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Abstract—This paper introduces an extended environment for 
the unscented Kalman filtering that considers also the presence 
of additive noise on input observations in order to solve the 
problem of optimal estimation of noise-corrupted input and 
output sequences. This environment includes as sub-cases both 
errors-in-variables filtering and unscented Kalman filtering. 
The unscented Kalman filtering to the presence of additive noise 
on input observations is considered, and is used to solve the 
problem of optimal estimation of noise-corrupted input and 
output sequences. A Monte Carlo simulation shows that the 
performance of the unscented Kalman filtering technique leads 
to the expected minimal variance estimates. 

I. INTRODUCTION 
HE filtering for nonlinear dynamic system is an important 
research area and has attracted considerable interest. A 

large number of suboptimal approaches have been developed 
to solve the nonlinear filtering problem. These include 
extended Kalman filtering (EKF) [1]-[4], Gaussian sum filter 
[5], grid-based methods [6] and particle filters [7], [8]. Among 
these methods, very few algorithms have seen so many 
applications in different areas as the extended Kalman 
filtering that constitutes the standard for information retrieval 
from noisy data generated by known processes and affected by 
noise with known statistical properties. However, the EKF 
may diverge in the case of large initial estimation error or 
large external disturbances. The reason is that the EKF is 
obtained by first-order linearization of the nonlinear model, 
and the approximation error between the linearised model and 
the original nonlinear system may become significant when 
there are large deviations of the estimated state from the real 
one [9]. 

The unscented Kalman filter (UKF) [10] is proposed by the 
scholars of Oxford University in 1990s as an improvement to 
EKF. This method is based on the unscented transform (UT) 
technique, a mechanism for propagating mean and covariance 
through a nonlinear transformation. The state vector is 
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represented by a minimal set of carefully chosen sample points, 
called sigma points, which approximate the posterior mean 
and covariance of the Gaussian random variable with a second 
order accuracy. In contrast, the linearization technique used in 
the EKF can only achieve first order accuracy [11], [12]. 
Further, it is not necessary to compute the Jacobian matrices in 
the UKF [13], [14]. The UKF is widely used in practice, 
ranging from multi-sensor fusion [15], target tracking [10], 
position determination [16], to training of neural networks 
[17].  

A limit of the stochastic environment of Kalman filtering 
concerns its asymmetrical description of the uncertainties on 
the observations, while the output is considered as affected by 
additive noise, the input is assumed as exactly known. This 
condition is met in all control applications where the process 
input is generated by known laws but restrictive in other 
contexts. Symmetrical environments are at the basis of errors- 
in-variables (EIV) models that consider all system attributes 
as affected by unknown additive disturbances. This symmetry 
allows avoiding system orientation, such as the necessity of 
partitioning observations into inputs and outputs. 

The UKF cannot be directly applied to EIV filtering 
problems, as discussed in [18], because of the optimal 
reconstruction of inputs and outputs of EIV models on the 
basis of their noise-corrupted observations. The problem of 
EIV filtering has been recently solved in [19] by making 
reference to both behavioral and state-space contexts, starting 
from the solution of optimal EIV interpolation. The numerical 
aspects of this problem have then been investigated in [20], 
where a high-efficiency algorithm has been described based 
on the properties of Cholesky factorization. Optimal EIV 
filtering can be approached also in a deterministic context, as 
an optimization problem along the line followed by Roorda 
and Heij [20]. A unified context for both Kalman and EIV 
filtering has subsequently been developed in [21] and [22] by 
extending Kalman filtering to the more general case of 
symmetrical noise environments in order to include both 
Kalman and EIV filtering, as particular cases.  

This paper proposes an extended unified context for both 
Kalman and EIV filtering based on the unscented Kalman 
filtering and considers also time-varying processes and the 
possibility of mutual noise correlations. Section II is dedicated 
to a statement of the filtering problem while Section III 
considers its solution included as sub-cases both errors-in- 
variables filtering, which is the optimal estimate of inputs and 
outputs from noisy observations and the unscented Kalman 
filtering, which is the optimal estimate of state and output in 
presence of state and output noise. The evaluation of the 
expected performance of the filter is then considered in 
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Section IV. The results of a Monte Carlo simulation are 
reported in Section V and some concluding remarks are finally 
reported in Section VI. 

II. STATEMENT OF THE PROBLEM 
The considered nonlinear system is represented by the 

state-space equations 
ˆ( 1) ( ( ), ) ( ) ( ) ( ) ( )x t f x t t B t u t G t w t+ = + + , 0(0)x x=         (1) 

ˆ ˆ( ) ( ( ), ) ( ) ( )y t h x t t D t u t= +                          (2) 
where ( ) nx t R∈ , ˆ( ) ru t R∈  and ( ) my t R∈ denote the state, input 
and output processes while ( )w t  is the noise acting on the 
state. The true input and output are unknown and only the 
noisy observations are available. 

ˆ( ) ( ) ( )u t u t u t= +                                (3) 
ˆ( ) ( ) ( )y t y t y t= +                               (4) 

where, ( )u t  and ( )y t  denote the additive noise on ˆ( )u t  and 
ˆ( )y t . In the sequel, we will assume that ( )w t , ( )u t  and ( )y t  

are zero mean white processes, uncorrelated with ˆ( )u t  and 
with covariances as follows. 

[ ( ) ( )] ( ) ( )T
wE w t w t Q tτ δ τ− =                      (5) 

[ ( ) ( )] ( ) ( )T
uE u t u t Q tτ δ τ− =                      (6) 

[ ( ) ( )] ( ) ( )T
yE y t y t Q tτ δ τ− =                      (7) 

[ ( ) ( )] ( ) ( )T
uyE u t y t Q tτ δ τ− =                     (8) 

[ ( ) ( )] 0       TE w t u t τ τ− = ∀                      (9) 
[ ( ) ( )] 0       TE w t y t τ τ− = ∀                    (10) 

where ( )δ τ  denotes the Kronecker delta function. The initial 
state 0x  is a random vector with mean 0x  and covariance 
matrix 0P , uncorrelated with ( )w t , ( )u t  and ( )y t , t∀ . 
Concerning the uncorrelation between the state noise ( )w t  
and the measurement noise ( )u t , ( )y t ,  assumptions (9) and 
(10) have been introduced only for the sake of simplicity and 
can be easily removed. 

The optimal filtering problem can be defined that given 
model (1)-(4), covariance matrices (5)-(10) and the input- 
output observations { (0),  (0), ,  ( ),  ( )}u y u t y t… , determine the 
optimal nonlinear estimates of  ˆ( )u t  and ˆ( )y t , at every t. 

III. OPTIMAL FILTERING 

A. Errors-in-variables Filtering 
In this section, a simple approach to present errors-in- 

variables filtering, which include optimal estimate of inputs 
and outputs from noisy observations, is given.  

In this part, the errors-in-variables filter is obtained based 
on the following theorem. 

Theorem 1. The optimal estimates ˆ ( )u t∗  and ˆ ( )y t∗  of ˆ( )u t  
and ˆ( )y t  that can be obtained from { (0),  (0), ,  ( ),  ( )}u y u t y t… , 
under constraints (1)-(4) are given by 

ˆ ( ) ( ) ( ) ( ) [ ( ) | ( )]u t u t u t u t E u t z t∗ ∗= − = −                (11) 
ˆ ( ) ( ) ( ) ( ) [ ( ) | ( )]y t y t y t y t E y t z t∗ ∗= − = −                (12) 

with 
( ) ( ) ( ) ( )z t y t D t u t= −                          (13) 

where [ ]E i  denotes mathematical expectation and [ | ]E x y  is 
the nonlinear minimal variance estimator that coincides with 
the conditional expectation in the gaussian case. 

Proof. For the sake of simplicity, we will make reference to a 
time-invariant system described by the matrices ( ( )) /f x t x∂ ∂ , 
B, G, ( ( )) /h x t x∂ ∂ , D and to stationary white processes 
described by the covariances ( )wQ t , ( )uQ t , ( )yQ t  and ( )uyQ t . 
As it will be clear later, it is not restrictive to assume 0 0x = . 

Let us define the following vectors: 
ˆ ˆ ˆ ˆ[ (0)  (1)  ( )]Tu u u u t= …                        (14) 
ˆ ˆ ˆ ˆ[ (0)  (1)  ( )]Ty y y y t= …                        (15) 

[ (0)  (1)  ( )]Tw w w w t= …                       (16) 
It is easy to verify that, because of (1)-(2), they are linked by 

the relation 
ˆ ˆu wy M u M w= +                             (17) 

where 

1 2

0 0
( )

0
( ) ( ) ( ) ( )[ ] [ ]

u

t t

D
h x B D

xM

h x f x h x f xB B D
x x x x

− −

⎡ ⎤
⎢ ⎥∂⎢ ⎥
⎢ ⎥∂= ⎢ ⎥
⎢ ⎥
∂ ∂ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦

 

1

0 0
( ) 0

0
( ) ( ) ( )[ ] 0

u

t

h x G
xM

h x f x h xG G
x x x

−

⎡ ⎤
⎢ ⎥∂⎢ ⎥
⎢ ⎥∂= ⎢ ⎥
⎢ ⎥
∂ ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂ ∂⎣ ⎦

 

By denoting with kI  the k k×  identity matrix and with ⊗  
the Kronecker product, relation (17) can also be expressed in 
the form 

ˆ 0Mν =                                      (18) 
where 

ˆ ˆ ˆ[     ]T T T Ty u wν =                              (19) 
and 

1[     ]t m u wM I I M M+= ⊗ − −                   (20) 
Define now the vectors 

( 1)

[    0  0]T T T

t p

y uν
+ ×

= …                          (21) 

[    ]T T T Ty u wν = −                           (22) 
where 

[ (0)  (1)  ( )]Tu u u u t= …                          (23) 
[ (0)  (1)  ( )]Tu u u u t= …                          (24) 
[ (0)  (1)  ( )]Ty y y y t= …                          (25) 
[ (0)  (1)  ( )]Ty y y y t= …                          (26) 

From (3)-(4), it follows immediately: 
ˆν ν ν= +                                     (27) 

so that (18) leads to 
M Mν ν= = Ψ                                (28) 

Now we need find the optimal estimate ν̂ ∗  of ν̂  satisfying 
condition (18), starting from the data ν , the model M and the 
covariances (5)-(10). The solution can rely on two different 
approaches whether ( )w t , ( )u t  and ( )y t  are Gaussian 
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processes or not. In the former case, the problem can be solved 
by maximizing the likelihood function 

11ˆ ˆ ˆ( ) ( ) ( )
2

TJ Qν ν ν ν ν∗ ∗ − ∗= − − −                     (29) 

under the constraint (18), where 
1 1

1 1

1

0
[ ] 0

0 0

T
t y t uy

T
t uy t u

t w

I Q I Q
Q E I Q I Q

I Q
νν

+ +

+ +

+

⎡ ⎤⊗ ⊗
⎢ ⎥= = ⊗ ⊗⎢ ⎥
⎢ ⎥⊗⎣ ⎦

         (30) 

By introducing the Lagrange multipliers vector λ  the 
solution can be obtained by minimizing the loss function 

1ˆ ˆ ˆ ˆ( , ) ( ) ( )T TJ Q Mν λ ν ν ν ν λ ν∗ ∗ − ∗ ∗= − − +                 (31) 
By equating to zero the gradient vectors of (31) with respect 

to ν̂ ∗  and λ  we obtain 
12( )TMQM Mλ ν−=                            (32) 

ˆ
2

TQM λν ν∗ = −                              (33) 

The maximum likelihood solution is thus given by 
1ˆ ( )T TQM MQM Mν ν ν∗ −= −                   (34) 

Note that the same result can be obtained also by 
considering the minimal variance estimate of the noise vector 
ν , given by the conditional expectation 

1[ | ] [  ] [ ] ( )T T T TE E E QM MQMν ν ν∗ −= Ψ = Ψ ΨΨ Ψ = Ψ   (35) 
where Ψ  is defined by (28); in fact 

ν̂ ν ν∗ ∗= −                                   (36) 
In the non-Gaussian case, relation (35) can be obtained by 

solving a weighted least-squares problem and constitutes the 
best nonlinear estimate of ν  that can be obtained from ν  
under condition (28). 

The generic samples ( )u τ∗ , ( )y τ∗ , ( 0 tτ≤ ≤ ) obtained 
from (35) depend on both past and future data; the only 
exception concerns (0)u∗ , (0)y∗  that do not depend on past 
samples and ( )u t∗ , ( )y t∗  that do not depend on future samples. 

( )u t∗  and ( )y t∗  are thus the filtered quantities required for the 
optimal filter. Because of (35), they are given by 

( ) [ ( ) | ] [ ( ) | ( ),  ( 1), ,  (0)]u t E u t E u t t tψ ψ ψ∗ = Ψ = − …        (37) 
( ) [ ( ) | ] [ ( ) | ( ),  ( 1), ,  (0)]y t E y t E y t t tψ ψ ψ∗ = Ψ = − …        (38) 

where, from (28) 
1

1

0

( ) ( )( ) ( ) [ ] ( ) ( )t k

k

h x f xy Bu k Du
x x

τ

ψ τ τ τ
−

− −

=

∂ ∂= − −
∂ ∂∑          (39) 

Since ( )u t  and ( )y t  are white and uncorrelated with ˆ( )u t  
they do not depend on the past values of ( )u t  and ( )y t  so that 

( ) [ ( ) | ] [ ( ) | ( )] [ ( ) | ( ) ( )]u t E u t E u t t E u t y t Du tψ∗ = Ψ = = −    (41) 
( ) [ ( ) | ] [ ( ) | ( )] [ ( ) | ( ) ( )]y t E y t E y t t E y t y t Du tψ∗ = Ψ = = −    (42) 

By recalling (36), the filtered samples ˆ ( )u t∗ , ˆ ( )y t∗  can 
finally be obtained by means of the relations 

ˆ ( ) ( ) ( ) ( ) [ ( ) | ( ) ( )]u t u t u t u t E u t y t Du t∗ ∗= − = − −          (43) 
ˆ ( ) ( ) ( ) ( ) [ ( ) | ( ) ( )]y t y t y t y t E y t y t Du t∗ ∗= − = − −          (44) 

If the initial state 0x  is not zero, the term 0xM x will appear 
in (17). 
where 

( ) ( ) ( ) ( ) ( )[ ] [ ] [ ] [( ) ] [ ]
T

T T T t T T
x

h x f x h x f x h xM
x x x x x

∂ ∂ ∂ ∂ ∂⎡ ⎤= ⎢ ⎥∂ ∂ ∂ ∂ ∂⎣ ⎦
 

This quantity must be included in the constraint (18); it does 
not affect, however, the obtained results since 0x  has been 
assumed as uncorrelated with ( )u t  and ( )y t .                       □ 

B. Unscented Kalman Filtering 
Expressions (11) and (12) can be computed recursively by 

taking advantage of the unscented Kalman filter. Note that 
relations (3) and (4) allow writing model (1)-(2) in the form 

ˆ( 1) ( ( ), ) ( ) ( ) ( ) ( ) ( ) ( )x t f x t t B t u t B t u t G t w t+ = + − +          (45) 
ˆ ˆ( ) ( ( ), ) ( ) ( ) ( ) ( ) ( )y t h x t t D t u t D t u t y t= + − +                 (46) 

By introducing the auxiliary white processes 
( ) ( ) ( ) ( ) ( )xn t G t w t B t u t= −                         (47) 
( ) ( ) ( ) ( )yn t y t D t u t= −                               (48) 

with covariances 
( ) [ ( ) ( )] ( ) ( ) ( ) ( ) ( ) ( )T T T

x x w uQ t E n t n t G t Q t G t B t Q t B t= = +      (49) 
( ) [ ( ) ( )]

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

T
y y

T T T
y uy uy u

R t E n t n t

Q t Q t D t D t Q t D t Q t D t

=

= − − +
   (50) 

( ) [ ( ) ( )] ( )[ ( ) ( ) ( )]T T
x y u uyS t E n t n t B t Q t D t Q t= = −                 (51) 

It is possible to rewrite relations (45)-(46) as 
( 1) ( ( ), ) ( ) ( ) ( )xx t f x t t B t u t n t+ = + +                    (52) 

( ) ( ( ), ) ( )yz t h x t t n t= +                               (53) 
According to the procedure of the normal UKBF, the 

n-dimensional random variable ( )x t  with mean ˆ( )x t  and 
covariance ( )P t  is approximated by the matrix of sigma 
points ( )X t  selected using the following equations firstly. 

(0) ˆ( ) ( )X t x t=  
( ) ˆ( ) ( )iX t x t cP= + , 1, ,i L= …  

( ) ˆ( ) ( )iX t x t cP= − , 1, ,2i L L= + …  
where 2 ( )c n lα= +  is a tuning parameter. The opposite weight 

mω  is as follow 
(0) (2 ) T[ ]n

m m mW Wω =  
where  

(0)

( )mW
n

λ
λ

=
+

, ( ) 1
2( )

i
mW

n λ
=

+
( 1, ,2i n= ). 

We define the matrix W as follow 
(0) (2 ) T( [ ]) ( ) ( [ ])n

m m c c m mW I diag W W Iω ω ω ω= − × × −  
where  

(0)
2( ) (1 )cW

n
λ

λ α β
=

+ + − +
, ( ) 1

2( )
i

cW
n λ

=
+

( 1, ,2i n= ). 

The parameter λ  is a scaling parameter defined as 
2( )n l nλ α= + − . The positive constants α , β  and l  are 

used as parameters of the method. 
In the previous formulation, ( )z t  plays the role of measured 

output so that the corresponding Kalman filter equations can 
be defined as follows. 

0

( 1| ) ( ( ), ) ( ) ( ) ( ) ( )
   (0 | 1)

mx t t f X t t B t u t K t t
x x

ω ε+ = + +
− =

             (54) 

T 1( ) [ ( ) ( ( ), ) ( )] ( )K t X t Wh X t t S t Q tε
−= +                (55) 

T T

1 T

0

( 1| ) ( ) ( ( ), ) ( ( ), ) ( )
                               ( ) ( ) ( ) ( )
  (0 | 1)

P t t X t Wf X t t f X t t WX t
Q t K t Q t K t

P P
ε

−

+ = +
+ −

− =
        (56) 
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where, ( )tε  and ( )Q tε  denote the innovation of ( )z t  and its 
covariance matrix, given by 

( ) [ ( ) ( ( ), ) ]mt z t h X t tε ω= −                       (57) 
1 T( ) ( ( ), ) ( ( ), ) ( )Q t h X t t Wh X t t R tε

− = +               (58) 
To compute ˆ ( )u t∗  and ˆ ( )y t∗ , we can replace ( )z t  with its 

innovation 
1ˆ ( ) [ ( ) | ( )] [ ( ) ( )] [ ( ) ( )] ( )T Tu t E u t t E u t t E t t tε ε ε ε ε∗ −= =       (59) 
1ˆ ( ) [ ( ) | ( )] [ ( ) ( )] [ ( ) ( )] ( )T Ty t E y t t E y t t E t t tε ε ε ε ε∗ −= =      (60) 

then, since ( )u t  and ( )y t  are uncorrelated with ( ) ( | 1)x t x t t− −  
it is easy to show that 

[ ( ) ( )] [ ( ) ( )] ( ) ( ) ( )T T T
y uy uE u t t E u t n t Q t Q t D tε = = −         (61) 

[ ( ) ( )] [ ( ) ( )] ( ) ( ) ( )T T T T
y y uyE y t t E y t n t Q t Q t D tε = = −         (62) 

hence 
1( ) [ ( ) ( ) ( )] ( ) ( )T

uy uu t Q t Q t D t Q t tε ε∗ −= −             (63) 
1( ) [ ( ) ( ) ( )] ( ) ( )T T

y uyy t Q t Q t D t Q t tε ε∗ −= −            (64) 
Finally, by using (11) and (12), the minimal variance 

estimates of ˆ( )u t  and ˆ( )y t  can be written in the form 
1ˆ ( ) ( ) [ ( ) ( ) ( )] ( ) ( )T

uy uu t u t Q t Q t D t Q t tε ε∗ −= − −          (65) 
1ˆ ( ) ( ) [ ( ) ( ) ( )] ( ) ( )T T

y uyy t y t Q t Q t D t Q t tε ε∗ −= − −          (66) 
These equations constitute the solution of the optimal 

filtering problem. And the Theorem 2 is obtained as follow. 

Theorem 2. An alternative expression for the filtered output 
ˆ ( )y t∗  is given by 

ˆ ˆ( ) ( ( | )) ( ) ( )y t h x t t D t u t∗ ∗= +                        (67) 
where ( | )x t t  is the filtered state given by 

1( | ) ( | 1) ( ) ( ( ), ) ( ) ( )Tx t t x t t X t Wh X t t Q t tε ε−= − +          (68) 

Proof. To verify the equivalence between (66) and (67) first 
replace ( | )x t t  and ˆ ( )u t∗  in (67) with (65) and (68) in order to 
obtain 

T

1

ˆ ( ) ( ( | 1)) ( ) ( ) [ ( ( ), ) ( ( ), )

                  ( ) ( ) ( ) ( ) ( )] ( ) ( )T
uy u

y t h x t t D t u t h X t t Wh X t t

D t Q t D t Q t D t Q t tε ε

∗

−

= − + +

− +
     (69) 

Now, by using (50) and (58), it can be shown that 

1

ˆ ( ) ( ( | 1)) ( ) ( ) ( )

              [ ( ) ( ) ( )] ( ) ( )T T
y uy

y t h x t t D t u t t

Q t Q t D t Q t tε

ε
ε

∗

−

= − + +

− −
            (70) 

Finally, by replacing ( )tε  with ( ) ( ( | 1))z t h x t t− −  and ( )z t  
with ( ) ( ) ( )y t D t u t− , (66) can be obtained in a straightforward 
way.                                                                                      □ 

Remark 1. When the system is purely dynamic, i.e., ( ) 0,D t = , 
t∀  the optimal estimate of ˆ( )y t  is given by ( ( | ))h x t t , as in 

UKF. Note also that if ( ) ( ) ( ),T T
y uyQ t Q t D t t= ∀ , the optimal 

estimate of ˆ( )y t  coincides with its observation ( )y t . Finally, 
when ( ) 0,D t t= ∀  and ( ) 0,uyQ t t= ∀ , the optimal estimate of 
the noiseless input ˆ( )u t  coincides with its observation ( )u t . 

IV. EVALUATIONS OF THE EXPECTED PERFORMANCE 
The purpose of this section is to develop an expression for 

the expected performance of the filter (65) and (66), i.e., for 
the covariance matrices of the estimation errors 

1ˆ ˆ( ) ( ) ( ) ( ) [ ( ) ( ) ( )] ( ) ( )T
u uy ue t u t u t u t Q t Q t D t Q t tε ε∗ −= − = − + −   (71) 

1ˆ ˆ( ) ( ) ( ) ( ) [ ( ) ( ) ( )] ( ) ( )T T
y y uye t y t y t y t Q t Q t D t Q t tε ε∗ −= − = − + −   (72) 
For simplicity, rewrite (71) and (72) as 

1( ) ( ) ( ) ( ) ( )u ue t u t H t Q t tε ε−= − +                      (73) 
1( ) ( ) ( ) ( ) ( )y ye t y t H t Q t tε ε−= − +                     (74) 

where 
( ) ( ) ( ) ( )T

u uy uH t Q t Q t D t= −                        (75) 

( ) ( ) ( ) ( )T T
y y uyH t Q t Q t D t= −                       (76) 

By taking into account (58), (61), and (62) it is easy to show 
that 

1( ) [ ( ) ( )] ( ) ( ) ( ) ( )T T
u u u u u uP t E e t e t Q t H t Q t H tε

−= = −         (77) 
1( ) [ ( ) ( )] ( ) ( ) ( ) ( )T T

y y y y y yP t E e t e t Q t H t Q t H tε
−= = −         (78) 

Remark 2. Consider now a time-invariant system described 
by the matrices ( ( )) /f x t x∂ ∂ , B, G, ( ( )) /h x t x∂ ∂ , D, whose state, 
input, and output noise are stationary stochastic processes 
characterized by covariance and cross-covariance matrices 

( )wQ t , ( )uQ t , ( )yQ t  and ( )uyQ t . In this case, when the pair 
1( ( ( )) / ( ( )) / ,  ( ( )) / )f x t x SR h x t x h x t x−∂ ∂ − ∂ ∂ ∂ ∂  is detectable and 

the pair 1( ( ( )) / ( ( )) / ,  )f x t x SR h x t x Q−∂ ∂ − ∂ ∂  is stabilizable 
( 1 T TQQ Q SR S−= − ); ( 1| )P t t+  converges to the unique 
solution P of the algebraic Riccati equation for t → ∞ . 

T T

T T 1 T T

( ) ( )
     [ ( ) ][ ( ) ( ) ] [ ( ) ]
P XWf X f X WX Q

XWh X S h X Wh X R XWh X S−

= + +
− + + +

  (79) 

so that ( )uP t  and ( )yP t  converge to the matrices uP  and yP  
given by 

T 1lim ( ) [ ( ) ( ) ] T
u u u u ut

P P t Q H h X Wh X R H−

→∞
= = − +            (80) 

T 1lim ( ) [ ( ) ( ) ] T
y y y y yt

P P t Q H h X Wh X R H−

→∞
= = − +           (81) 

with 
( ) ( ) ( ) ( )T

u uy uH t Q t Q t D t= −                         (82) 

( ) ( ) ( ) ( )T T
y y uyH t Q t Q t D t= −                       (83)  

Moreover, the filter (54)-(56) is asymptotically stable for 
t → ∞ . 

V. NUMERICAL SIMULATIONS 
The results obtained in previous sections have been 

numerically verified by means of a 100 runs Monte Carlo 
simulation performed on the two inputs-two outputs 
time-invariant system described by the following matrices. 

2
2 2

1 1 2 3
2 2
1 2 3

( )
( ( ), ) ( ) ( ( ) ( ) 1) ( )

( ) ( ) ( )

x t
f x t t x t x t x t x t

x t x t x t

⎡ ⎤
⎢ ⎥= − + + −⎢ ⎥
⎢ ⎥+ −⎣ ⎦

 

0.8 0.8
0.17 0.37
1.09 1.1

B
−⎡ ⎤

⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

    
1 0 0
0 1 0
0 0 1

G
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

1

3

exp( ( ))
( ( ), )

exp( ( ))
c x t

h x t t
c x t

−⎡ ⎤
= ⎢ ⎥+⎣ ⎦

   
1.7 1.5
0.51 1

D ⎡ ⎤= ⎢ ⎥−⎣ ⎦
 

The number of samples is 500. The input sequences 1ˆ ( )u i  
and 2ˆ ( )u i  have unit variance and are shown in Figs. 1 and 2 
(last 200 samples). In every run, the noise sequences ( )w i , 
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( )u i  and ( )y i  are characterized by the following covariance 
and cross-covariance matrices. 

0.56 0.26 0.45
0.26 0.17 0.23
0.45 0.23 0.39

wQ
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

     
0.12 0.15
0.15 0.25uQ ⎡ ⎤= ⎢ ⎥
⎣ ⎦

 

1.3 1.7
1.7 2.4yQ ⎡ ⎤= ⎢ ⎥
⎣ ⎦

       
0.38 0.51
0.46 0.7uyQ ⎡ ⎤= ⎢ ⎥
⎣ ⎦

 

The initial state 0x  is a random vector and (54) and (56) have 
been initialized as (0 | 1) 0x − =  and (0 | 1) nP I− = .  
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Fig.1. Comparison between the first noiseless input and its observation 
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Fig.2. Comparison between the second noiseless input and its observation 
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Fig.3. Comparison between the first noiseless output and its observation 

300 320 340 360 380 400 420 440 460 480 500
-8
-6
-4
-2
0
2
4
6
8

 the second noiseless output
 observation of EKF
 observation of UKF  

 
Fig.4. Comparison between the second noiseless output and its observation 

Figs. 1-4 report the noiseless inputs and outputs, as well as 
the associated noisy observations in a typical case of the 
Monte Carlo simulation (last 200 samples). The effectiveness 
of the filter can be observed, in the same typical case, in Figs. 
5-8, where the noiseless inputs and outputs are compared with 
the corresponding filtered quantities. The performance of the 
UKF is compared with the EKF in the simulation. It is shown 
that the UKF has better accuracy than the EKF in the 
observations and the optimal estimations.  
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Fig.5. Comparison between the first noiseless input and its optimal estimate 
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Fig.6. Comparison between the second noiseless input and its optimal 

estimate 
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Fig.7. Comparison between the first noiseless output and its optimal estimate 
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Fig.8. Comparison between the second noiseless output and its optimal 

estimate 
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In addition, the covariance matrices of the estimation errors 
uP  and yP  are obtained by means of the asymptotic relations 

(80) and (81), while the means of the actual values obtained in 
the 100 runs of the Monte Carlo simulation uP  and yP  are 
compared with uP  and yP . The difference value between uP  , 

yP  and uP  , yP  are calculated from ten independent trials and 
summarized. It verified the better accuracy of the UKF 
compared with the EKF. And the theoretical results are thus 
confirmed in a very accurate way by the numerical simulation. 

EKF

0.004665 0.0071125
( )

0.0071125 0.012225u uP P
± ±⎡ ⎤− = ⎢ ⎥± ±⎣ ⎦

 

UKF

0.0019975 0.00373
( )

0.00373 0.004565u uP P
± ±⎡ ⎤− = ⎢ ⎥± ±⎣ ⎦

 

EKF

0.0409575 0.043275
( )

0.043275 0.05693y yP P
± ±⎡ ⎤− = ⎢ ⎥± ±⎣ ⎦

 

UKF

0.021645 0.0347925
( )

0.0347925 0.03535y yP P
± ±⎡ ⎤− = ⎢ ⎥± ±⎣ ⎦

 

From the example simulations, we can confirm that the 
proposed filtering and the unscented Kalman filter, as well as 
the related results are all effective. 

VI. CONCLUSION 
In this note, the extension of the stochastic context of 

unscented Kalman filtering to the presence of additive noise 
on input observations has been considered. The unscented 
Kalman filter has then been used to solve the problem of 
optimal estimation of noise-corrupted input and output 
sequences. A unified context for both the unscented Kalman 
filter and the errors-in-variables filter has thus been 
established. A Monte Carlo simulation has shown the 
effectiveness of the UKF and the excellent agreement between 
expected and observed performances. 
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