , the first inequality of (5) can be derived 

similarly. Since the second inequality of (5) is satisfied 
obviously, the proof of (5) is completed.  

Using the method in [15], we represent system (1) in the 
equivalent descriptor form 

d

( ) ( )
( ) ( ) ( ) ( ) ( ( ))

x t t
t A x t A x t t

η
η λ λ τ

=
= + −

.            (11) 

The following theorem presents a delay-dependent and 
rate-dependent robust stability analysis result based on 
parameter-dependent Lyapunov functional.  
Theorem 1. System (1) with parameter uncertainty (3) and 
interval time-varying delay ( )tτ satisfying (2) is robustly 
asymptotically stable if there exist symmetric positive definite 
matrices 0iP , 1iP , 2iP , 3iP , 4iP , 1, ,i N= , and 
matrices 5P , 6P , 1Q , 2Q , 3Q such that 

11 12 13 14

22 23

33 34

44

* 0
0

i i i i

i i
i

i i

i

Ξ Ξ Ξ Ξ⎡ ⎤
⎢ ⎥Ξ Ξ⎢ ⎥Ξ = <
⎢ ⎥∗ ∗ Ξ Ξ
⎢ ⎥∗ ∗ ∗ Ξ⎢ ⎥⎣ ⎦

,              (12) 

where * represents the symmetric form in the matrix and 
T T T T

11 5 5 1 2 3 2 2i i i i i i i iP A A P P P P Q A A QΞ = + + + − + + , 
T T T T

12 0 5 6 2 1i i i iP P A P Q A QΞ = − + − +  ,  
T T T

13 5 2 3i di di iP A Q A A QΞ = + + , 14 3i iPΞ = , 
2 2 T T

22 3 4 6 6 1 1i m i iP P P P Q Qτ τΔΞ = + − − − − , M mτ τ τΔ = − , 
T T

23 6 1 3i di diP A Q A QΞ = + − , 34 4i iPΞ = , 1d d= − , 
T T

33 2 4 3 3i i i di didP P Q A A QΞ = − − + + , 44 1 3 4i i i iP P PΞ = − − − .  
Proof: Define the Lyapunov–Krasovskii functional 

1 2 3 4 5 6( , )V t V V V V V Vλ = + + + + + ,              (13) 
where 

T
1 0( ) ( ) ( )V x t P x tλ= ,                                              (14) 

T
2 1( ) ( ) ( )ds

m

t

t
V x s P x s

τ
λ

−
= ∫ ,                                  (15) 

T
3 2( )

( ) ( ) ( )ds
t

t t
V x s P x s

τ
λ

−
= ∫ ,                                 (16) 

T
4 3( ( )) ( ) ( ) ( )ds

m

t

m mt
V s t x s P x s

τ
τ τ λ

−
= ⋅ − −∫ ,         (17) 

T
5 4( ) ( ( )) ( ) ( ) ( )dsm

M

t

M m Mt
V s t x s P x s

τ

τ
τ τ τ λ

−

−
= − ⋅ − −∫ ,(18) 

2 T
6 4( ) ( ) ( ) ( )ds

m

t

M m t
V x s P x s

τ
τ τ λ

−
= − ⋅ ∫ ,                (19) 
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1
( ) 0

N

j i ji
i

P Pλ λ
=

= >∑ , 0,1,2,3,4j = ,               (20) 

and jiP , 0, , 4j = ), are matrices to be determined. Then, the 

time derivative of ( , )V t λ  is given by 

T T T
0 0 1

T T
1 2

T 2 T
2 3

T 2 T
3 4

( , )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

  ( ) ( ) ( ) ( ) ( ) ( )

  (1 ( )) ( ( )) ( ) ( ( )) ( ) ( ) ( )

  ( ) ( ) ( )ds ( ) ( ) ( )
m

m m

m
t

m M mt

V t
x t P x t x t P x t x t P x t

x t P x t x t P x t

t x t t P x t t x t P x t

x s P x s x t P x
τ

λ
λ λ λ
τ λ τ λ

τ τ λ τ τ λ

τ λ τ τ λ
−

= + +

− − − +

− − − − +

− ⋅ + −∫
T

4

( )

  ( ) ( ) ( ) ( )ds.                           (21)m

M

t

M m t

t

x s P x s
τ

τ
τ τ λ

−

−
− − ⋅ ∫

 

By lemma 1 and Leibniz–Newton formula, we have 
T

3

T
3

T
3

( ) ( ) ( )ds

[ ( )ds] ( ) [ ( )ds]

( ( ) ( )) ( )( ( ) ( )),                  (22)

m

m m

t

m t

t t

t t

m m

x s P x s

x s P x s

x t x t P x t x t

τ

τ τ

τ λ

λ

τ λ τ

−

− −

− ⋅

≤ −

= − − − − −

∫

∫ ∫  

T
4

T
4( ) ( )

T
4

( ) ( ) ( ) ( )ds

[ ( )ds] ( ) [ ( )ds]

( ( ) ( ( ))) ( )( ( ) ( ( ))). (23)

m

M

m m

t

M m t

t t

t t t t

m m

x s P x s

x s P x s

x t x t t P x t x t t

τ

τ

τ τ

τ τ

τ τ λ

λ

τ τ λ τ τ

−

−

− −

− −

− − ⋅

≤ −

= − − − − − − −

∫

∫ ∫  

Note that one can obtain  
( ) 0 1 ( )

( ) ( ) ( ) ( ) 1 ( )
t x t

t A x t A t
η

η λ λ η
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥− + −⎣ ⎦ ⎣ ⎦ ⎣ ⎦
.         (24) 

By virtue of the descriptor form (11) and (24), we have 
T

0
T T

0 5
T

6

T T
0 5

T
6

T T
0 5

T
6

T T
5

( ) ( ) ( )

( ) ( )( )
( ) 00

( ) ( )( )
( ) ( ) ( ) ( )0

0( ) ( )
   

( ) ( ( ))( ) 0

( ) (
( )

d

x t P x t

x t x tP P
x t P

x t tP P
t t A x tP

x t P P
A x t tt P

x t P A
t

λ

λ

ηλ
η η λ

λ
λ τη

λ
η

⎡ ⎤⎡ ⎤ ⎡ ⎤= ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤⎡ ⎤ ⎡ ⎤= ⎢ ⎥⎢ ⎥ ⎢ ⎥− +⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤ ⎡ ⎤⎡ ⎤+ ⎢ ⎥ ⎢ ⎥⎢ ⎥ −⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤= ⎢ ⎥
⎣ ⎦

T
0 5

T T
6 6

T T
5
T

6

( )) ( )
( )( )

( ) ( )
   ( ( )).                         (25)

( ) ( )
d

d

x tP P
tP A P

x t P A
x t t

t P A

λ
ηλ

λ τ
η λ

⎡ ⎤− ⎡ ⎤
⎢ ⎥ ⎢ ⎥− ⎣ ⎦⎣ ⎦

⎡ ⎤⎡ ⎤+ −⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦

 

From (22), (23) and (25), we have 

T T T T
T 5 5 0 5 6

T T
0 5 6 6 6

TT T
T T5 3

T T
6 3

T T
1 2 3

( , )

( ) ( ) ( ) ( )
( ) ( )

( ) ( )

( ) ( )
  ( ) ( ( )) ( ( )) ( )

( ) ( )

  ( )( ( ) ( ) ( )) ( ) ( )

d d

d d

m

V t

P A A P P P A P
t t

P P P A P P

P A P A
t x t t x t t t

P A P A

x t P P P x t x t

λ
λ λ λ λξ ξ

λ λ

λ λ
ξ τ τ ξ

λ λ
λ λ λ τ

⎡ ⎤+ − +
≤ ⎢ ⎥− + − −⎣ ⎦

⎡ ⎤ ⎡ ⎤
+ − + −⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
+ + − + −

 

T
1 3 4

T
2 4 3

T T
3 4

T T 2 2
4 3 4

T

   ( ( ) ( ) ( )) ( ) ( ( ))

   ( ( ) ( )) ( ( )) ( ) ( ) ( )

   ( ) ( ) ( ) ( ) ( ) ( ( ))

  ( ( )) ( ) ( ) ( )( ( ) ( )) ( )

( ) ( )

m

m

m m

m m

P P P x t x t t

dP P x t t x t P x t

x t P x t x t P x t t

x t t P x t x t P P x t

t

λ λ λ τ τ
λ λ τ λ τ
τ λ τ λ τ
τ λ τ τ λ τ λ

ξ λ ξ
Δ

× − − − − + −

× − − − + −

+ − + − −

+ − − + +

= Ψ ( ),                                                               (26)t

 

where  
TT T( ) ( ) ( )t x t tξ η⎡ ⎤⎣ ⎦ ,                       (27) 

TT T T( ) ( ) ( ( )) ( )mt t x t t x tξ ξ τ τ⎡ ⎤= − −⎣ ⎦ ,            (28) 

[ ]T TT T
5 6 3

2 4 4

33

( ) ( ) ( ) ( ) 0

( ) * ( ) ( ) ( )
* * ( )

d dA P A P P

dP P P

λ λ λ λ

λ λ λ λ
λ

⎡ ⎤⎡ ⎤Γ ⎣ ⎦⎢ ⎥
⎢ ⎥Ψ = − −
⎢ ⎥

Ψ⎢ ⎥
⎣ ⎦

, (29) 

T T
11 0 5 6

T 2 2
6 6 3 4

( ) ( ) ( )
( )

* ( ) ( )m

P P A P
P P P P

λ λ λλ
τ λ τ λΔ

⎡ ⎤Γ − +
Γ = ⎢ ⎥− − + +⎣ ⎦

,   (30) 

T T
11 5 5 1 2 3( ) ( ) ( ) ( ) ( ) ( )P A A P P P Pλ λ λ λ λ λΓ = + + + − , (31) 

33 1 3 4( ) ( ) ( ) ( )P P Pλ λ λ λΨ = − − − .               (32) 
Using (11), we have 

T T T T T T
1 2 3

T
d d

1 2 3

[ ( ) ( ) ( ( )) ] [ ( ) ( ) ( )

( ) ( ( ))] [ ( ) ( ) ( ) ( ) ( ( ))]
[ ( ) ( ) ( ( ))] 0.                           (33)

t Q x t Q x t t Q t A x t

A x t t t A x t A x t t
Q t Q x t Q x t t

η τ η λ
λ τ η λ λ τ

η τ

+ + − ⋅ − +

+ − + − + + −
× + + − =

 

Adding the left side of (33) into (26) yields 
T( , ) ( ) ( ) ( )V t t tλ ξ λ ξ≤ Ξ ,                       (34) 

where 

[ ]T
1 2 3

3 4

33

( ) ( ) ( ) 0
( ) * ( ) ( )

* * ( )

P
P

λ λ λ
λ λ λ

λ

⎡ ⎤Ξ Ξ
⎢ ⎥

Ξ = Ξ⎢ ⎥
⎢ ⎥Ψ⎢ ⎥⎣ ⎦

,             (35) 

T T T T
11 0 5 6 2 1

1 T 2 2 T
6 6 3 4 1 1

( ) ( ) ( ) ( )
( )

* ( ) ( )m

P P A P Q A Q
P P P P Q Q

λ λ λ λ
λ

τ λ τ λΔ

⎡ ⎤Ξ − + − +
Ξ = ⎢ ⎥− − + + − −⎣ ⎦

,(36) 

T T
11 11 2 2( ) ( ) ( ) ( )Q A A Qλ λ λ λΞ =Γ + + ,             (37) 

TT T T T
2 5 2 3 6 1 3( ) ( )( ) ( ) ( )( )d dA P Q Q A A P Q Qλ λ λ λ⎡ ⎤Ξ = + + + −⎣ ⎦ ,(38) 

T T
3 2 4 3 d d 3( ) ( ) ( ) ( ) ( )dP P Q A A Qλ λ λ λ λΞ = − − + + ,    (39) 

According to (12), we have 

1
( ) 0

N

i i
i

λ λ
=

Ξ = Ξ <∑ .                          (40) 

From (34) and (40), we get ( , ) 0V t λ < . Then, according to 
the Lyapunov theory, polytopic system (1) with interval 
time-varying delay is robustly stable. This proof is completed. 
Remark 1. In Theorem 1, with the introduction of the slack 
variables 5 6,P P and the corresponding augmented vector 

TT T( ) ( ) ( )t x t tξ η⎡ ⎤⎣ ⎦ , delay-dependent stability criterion 

(12) does not involve the product between the Lyapunov 
matrix 0 ( )P λ and system matrices ( )A λ and d ( )A λ . Hence, for 
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(12), 0iP are not required to be the same, but the slack 
variables 5P and 6P are. So, it is expected to lead to a less 
conservative stability condition, as there are no other 
constraints imposed on 5P and 6P . Besides, the augmented 

vector can be used to formulate T 2 2
m 3 4( )( ( ) ( )) ( )x t P P x tτ λ τ λΔ+  

as T 2 2
m 3 4( )diag{0, ( ) ( )} ( )t P P tξ τ λ τ λ ξΔ+ , which avoids rep- 

lacing ( )x t  in the term T 2 2
m 3 4( )( ( ) ( )) ( )x t P P x tτ λ τ λΔ+  with 

the state equation and so eliminates the multiplication relation 
between the Lyapunov matrix 3 4( ), ( )P Pλ λ and system 
matrices d( ), ( )A Aλ λ .  
Remark 2. Another feature for our method is that the 
delay-dependent result can be obtained without using 
bounded inequality with respect to the cross terms, which 
reduces the conservatism further. It is also worth mentioning 
that the slow variation constraint ( ) 1tτ < is not necessary for all 
the results in this paper.  

In many cases, the information of the derivative of delay is 
unknown. Regarding this circumstance, a delay- 
dependent/rate-independent robust stability condition is 
derived as follows by choosing 2 0iP = in Theorem 1.  
Corollary 1. Polytopic system (1) with ( )tτ satisfying 
0 ( )m Mtτ τ τ≤ ≤ ≤ is robustly asymptotically stable if there 
exist symmetric positive definite matrices 0iP , 1iP , 3iP , 4iP , 

1, ,i N= , and matrices 5P , 6P , 1Q , 2Q , 3Q such that 

11 12 13 14

22 23

33 34

44

* 0
0

i i i i

i i
i

i i

i

⎡ ⎤Ξ Ξ Ξ Ξ
⎢ ⎥Ξ Ξ⎢ ⎥Ξ = <
⎢ ⎥∗ ∗ Ξ Ξ
⎢ ⎥

∗ ∗ ∗ Ξ⎢ ⎥⎣ ⎦

, 

where 12iΞ , 13iΞ , 14iΞ , 22iΞ , 23iΞ , 34iΞ , 44iΞ  are defined in 
Theorem 1, and 

T T T T
11 5 5 1 3 2 2i i i i i i iP A A P P P Q A A QΞ = + + − + + , 

T T
33 4 3 3i i di diP Q A A QΞ = − + + .  

With 3 4( ) ( ) 0P Pλ λ= = in Theorem 1, a delay-independent 
robust stability criterion of polytopic system (1) with ( )tτ  
satisfying ( )t dτ ≤ is obtained easily and thus is omitted here.  

As a special case, if we choose single Lyapunov 
functions ( ) 0 ( 0, , 4)j jP P jλ = > = , the parameter- 
independent criterion follows.  
Corollary 2. System (1) with parameter uncertainty (3) and 
interval time-varying delay ( )tτ satisfying (2) is robustly 
asymptotically stable if there exist symmetric positive definite 
matrices 0P , 1P , 2P , 3P , 4P , and matrices 1Q , 2Q , 3Q  such that 

11 12 13 14

22 23

33 34

44

* 0
0, 1, ,

i i i i

i i
i

i i

i

i N

⎡ ⎤Ξ Ξ Ξ Ξ
⎢ ⎥Ξ Ξ⎢ ⎥Ξ = < =
⎢ ⎥∗ ∗ Ξ Ξ
⎢ ⎥

∗ ∗ ∗ Ξ⎢ ⎥⎣ ⎦

,    (41) 

where * denotes the symmetric terms in the matrix and 
T T T

11 0 0 1 2 3 2 2i i i i iP A A P P P P Q A A QΞ = + + + − + + , 
T T

12 1 2i iA Q QΞ = −  , T T
13 0 2 3i di di iP A Q A A QΞ = + + ,

14 3i PΞ = , 2 2 T
22 3 4 1 1i m P P Q Qτ τΔΞ = + − − ,  

T
23 1 3i diQ A QΞ = − , T T

33 2 4 3 3i di didP P Q A A QΞ = − − + + ,

34 4i PΞ = , 44 1 3 4i P P PΞ = − − − , 1d d= − , M mτ τ τΔ = − .  
Proof: The Lyapunov–Krasovskii functional ( , )V t λ is chosen 
as (13) with ( ) 0 ( 0, , 4)j jP P jλ = > = . Differentiating 

( , )V t λ with respect to t gives 

T T T T
0 0 0 d

T T T
1 1 2

T 2 T
2 3

T 2 T
3 4

( , )
( )( ( ) ( ) ) ( ) 2 ( ) ( ) ( ( ))

  ( ) ( ) ( ) ( ) ( ) ( )

  (1 ( )) ( ( )) ( ( )) ( ) ( )

  ( ) ( )ds ( ) ( ) ( )
m

m m

m
t

m M mt

V t
x t P A A P x t x t P A x t t

x t P x t x t P x t x t P x t

t x t t P x t t x t P x t

x s P x s x t P x t
τ

λ
λ λ λ τ

τ τ
τ τ τ τ

τ τ τ
−

= + + −

+ − − − +

− − − − +

− ⋅ + −∫
T

4  ( ) ( ) ( )ds.                                (42)m

M

t

M m t
x s P x s

τ

τ
τ τ

−

−
− − ⋅ ∫

 

From (22), (23) with ( )j jP Pλ = and (33), we have 
T( , ) ( ) ( ) ( )V t t tλ ξ λ ξ≤ Ξ ,                      (43) 

where ( )tξ is defined in (28) and  

11 12 13 14

22 23

33 34

44

* 0
( )λ

⎡ ⎤Ξ Ξ Ξ Ξ
⎢ ⎥Ξ Ξ⎢ ⎥Ξ =
⎢ ⎥∗ ∗ Ξ Ξ
⎢ ⎥

∗ ∗ ∗ Ξ⎢ ⎥⎣ ⎦

,                (44) 

T T T
11 0 0 1 2 3 2 2( ) ( ) ( ) ( )P A A P P P P Q A A Qλ λ λ λΞ = + + + − + + , 

T T
12 1 2( )A Q QλΞ = − , 2 2 T

22 3 4 1 1m P P Q Qτ τ ΔΞ = + − − , 
T T

13 0 2 3( ) ( ) ( )d dP A Q A A Qλ λ λΞ = + + , T
23 1 3( )dQ A QλΞ = − ,

T T
33 2 4 3 3( ) ( )d ddP P Q A A Qλ λΞ = − − + +  , 14 3PΞ =  

34 4PΞ = , 44 1 3 4P P PΞ = − − − , 1d d= − , M mτ τ τΔ = − .    (45) 
Taking (41) into account, we have 

1
( ) 0

N

i i
i

λ λ
=

Ξ = Ξ <∑ .                          (46) 

From (43) and (46), we get ( , ) 0V t λ < . Hence, by the 
Lyapunov theory, the existence of ( , ) 0V t λ > such that 

( , ) 0V t λ < guarantees robust asymptotic stability of poly- 
topic system given in (1). This completes the proof.  

Remark 3. It should be pointed that, for polytopic system (1) 
with interval time-varying delay satisfying (2), the 
parameter-independent stability criterion (41) in Corollary 2 
can also be obtained by parameter-dependent stability 
criterion (12) in Theorem 1 with the following transformation 

0 0iP P= , 1 1iP P= , 2 2iP P= , 3 3iP P= , 4 4iP P= , 5 0P P= , 6 0P = . 
It is obvious that this treatment usually causes conservatism 
inevitably.  
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With 2 0P = in Corollary 2, delay-dependent/rate- 
independent robust stability criterion of polytopic system (1) 
with ( )tτ satisfying 0 ( )m Mtτ τ τ≤ ≤ ≤ can be obtained by 
using parameter-independent Lyapunov functions.  

Corollary 3. Polytopic system (1) with interval time-varying 
delay ( )tτ satisfying 0 ( )m Mtτ τ τ≤ ≤ ≤  is robustly asymp- 
totically stable if there exist symmetric positive definite 
matrices 0P , 1P , 3P , 4P and matrices 1Q , 2Q , 3Q such that 

11 12 13 14

22 23

33 34

44

ˆ

* 0ˆ 0, 1, ,
ˆ

i i i i

i i
i

i i

i

i N

⎡ ⎤Ξ Ξ Ξ Ξ
⎢ ⎥

Ξ Ξ⎢ ⎥Ξ = < =⎢ ⎥∗ ∗ Ξ Ξ⎢ ⎥
⎢ ⎥∗ ∗ ∗ Ξ⎣ ⎦

, 

where 12iΞ , 13iΞ , 14iΞ , 22iΞ , 23iΞ , 34iΞ , 44iΞ are defined in 
Corollary 2 and  

T T T
11 0 0 1 3 2 2

ˆ
i i i i iP A A P P P Q A A QΞ = + + − + + , 

T T
33 4 3 3

ˆ
i di diP Q A A QΞ = − + + , M mτ τ τΔ = − . 

III. ILLUSTRATIVE EXAMPLE AND SIMULATION RESULTS  
In this section, computer simulations are carried out to 

show the effectiveness and less conservativeness of 
parameter-dependent results than parameter-independent 
ones.  
Example1. Consider system (1) with the following matrices 
borrowed from [8] 

1

0.2 0
0 0.09

A
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦
, 2

2 1
0 2

A
− −⎡ ⎤

= ⎢ ⎥−⎣ ⎦
, 3

1.9 0
0 1

A
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦
, 

1

0.1 0
0.1 0.1dA

−⎡ ⎤
= ⎢ ⎥− −⎣ ⎦

, 2

0 1
1 0dA
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 3

0.9 0
1 1.1dA

−⎡ ⎤
= ⎢ ⎥− −⎣ ⎦

. 

Our purpose is to determine the upper bound Mτ of interval 
time-varying delay ( )tτ for which the system is robustly 
asymptotically stable. For comparison purposes, parameter- 
dependent and parameter-independent stability criteria are 
applied to this system, respectively. For the time-varying 
delay with 0.3d = and 0.4mτ = , the upper bound Mτ of ( )tτ is 
found to be 0.9434 by Corollary 2. According to Theorem 1, 
however, it is found that the system is robustly asymptotically 
stable for 2.3997Mτ = , which shows that parameter- 
dependent Lyapunov function (Theorem 1) yields less 
conservative stability criterion than parameter-independent 
one (Corollary 2). To provide relatively complete information, 
we calculate the upper bound Mτ for different time-varying 
cases with given lower bound mτ , listed in Tables I-II, where 
the acronyms have the following meaning 

Th1          stability criterion in Theorem 1 
Cr1          stability criterion in Corollary 1 
Cr2          stability criterion in Corollary 2 
Cr3          stability criterion in Corollary 3.  

TABLE I 
UPPER BOUNDS Mτ WITH GIVEN mτ  FOR DIFFERENT d  

mτ  0 0.4 1.0 2.4 

Th1( 0.3d = ) 2.3992 2.3997 2.3997 2.5965 
Cr2( 0.3d = ) 0.9434 0.9434 1.0391 - 
Th1( 1.2d = ) 0.9084 1.0650 1.4608 2.5964 
Cr2( 1.2d = ) 0.6923 0.7970 1.0391 - 

TABLE II 
UPPER BOUNDS Mτ WITH GIVEN mτ FOR UNKNOWN d  

mτ  0 0.2 0.4 0.6 0.8 

Cr1 0.9095 0.9664 1.0650 1.1848 1.3181 
Cr3 0.6923 0.7376 0.7970 0.8686 0.9500 

The notation”-”indicates that no upper bound can be 
obtained.  

To illustrate the advantage of Theorem 1 further, another 
example is considered. 
Example2. Consider the following system with a time- 
varying delay:   

0 0.12 12
1 0.465

A
ρ
ρ

− +⎡ ⎤
= ⎢ ⎥− −⎣ ⎦

0.1 0.35
0 0.3dA

− −⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

and | | 0.035ρ ≤ [8]. 
If we let 0.035mρ = and set 

1

0 0.12 12
1 0.465

m

m

A
ρ
ρ

− +⎡ ⎤
= ⎢ ⎥− −⎣ ⎦

, 2

0 0.12 12
1 0.465

m

m

A
ρ
ρ

− −⎡ ⎤
= ⎢ ⎥− +⎣ ⎦

, 

1 2

0.1 0.35
0 0.3d d dA A A

− −⎡ ⎤
= = = ⎢ ⎥

⎣ ⎦
,                                    

then the system is described by (1).  
It is noted that, for given lower bound 0.1mτ = and 0.1d = , 

Corollary 2 is not able to conclude robust stability even 
for 0.100000000001Mτ = . According to Theorem 1, however, 
it is demonstrated that this system is robustly stable 
for 0.7863Mτ = .  

IV. CONCLUSION 
This paper has presented a strategy using a descriptor 

system approach and parameter-dependent Lyapunov 
functions to deal with robust stability analysis for a polytopic 
system with interval time-varying delay. The time delay 
allows a range for which the lower bound is greater than zero. 
By introducing slack matrices, a delay-dependent robust 
stability criterion is derived in the framework of LMIs, which 
determines the interval bound guaranteeing the asymptotic 
stability for the considered systems. Some numerical 
examples are provided to demonstrate that the proposed 
method significantly improves the allowed delay bounds 
outperforming parameter-independent approaches.  
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