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Abstract— This paper investigates the delay-dependent expo-
nential stability problem of Takagi-Sugeno (TS) fuzzy Hopfield
neural networks (HNNs) with time-varying delay. Based on
a fuzzy Lyapunov-Krasovskii functional (LKF), some delay-
dependent stability criteria guaranteeing the exponential sta-
bility of the fuzzy HNNs are devised by taking the relationship
between the terms in the Leibniz-Newton formula into account.
Since free weighting matrices are used to express this relation-
ship and the appropriate ones are selected by means of linear
matrix inequalities (LMIs), the criteria are less conservative
than existing ones reported in the literature for delayed fuzzy
neural networks. A simulation example is provided to illustrate
the effectiveness of the developed method.

I. INTRODUCTION

Hopfield neural networks (HNNs) and their various gen-

eralizations have been successfully employed in many areas

such as pattern recognition, associate memory and knowl-

edge acquisition [1],[2]. Such applications of neural networks

heavily depend on the dynamical behaviors of the networks.

Therefore, stability analysis for neural networks has been

investigated and a great number of approaches have been

proposed [3]-[6]. Since time delays as a source of instability

and bad performance always appear in many neural networks

owing to the finite speed of information processing, the sta-

bility analysis for the delayed neural networks has received

considerable attention. The existing results can be classified

into two types: delay-independent criteria [3],[4] and delay-

dependent criteria [5],[6]. The former is irrespective of the

size of the delay and the later is concerned with the size

of the delay. It has been shown that the delay-dependent

stability conditions are generally less conservative than the

delay-independent ones, especially when the size of the delay

is small.

In the past two decades, the fuzzy logic theory has

provided an appealing and efficient approach to deal with

the analysis and synthesis problems for complex nonlinear

systems. Recently, the dynamic Takagi-Sugeno (TS) fuzzy

model [7] has become a popular tool and has been employed

in most model-based fuzzy analysis approaches. The main

feature of the TS fuzzy model is that a nonlinear system can

be approximated by a set of TS linear models. The overall

fuzzy model of the system is achieved by fuzzy blending

of the set of TS linear models. The stability issue of fuzzy
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control systems has been discussed in an extensive literature.

Most of the existing results were obtained by using a single

Lyapunov function (SLF) method [8]. However, the main

drawback associated to this method is that an SLF must work

for all linear models, which in general leads to a conservative

result. To relax this conservatism, the fuzzy Lyapunov-

Krasovskii functional (LKF), which directly includes the

membership functions, has been proposed to derive the

stabilization conditions for TS fuzzy control systems [9],[10].

Very recently, the TS fuzzy models are used to describe the

delayed fuzzy neural networks [11]-[13]. In [11], the global

exponential stability in the mean square for the stochastic

fuzzy HNNs with time-varying delay was studied by using

the Lyapunov-Krasovskii approach. In [12], the globally

robustly asymptotically stable conditions were presented

for the uncertain fuzzy bi-directional associative memories

(BAM) neural networks with time-varying delays. In [13],

the global exponential stability problem of TS fuzzy cellular

neural networks with time-varying delay was investigated

based on the Lyapunov functional theory and linear matrix

inequality techniques. However, most of the existing results

for the delayed fuzzy neural networks are dedicated to delay-

independent conditions. Furthermore, the works in [11]-[13]

are based on a single LKF which further increases the

conservatism of the results.

Motivated by the above discussion, the aim of this paper

is to study the delay-dependent exponential stability for the

fuzzy HNNs with time-varying delay by using a fuzzy LKF

approach. A free-weighting matrix method combining with

LMI techniques is employed to derive some new delay-

dependent exponential stability criteria for the fuzzy HNNs.

In contrast to the existing methods [11],[12], the proposed

method reduces the conservatism of the stability results from

three main aspects. The first one is that a fuzzy LKF is

employed to further reduce the conservatism of the results.

The second is that neither any model transformation nor any

bounding technique for bounding cross terms is needed in

the derivation processes. The third is that the time derivative

of time-varying delay must be smaller than one is released

in the proposed scheme. Moreover, the derived conditions

are expressed in terms of linear matrix inequalities (LMIs),

which can be checked numerically very efficiently via the

LMI toolbox.

Notations: Throughout this paper, Rn denotes the n-

dimensional Euclidean space, and Rn×m is the set of all

n × m real matrices. I denotes the identity matrix with

appropriate dimensions and diag(·) denotes the diagonal

matrix. XT and X−1 denote respectively the transpose and
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the inverse of any square matrix X. We use X > 0 (X < 0)
to denote a positive- (negative-) definite matrix X . ‖ · ‖ is

the Euclidean norm in Rn. λmax(X) (λmin(X)) denotes the

maximum (minimum) eigenvalue of X. The symbol ∗ is used

to denote a matrix which can be inferred by symmetry.

II. MODEL DESCRIPTION AND PRELIMINARIES

The model of Hopfield neural networks with time-varying

delay can be expressed as follows:

u̇i(t) = −diui(t) +
n

∑

j=1

aijgj(uj(t − τj(t))) + Ji, (1)

where ui(t)(i = 1, 2, . . . , n) is the state variable of the

ith neuron at time t; di > 0 represents the passive decay

rate; aij is the synaptic connection weight; gj(·) is the

activation function of the neuron; Ji denotes the external

input; τj(t) represents the time-varying delay of neural

networks satisfying 0 < τj(t) ≤ τ, and τ̇j(t) ≤ σ, where

τ and σ are positive constants.

Throughout this paper, we assume that

(H) There exists a positive diagonal matrix L =
diag(l1, l2, . . . , ln) > 0 such that

|gi(ξ1) − gi(ξ2)| ≤ li|ξ1 − ξ2|,

for all ξ1, ξ2 ∈ R, i = 1, 2, . . . , n.

It is reasonable to assume that the neural network (1)

has only one equilibrium point [21], denoted by u∗ =
[u∗

1, u
∗
2, · · · , u

∗
n]T . We shift the equilibrium to the origin

by the transformation x(t) = u(t) − u∗, which yields the

following system

dx(t)

dt
= −Dx(t) + Af(x(t − τ(t))), (2)

where x(t) = [x1(t), x2(t), . . . , xn(t)]T ∈ Rn,

D = diag(d1, d2, . . . , dn), A = (aij)n×n, f(x) =
[f1(x1), f2(x2), . . . , fn(xn)]T ∈ Rn with fi(xi) = gi(xi +
u∗

i )− gi(u
∗
i ) (i = 1, 2, . . . , n). Under the assumption (H), it

is easy to get |fi(xi(t))| ≤ li|xi(t)| (i = 1, 2, . . . , n).
The continuous fuzzy system was proposed to represent a

nonlinear system [11]. The system dynamics can be captured

by a set of fuzzy rules which characterize local correlations

in the state space. Each local dynamic described by the

fuzzy IF-THEN rule has the property of linear input-output

relation. In the following section, we will consider a general

class of fuzzy Hopfield neural networks with time-varying

delay based on the TS fuzzy model concept. The k th rule

of this TS fuzzy model is of the following form:

Plant Rule k :

IF θ1(t) is ηk
1 and · · · and θp(t) is ηk

p

THEN

ẋ(t) = −Dkx(t) + Akf(x(t − τ(t))), ∀t ≥ 0, (3)

x(t) = φ(t), t ∈ [−τ, 0], (4)

where k ∈ S = {1, 2, . . . , r}, ηk
i (i = 1, 2, . . . , p) is the

fuzzy set, θ(t) = [θ1(t), θ2(t), . . . , θp(t)]
T is the premise

variable vector, r is the number of IF-THEN rules.

The final output of the fuzzy system is inferred as follows:

ẋ(t) =

r
∑

k=1

µk(θ(t))
[

− Dkx(t) + Akf(x(t − τ(t)))
]

, (5)

where

µk(θ(t)) =
vk(θ(t))

∑r
j=1 vj(θ(t))

, vk(θ(t)) =

p
∏

j=1

ηk
j (θj(t)),

in which ηk
j (θj(t)) is the grade of membership of θj(t) in

ηk
j . According to the theory of fuzzy sets, we have

vk(θ(t)) ≥ 0, k = 1, 2, . . . , r,

r
∑

k=1

vk(θ(t)) > 0,

for all t. Therefore, it implies

µk(θ(t)) ≥ 0, k = 1, 2, . . . , r,

r
∑

k=1

µk(θ(t)) = 1,

for all t.

Definition 1. The system (5) is said to be globally expo-

nentially stable with a convergence α if there exist constants

α > 0 and ν ≥ 1 such that

‖x(t)‖ ≤ ν sup
−τ≤ϑ≤0

‖x(ϑ)‖e−αt for all t ≥ 0.

In order to confirm that the origin of (5) is globally

exponentially stable, let x̂(t) = eαtx(t) and the dynamics

of (3) can be transformed into the following form:

Plant Rule k :

IF θ1(t) is ηk
1 and · · · and θp(t) is ηk

p

THEN

˙̂x(t) = −(Dk − αI)x̂(t) + Akf̂(x̂(t − τ(t)))

= −Ckx̂(t) + Akf̂(x̂(t − τ(t))), ∀t ≥ 0, (6)

x̂(t) = φ̂(t), t ∈ [−τ, 0], (7)

where Ck = Dk−αI, f̂(x̂(t−τ(t))) = eαtf(x(t−τ(t))) and

φ̂(t) = eαtφ(t), t ∈ [−τ, 0]. According to the assumption

(H), we have

f̂T (x̂(t − τ(t)))f̂(x̂(t − τ(t))) = ‖f̂(x̂(t − τ(t)))‖2

≤ e2ατ x̂T (t − τ(t))L2x̂(t − τ(t)), (8)

where L = diag(l1, l2, . . . , ln) > 0.

The final output of the fuzzy system is inferred as follows:

˙̂x(t) =
r

∑

k=1

µk(θ(t))
[

− Ckx̂(t) + Akf̂(x̂(t − τ(t)))
]

. (9)

For convenience, we set

C̄(t) =
r

∑

k=1

µk(θ(t))Ck, Ā(t) =
r

∑

k=1

µk(θ(t))Ak,

then the system (9) can be rewritten as

˙̂x(t) = −C̄(t)x̂(t) + Ā(t)f̂(x̂(t − τ(t))). (10)
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To give our main results in the next section, we need the

following lemmas.

Lemma 1. For any vectors a, b ∈ Rn, the inequality

2aT b ≤ aT Xa + bT X−1b

holds, where X is any positive matrix (i.e., X > 0).

Lemma 2 (Schur Complement [26]). Given constant matri-

ces Ω1,Ω2,Ω3, where Ω1 = ΩT
1 and 0 < Ω2 = ΩT

2 , then

Ω1 + ΩT
3 Ω−1

2 Ω3 < 0 if and only if
[

Ω1 ΩT
3

Ω3 −Ω2

]

< 0 or

[

−Ω2 Ω3

ΩT
3 Ω1

]

< 0.

III. MAIN RESULTS

In this section, we will derive some delay-dependent

criteria for the global exponential stability of the delayed

fuzzy system (10) based on a fuzzy LKF.

Theorem 1. For the system (10), suppose (H) hold. Given

scalars τ and σ, the equilibrium point of system (10) is

globally exponentially stable with a convergence rate α > 0,

if there exist a matrix P = PT > 0, time-varying matrices

Q̄(t) = Q̄T (t) ≥ 0, R̄(s) = R̄T (s) ≥ 0, s ∈ [t − τ(t), t],
X̄l(t), Ȳl(t), Z̄lm(t), l ≤ m = 1, 2, 3, 4 and a positive

constant η satisfying the following inequalities:

Ψ(t)

=









Ω11(t) Ω12(t) Ω13(t) Ω14(t)
∗ Ω22(t) Ω23(t) Ω24(t)
∗ ∗ Ω33(t) Ω34(t)
∗ ∗ ∗ Ω44(t)









+τ









Z̄11(t) Z̄12(t) Z̄13(t) Z̄14(t)
∗ Z̄22(t) Z̄23(t) Z̄24(t)
∗ ∗ Z̄33(t) Z̄34(t)
∗ ∗ ∗ Z̄44(t)









< 0,(11)

Φ(t, s)

=













Z̄11(t) Z̄12(t) Z̄13(t) Z̄14(t) X̄1(t)
∗ Z̄22(t) Z̄23(t) Z̄24(t) X̄2(t)
∗ ∗ Z̄33(t) Z̄34(t) X̄3(t)
∗ ∗ ∗ Z̄44(t) X̄4(t)
∗ ∗ ∗ ∗ R̄(s)













≥ 0,

s ∈ [t − τ(t), t], (12)

for all t, where

Ω11(t) = Q̄(t) + X̄1(t) + X̄T
1 (t) − Ȳ1(t)C̄(t)

−C̄(t)Ȳ T
1 (t),

Ω12(t) = −X̄1(t) + X̄T
2 (t) − C̄(t)Ȳ T

2 (t),

Ω13(t) = X̄T
3 (t) + Ȳ1(t)Ā(t) − C̄(t)Ȳ T

3 (t),

Ω14(t) = P + X̄T
4 (t) − Ȳ1(t) − C̄(t)Ȳ T

4 (t),

Ω22(t) = −(1 − σ)Q(t − τ(t)) − X̄2(t) − X̄T
2 (t)

+ηe2ατL2,

Ω23(t) = −X̄T
3 (t) + Ȳ2(t)Ā(t),

Ω24(t) = −X̄T
4 (t) − Ȳ2(t),

Ω33(t) = −ηI + Ȳ3(t)Ā(t) + ĀT (t)Ȳ T
3 (t),

Ω34(t) = −Ȳ3(t) + ĀT (t)Ȳ T
4 (t),

Ω44(t) = τR̄(t) − Ȳ4(t) − Ȳ T
4 (t).

Proof. Define the following free fuzzy weighting matrices:

X̄l(t) =
r

∑

k=1

µk(θ(t))Xlk, Ȳl(t) =
r

∑

k=1

µk(θ(t))Ylk,

Z̄lm(t) =
r

∑

k=1

µk(θ(t))Zlmk,

where Xlk ∈ Rn×n, Ylk ∈ Rn×n and Zlmk ∈ Rn×n, l ≤
m = 1, 2, 3, 4, k ∈ S.

From Leibniz-Newton formula and (8), we have
∫ t

t−τ(t)

˙̂x(s)ds = x̂(t) − x̂(t − τ(t)), (13)

e2ατ x̂T (t − τ(t))L2x̂(t − τ(t))

−f̂T (x̂(t − τ(t)))f̂(x̂(t − τ(t))) ≥ 0. (14)

Therefore, by considering (10) and (14), for some time-

varying matrices X̄l(t) and Ȳl(t), l = 1, 2, 3, 4, we obtain

γ1(t) = 2
[

x̂T (t)X̄1(t) + x̂T (t − τ(t))X̄2(t)

+f̂T (x̂(t − τ(t)))X̄3(t) + ˙̂x
T
(t)X̄4(t)

]

×

[

x̂(t) − x̂(t − τ(t)) −

∫ t

t−τ(t)

˙̂x(s)ds

]

≡ 0, (15)

γ2(t) = 2
[

x̂T (t)Ȳ1(t) + x̂T (t − τ(t))Ȳ2(t)

+f̂T (x̂(t − τ(t)))Ȳ3(t) + ˙̂x
T
(t)Ȳ4(t)

]

×
[

−C̄(t)x̂(t) + Ā(t)f̂(x̂(t − τ(t))) − ˙̂x(t)
]

≡ 0. (16)

Since (12) implies that

Z̄(t) =









Z̄11(t) Z̄12(t) Z̄13(t) Z̄14(t)
∗ Z̄22(t) Z̄23(t) Z̄24(t)
∗ ∗ Z̄33(t) Z̄34(t)
∗ ∗ ∗ Z̄44(t)









≥ 0,

we have the following inequality:

τξT (t)Z̄(t)ξ(t) −

∫ t

t−τ(t)

ξT (t)Z̄(t)ξ(t)ds ≥ 0, (17)

where ξT (t) =
[

x̂T (t) x̂T (t − τ(t)) f̂T (x̂(t − τ(t))) ˙̂x
T
(t)

]

.

Consider the following fuzzy LKF for the system (10):

V (t) = x̂T (t)Px̂(t) +

∫ t

t−τ(t)

x̂T (s)Q̄(s)x̂(s)ds

+

∫ 0

−τ

∫ t

t+β

˙̂x
T
(s)R̄(s) ˙̂x(s)dsdβ, (18)

where Q̄(s) =
∑r

k=1 µk(θ(s))Qk and R̄(s) =
∑r

k=1 µk(θ(s))Rk are fuzzy weighting matrices which in-

clude the membership functions, 0 < P = PT ∈ Rn×n, 0 <

Qk = QT
k ∈ Rn×n and 0 < Rk = RT

k ∈ Rn×n, k ∈ S. As

discussed in [10], a single matrix P is used in the first term of
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(18) instead of a fuzzy weighting matrix
∑r

k=1 µk(θ(t))Pk.

The reason of such construction is to avoid the difficulty of

determining the upper bound of |µ̇k(θ(t))|, k ∈ S in the

stability analysis.

With (14)-(17), the time derivative of V (t) along the

trajectory of (10) is computed as

V̇ (t) = 2x̂T (t)P ˙̂x(t) + x̂T (t)Q̄(t)x̂(t)

−(1 − τ̇(t))x̂T (t − τ(t))Q̄(t − τ(t))x̂(t − τ(t))

+τ ˙̂x
T
(t)R̄(t) ˙̂x(t) −

∫ t

t−τ

˙̂x
T
(s)R̄(s) ˙̂x(s)ds

≤ 2x̂T (t)P ˙̂x(t) + x̂T (t)Q̄(t)x̂(t)

−(1 − σ)x̂T (t − τ(t))Q̄(t − τ(t))x̂(t − τ(t))

+τ ˙̂x
T
(t)R̄(t) ˙̂x(t) −

∫ t

t−τ(t)

˙̂x
T
(s)R̄(s) ˙̂x(s)ds

+γ1(t) + ηe2ατ x̂T (t − τ(t))L2x̂(t − τ(t))

+γ2(t) − ηf̂T (x̂(t − τ(t)))f̂(x̂(t − τ(t)))

+τξT (t)Z̄(t)ξ(t) −

∫ t

t−τ(t)

ξT (t)Z̄(t)ξ(t)ds

= ξT (t)Ψ(t)ξ(t) −

∫ t

t−τ(t)

ζT (t, s)Φ(t, s)ζ(t, s)ds,

(19)

where ξT (t) is the same as in (18) and ζT (t, s) =
[

ξT (t) ˙̂x
T
(s)

]

.

Obviously, Ψ(t) < 0 and Φ(t, s) ≥ 0 as defined in (11)

and (12) imply that V̇ (t) < 0 for any x̂(t) 6= 0. It follows

that

V (t) ≤ V (0). (20)

According to (18), we have

V (0) = x̂T (0)Px̂(0) +

∫ 0

−τ(0)

x̂T (s)Q̄(s)x̂(s)ds

+

∫ 0

−τ

∫ 0

β

˙̂x
T
(s)R̄(s) ˙̂x(s)dsdβ,

≤ λmax(P )‖φ̂‖2 + λmax(QM )

∫ 0

−τ(0)

x̂T (s)x̂(s)ds

+λmax(RM )

∫ 0

−τ

∫ 0

β

˙̂x
T
(s) ˙̂x(s)dsdβ, (21)

where QM = sup−τ≤s≤0 Q̄(s), RM = sup−τ≤s≤0 R̄(s) and

φ̂ = sup−τ≤s≤0 ‖x̂(s)‖.

It follows from Lemma 1 that

˙̂x
T
(s) ˙̂x(s)

=
[

−C̄(s)x̂(s) + Ā(s)f̂(x̂(s − τ(s)))
]T

×
[

−C̄(s)x̂(s) + Ā(s)f̂(x̂(s − τ(s)))
]

≤ 2
[

x̂T (s)C̄T (s)C̄(s)x̂(s)

+f̂T (x̂(s − τ(s)))ĀT (s)Ā(s)f̂(x̂(s − τ(s)))
]

≤ 2
[

λmax(C
T
MCM ) + λmax(A

T
MAM )λmax(L

2)
]

‖φ̂‖2,

(22)

where CM = sup−τ≤s≤0 C̄(s) and AM = sup−τ≤s≤0 Ā(s).

Thus

V (0) ≤ λmax(P )‖φ̂‖2 + τλmax(QM )‖φ̂‖2

+2τ2λmax(RM )
[

λmax(C
T
MCM )

+λmax(A
T
MAM )λmax(L

2)
]

‖φ̂‖2

= Λ‖φ̂‖2, (23)

where Λ = λmax(P ) + τλmax(QM ) +
2τ2λmax(RM )

[

λmax(C
T
MCM ) + λmax(A

T
MAM )λmax(L

2)
]

.

On the other hand

V (t) ≥ x̂T (t)Px̂(t) ≥ λmin(P )‖x̂(t)‖2. (24)

Therefore, we have

λmin(P )‖x̂(t)‖2 ≤ Λ‖φ̂‖2. (25)

Furthermore, from x̂(t) = eαtx(t), we can conclude the

following result:

‖x(t)‖ ≤

√

Λ

λmin(P )
‖φ‖e−αt. (26)

where φ = sup−τ≤s≤0 ‖x(s)‖. It is clear that
√

Λ
λmin(P ) ≥ 1

and by Definition 1, the system (10) is globally exponentially

stable with convergence rate α. The proof is completed.

If we restrict R̄(s) > 0, s ∈ [t − τ(t), t], then the

matrices Z̄lm(t), l ≤ m = 1, 2, 3, 4 and the condition (12)

can be eliminated from Theorem 1 and we have the following

corollary.

Corollary 1. For the system (10), suppose (H) hold. Given

scalars τ and σ, the equilibrium point of system (10) is

globally exponentially stable with a convergence rate α > 0,

if there exist a matrix P = PT > 0, time-varying matrices

Q̄(t) = Q̄T (t) ≥ 0, R̄(s) = R̄T (s) > 0, s ∈ [t − τ(t), t],
X̄l(t), Ȳl(t), l = 1, 2, 3, 4 and a positive constant η

satisfying the following inequality:













Ω11(t) Ω12(t) Ω13(t) Ω14(t) τX̄1(t)
∗ Ω22(t) Ω23(t) Ω24(t) τX̄2(t)
∗ ∗ Ω33(t) Ω34(t) τX̄3(t)
∗ ∗ ∗ Ω44(t) τX̄4(t)
∗ ∗ ∗ ∗ −τR̄(s)













< 0,

s ∈ [t − τ(t), t], (27)

for all t, where Ωij(t), i ≤ j = 1, 2, 3, 4 are the same as in

(11).
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Proof. In the following, we take









Z̄11(t) Z̄12(t) Z̄13(t) Z̄14(t)
∗ Z̄22(t) Z̄23(t) Z̄24(t)
∗ ∗ Z̄33(t) Z̄34(t)
∗ ∗ ∗ Z̄44(t)









=









X̄1(t)
X̄2(t)
X̄3(t)
X̄4(t)









R̄−1(s)









X̄1(t)
X̄2(t)
X̄3(t)
X̄4(t)









T

≥ 0. (28)

Obviously, (28) ensures Φ(t, s) ≥ 0 because













Z̄11(t) Z̄12(t) Z̄13(t) Z̄14(t) X̄1(t)
∗ Z̄22(t) Z̄23(t) Z̄24(t) X̄2(t)
∗ ∗ Z̄33(t) Z̄34(t) X̄3(t)
∗ ∗ ∗ Z̄44(t) X̄4(t)
∗ ∗ ∗ ∗ R̄(s)













=















X̄1(t)R̄
− 1

2 (s)

X̄2(t)R̄
− 1

2 (s)

X̄3(t)R̄
− 1

2 (s)

X̄4(t)R̄
− 1

2 (s)

R̄
1

2 (s)





























X̄1(t)R̄
− 1

2 (s)

X̄2(t)R̄
− 1

2 (s)

X̄3(t)R̄
− 1

2 (s)

X̄4(t)R̄
− 1

2 (s)

R̄
1

2 (s)















T

≥ 0.

According to Lemma2, the inequality (11) with the choice

of (28) is equivalent to (27). The proof is completed.

Remark 1. It is noted that restricting R̄(s) > 0, s ∈
[t − τ(t), t] for the stability condition of Theorem 1 may

increase the conservatism of the overall condition. However,

we can obtain a LMI-based exponential stability condition

with fewer number of involved decision variables which

definitely accelerates computation from Corollary 1.

Theorem 2. For the system (10), suppose (H) hold. Given

scalars τ and σ, the equilibrium point of system (10) is

globally exponentially stable with a convergence rate α > 0,

if there exist matrices P = PT > 0, Qk = QT
k ≥ 0,

Rk = RT
k > 0, Xlk, Ylk, l = 1, 2, 3, 4, k ∈ S and a

positive constant η satisfying the following LMIs:

Ξρ̺kk < 0, ρ, ̺, k ∈ S, (29)

1

r − 1
Ξρ̺kk +

1

2

(

Ξρ̺km + Ξρ̺mk

)

< 0,

ρ, ̺, k, m ∈ S, k 6= m, (30)

where

Ξρ̺km =













Qk + Γ11,km Γ12,km

∗ −(1 − σ)Qρ + Γ22,k

∗ ∗
∗ ∗
∗ ∗

Γ13,km P + Γ14,km τX1k

Γ23,km Γ24,km τX2k

−ηI + Γ33,km Γ34,km τX3k

∗ τRk + Γ44,m τX4k

∗ ∗ −τR̺













, (31)

and

Γ11,km = X1k + XT
1k − Y1mCk + CkY T

1m,

Γ12,km = −X1k + XT
2k − CkY T

2m,

Γ13,km = XT
3k + Y1mAk − CkY T

3m,

Γ14,km = XT
4k − Y1m − CkY T

4m,

Γ22,k = −X2k − XT
2k + ηe2ατL2,

Γ23,km = −XT
3k + Y2mAk,

Γ24,km = −XT
4k − Y2m,

Γ33,km = Y3mAk + AT
k Y T

3m,

Γ34,km = −Y3m + AT
k Y T

4m,

Γ44,m = −Y4m − Y T
4m.

Proof. The inequality (27) can be rewritten as

r
∑

ρ=1

r
∑

̺=1

r
∑

k=1

r
∑

m=1

µρ(θ(t − τ(t)))µ̺(θ(s))µk(θ(t))

×µm(θ(t))Ξρ̺km < 0, s ∈ [t − τ(t), t]. (32)

According to the Theorem 2.2 in [8], with Ξρ̺km given

in (31), if the conditions (29) and (30) hold, then (32) is

fulfilled. Therefore, it follows from Corollary 1 that the

equilibrium of the system (10) is globally exponentially

stable with the convergence rate α.

Remark 2. The number of LMIs in Theorem 2 is r3 +
r3(r − 1), which may be lead to a great computational

effort. However, we can get a trade-off between the increase

of conservatism and the reduction of number in LMIs by

choosing certain matrices. For instance, by taking Qk = Q

or Rk = R, k ∈ S, the number of LMIs is r2 + r2(r − 1).
If we take Qk = Q and Rk = R, k ∈ S, then the number

is r + r(r − 1), which would be greatly reduced. Therefore,

we have the following corollary.

Corollary 2. For the system (10), suppose (H) hold. Given

scalars τ and σ, the equilibrium point of system (10) is

globally exponentially stable with a convergence rate α > 0,

if there exist matrices P = PT > 0, Q = QT ≥ 0,

R = RT > 0, Xlk, Ylk, l = 1, 2, 3, 4, k ∈ S and a positive

constant η satisfying the following LMIs:

Ξkk < 0, k ∈ S, (33)

1

r − 1
Ξkk +

1

2

(

Ξkm + Ξmk

)

< 0, k, m ∈ S, k 6= m, (34)

where

Ξkm =













Q + Γ11,km Γ12,km

∗ −(1 − σ)Q + Γ22,k

∗ ∗
∗ ∗
∗ ∗

Γ13,km P + Γ14,km τX1k

Γ23,km Γ24,km τX2k

−ηI + Γ33,km Γ34,km τX3k

∗ τR + Γ44,m τX4k

∗ ∗ −τR













(35)

and Γij,km, i ≤ j = 1, 2, 3, 4 are the same as in (31).
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IV. A SIMULATION EXAMPLE

In this section, we present a numerical example to demon-

strate the effectiveness of the proposed results.

Example 1. Let r = 2. Consider the following TS fuzzy

HNN:

Plant Rule k :

IF θ1(t) is ηk
1 and · · · and θp(t) is ηk

p

THEN

ẋ(t) = −Dkx(t) + Akf(x(t − τ(t))), ∀t ≥ 0,(36)

where ηk
i (i = 1, 2, . . . , p) is the fuzzy set, θ(t) =

[θ1(t), θ2(t), . . . , θp(t)]
T is the premise variable vector. The

activation function is described by f(x) = tanh(x), and

the time-varying delay is assumed as τ(t) = 0.5 sin(3t) + 1
with τ = 1.5 and σ = 1.5. Obviously, the assumption (H)
is satisfied with L = diag(1, 1). The fuzzy HNN can be

described by

˙̂x(t) =
2

∑

k=1

µk(θ(t))
[

− Ckx̂(t) + Akf̂(x̂(t − τ(t)))
]

, (37)

where

C1 = D1 − αI, D1 =

[

1 0
0 1

]

, A1 =

[

0.6 −0.5
0.4 0.7

]

,

C2 = D2 − αI, D2 =

[

1 0
0 1

]

, A2 =

[

−0.5 0.2
0.8 −0.5

]

.

The fuzzy membership functions are selected as

µ1(x̂1, x̂2) =
1

exp(−x̂1 − x̂2)
, µ2 = 1 − µ1.

Applying the conditions in Corollary 2 with convergence rate

α = 0.05, we use the Matlab LMI Control Toolbox to solve

the LMIs in (33) and (34), and obtain the feasible solution

as follows:

η = 2.1360 × 103,

P = 104 ×

[

1.2770 0
0 1.2770

]

,

Q = 103 ×

[

1.2588 0.0010
0.0010 1.2584

]

,

R = 104 ×

[

1.7254 0.0006
0.0006 1.7251

]

.

Therefore, all the conditions of Corollary 2 in this paper

are satisfied, which imply the solutions of system (36) are

globally exponentially stable. The constraint τ̇j(t) ≤ σ < 1
is essential in [11],[12], but it is not necessary in our results.

Fig. 1 shows the response of the previous fuzzy system with

the initial condition [−1.2, 0.4]T .

V. CONCLUSION

In this paper, some delay-dependent exponential stability

criteria are established for fuzzy Hopfield neural networks

with time-varying delay by using the free-weighting matrix

approach, the Leibniz-Newton formula and the Lyapunov

method. A fuzzy LKF instead of a single LKF is employed
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Fig.1. Responses of the state vector x(t).

to derive the proposed delay-dependent results, which reduce

the conservatism of the results. The stability conditions are

presented in terms of linear matrix inequalities. Finally, a

numerical example is provided to illustrate the effectiveness

of the derived results.
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